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Molecular quasiparticle and excitation energies determine essentially the spectral

characteristics measured in various spectroscopic experiments. Accurate prediction

of these energies has been rather challenging for ground-state density functional

methods, because the commonly adopted density function approximations suffer

from delocalization error. In this work, by presuming a quantitative correspondence

between the quasiparticle energies and the generalized Kohn–Sham orbital energies,

and employing a previously developed global scaling correction approach, we achieve

substantially improved prediction of molecular quasiparticle and excitation energies. In

addition, we also extend our previous study on temporary anions in resonant states,

which are associated with negative molecular electron affinities. The proposed approach

does not require any explicit self-consistent field calculation on the excited-state species,

and is thus highly efficient and convenient for practical purposes.

Keywords: density functional theory, delocalization error, scaling correction approach, quasiparticle energies,

electronic excitation energies, electron affinity

1. INTRODUCTION

Density function theory (DFT) (Hohenberg and Kohn, 1964) has made great success in practical
calculations for ground-state electronic properties because of its outstanding balance between
accuracy and computational cost. In the Kohn–Sham (KS) scheme of DFT (Hohenberg and Kohn,
1964; Kohn and Sham, 1965), the effective single-particle equations can be written as (by omitting
the spin indices and adopting the atomic units)

[

−
1

2
∇2 + vH(r)+ vext(r)+ vxc(r)

]

φm(r) = εm φm(r). (1)

Here, vext(r) is the external potential, vH(r) is the Hartree potential, vxc(r) is the local
exchange-correlation (XC) potential, and {φm(r)} and {εm} are the KS/generalized KS (GKS)
orbitals and their eigenvalues, respectively. In the GKS scheme, vxc(r) is replaced by a non-local
potential, vxc(r, r′). The KS equations can be solved self-consistently to produce the ground-state
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energy and charge density. However, it is challenging to
apply conventional ground-state density functional methods
to calculate excited-state-related properties, such as the
quasiparticle (QP) energies and the electronic excitation
energies, which will be introduced as follows.

When an electronic system is perturbed by incoming photons
or electrons, in order to preserve a single-particle picture, the
concept of QP is often adopted. In a direct photoemission
experiment, an electron on a molecule absorbs the energy of
a photon and gets excited away from the molecule. Such a
process leaves a quasihole in the molecule whose energy level is
renormalized by the presence of the other electrons. Similarly, in
an inverse photoemission experiment, an electron attaches to a
molecule by emitting a photon, which leads to the formation of
a quasielectron whose energy level is influenced by the existing
electrons in the molecule (Onida et al., 2002).

The actual QP energies and wavefunctions can be obtained by
solving the QP equations as follows (Hedin, 1965; Aulbur et al.,
2000),

[

−
1

2
∇2 + vH(r)+ vext(r)

]

ψm(r)

+

∫

6(r, r′;ωm)ψm(r
′)dr′ = ωm ψm(r). (2)

Here, {ψm(r)} and {ωm} are the QP wavefunctions and energies,
respectively, and 6 is a non-local and energy-dependent self-
energy operator, with the imaginary part of its eigenvalues giving
the lifetime of the QPs. To enable practical calculations, an
approximate scheme for 6 is to be employed. The most widely
used scheme is the GW approximation (Hedin, 1965; Hybertsen
and Louie, 1986; Aulbur et al., 2000; Dvorak et al., 2014).
Therefore, regarding the calculation of QP energies, many-body
perturbation theory within the GW approximation has become a
popular method at present (Hedin, 1965; Hybertsen and Louie,
1986; Louie and Hybertsen, 1987; Aulbur et al., 2000; Onida
et al., 2002; Dvorak et al., 2014). However, the somewhat large
computational cost makes it difficult to apply the GW method to
complex systems. Thus, a highly efficient and accurate method
for the prediction of QP energies is sought for.

It is tempting to relate the KS/GKS orbital energies to QP
energies, because the KS and GKS schemes are in conformity
with an effective single-electron description. However, with
conventional density functional approximations (DFAs), such as
the local density approximation (LDA) (Slater, 1951; Vosko et al.,
1980), generalized gradient approximations (GGAs), and hybrid
functionals, the calculated KS/GKS orbital energies usually
deviate severely from the QP energies. Such deviations have also
led to significant underestimation of band gaps, which is largely
due to the delocalization error associated with the DFAs (Cohen
et al., 2008a). In the exact DFT, the ground-state energy of a
systemwith a fractional number of electrons, E0(N+n) (subscript
0 denotes the ground state corresponding to the fixed vext),
should satisfy the Perdew–Parr–Levy–Balduz (PPLB) condition
(Perdew et al., 1982, 2007; Yang et al., 2000): E0(N + n) = (1 −
n)E0(N)+ nE0(N + 1), where 0 < n < 1 is a fractional number.

The PPLB condition infers that ( ∂E0
∂N )− = −I and ( ∂E0

∂N )+ =

−A, where I ≡ E0(N − 1)− E0(N) and A ≡ E0(N)− E0(N + 1)
are the vertical ionization potential (IP) and electron affinity
(EA) of the N-electron system, respectively. It has been proved
(Cohen et al., 2008a; Yang et al., 2012) that if the XC energy is
an explicit and differentiable functional of the electron density or
the KS reduced density matrix, we have ( ∂E0

∂N )− = εHOMO and

( ∂E0
∂N )+ = εLUMO, where εHOMO and εLUMO are the energies of

the highest occupied molecular orbital (HOMO) and the lowest
unoccupiedmolecular orbital (LUMO), respectively. Therefore, if
the PPLB condition can be satisfied, we should have I = −εHOMO

and A = −εLUMO.
Within the framework of ground-state DFT, a rigorous

mapping between the other remaining KS/GKS orbital energies
apart from the HOMO and LUMO and the QP energies has
not been established. However, in practice the Koopmans-like
relations have been proposed and adopted by many authors
(Hill et al., 2000; Coropceanu et al., 2002; Vargas et al., 2005;
Bartlett, 2009; Gritsenko and Baerends, 2009; Tsuneda et al., 2010;
Dauth et al., 2011; Körzdörfer et al., 2012; Baerends et al., 2013;
Bartlett and Ranasinghe, 2017; Puschnig et al., 2017; Ranasinghe
et al., 2017; Thierbach et al., 2017). These relations have the
form of εi ≈ −Ivi = −[Ei(N − 1) − E0(N)] and εa ≈

−Av
a = −[E0(N) − Ea(N + 1)]. Here, the index i (a) denotes

the occupied (virtual) KS/GKS orbital of the N-electron system
from (to) which an electron is deprived (added), with Ivi (Av

a)
being the corresponding vertical IP (EA). It is easily recognized
that these vertical IPs and EAs coincide with the energies of
quasiholes and quasielectrons, i.e., ωi = −Ivi and ωa = −Av

a,
respectively. Computationally, approximating QP energies by
KS/GKS orbital energies has the advantage of requiring only a
single self-consistent field (SCF) calculation for the ground state
of the interested molecule.

The excited-state properties of molecular systems can be
probed by photon absorption experiments (Onida et al., 2002).
However, theoretical characterization of the excited states is
rather challenging because the excited electron and the resulting
hole cannot be treated separately. Numerous methods have been
developed for the calculation of excitation energies. Coupled
cluster (CC) (Schreiber et al., 2008; Silva-Junior et al., 2008;
Winter et al., 2013; Wang et al., 2014; Dreuw and Wormit, 2015;
Jacquemin et al., 2015) and multi-reference methods (Andersson
et al., 1990; Potts et al., 2001; Slavicek and Martinez, 2010; Hoyer
et al., 2016) are able to describe electronic excited states with
a high accuracy. However, the expensive computational cost
makes the application of these methods to large systems rather
difficult. As a straightforward extension of the GW approach
(Hedin, 1965; Hybertsen and Louie, 1986; Onida et al., 2002),
the Bethe–Salpeter equation (BSE) (Rohlfing and Louie, 2000;
Onida et al., 2002; Jacquemin et al., 2017) provides another
method for the calculation of excited states, which is however
also quite expensive. The time-dependent DFT (TDDFT) (Runge
and Gross, 1984; Casida, 1995) is in principle an exact extension
of the ground-state DFT, and it has been widely employed
to study neutral excitations. Despite its success, TDDFT faces
several challenges, such as double excitation character, multi-
reference problems, and high-spin excited states (Ipatov et al.,
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2009; Laurent and Jacquemin, 2013; Santoro and Jacquemin,
2016).

Recently, a simple method has been proposed, which attempts
to acquire excitation energies by using only the KS/GKS orbital
energies of the molecular cations calculated by ground-state DFT
(Haiduke and Bartlett, 2018; Mei et al., 2019). Such a method is
referred to as the QE-DFT (QP energies from DFT), which has
been employed to describe excited-state potential energy surfaces
and conical intersections (Mei and Yang, 2019). Following the
idea of QE-DFT, molecular excitation energies have also been
expressed by KS/GKS orbital energies obtained with long-range
corrected functionals (Hirao et al., 2020). Details about QE-DFT
are to be presented in section 2.1.

In addition to neutral molecules, in this work we also consider
the resonance states of temporary anions. A temporary anion has
an energy higher than that of the neutral species, and thus its EA
has a negative value. This means the anion is unstable and lasts
only a short time. Although temporary anions cannot be studied
by traditional spectroscopic techniques, they can be observed
via resonances (sharp variations) in the cross-sections of various
electron scattering processes (Jordan and Burrow, 1987). In
the gas phase, the resonances can be identified by the electron
transmission spectroscopy (Sanche and Schulz, 1972; Schulz,
1973; Jordan and Burrow, 1987). Since these resonances belong
to the continuous part of the spectrum, they cannot be addressed
by conventional electronic structure methods for bound states. A
number of theoretical methods have been proposed to tackle the
problem of temporary anions. For instance, it has been proposed
that the attractive components of electron-molecule interaction
are combined with a long-range repulsive potential to produce
a barrier, behind which the excess electron can be temporarily
trapped (Jordan et al., 2014). Moreover, the negative EAs have
been studied by the GW method (Hedin, 1965; Hybertsen and
Louie, 1986; Govoni and Galli, 2018), the electron-propagator
methods (Longo et al., 1995; Ortiz, 2013; Dolgounitcheva et al.,
2016), and the equation-of-motion coupled cluster (EOM-CC)
approach (Stanton and Bartlett, 1993; Nooijen and Bartlett, 1995;
Dutta et al., 2014; Jagau et al., 2017; Skomorowski et al., 2018; Ma
et al., 2020), again with considerable computational cost.

In order to describe the unbound resonance states within
the DFT approach, Tozer and De Proft (2005) have proposed
an approximate approach to evaluate the EA based on the
KS frontier orbital energies (Kohn and Sham, 1965) and the
accurate IP. Zhang et al. (2018) have used directly the negative
of GKS eigenvalue of the neutral ground-state molecule as an
approximation of EA corresponding to the resonance state of
the anion. The good accuracy was made possible because of the
use of the global scaling correction (GSC) (Zheng et al., 2011),
which will be introduced later. At the same time, another method
has been developed to evaluate the negative EA from the GKS
eigenvalue of the neutral ground states (Carmona-Espíndola
et al., 2020). Different from GSC, this method is designed to
impose the derivative discontinuity of the exact XC potential.
Our work (Zhang et al., 2018) proceeded the work of Mei et al.
(2019) and that of Haiduke and Bartlett (Haiduke and Bartlett,
2018) in the direct use of GKS eigenvalues of the N-electron
ground state to approximate the excited state energy of the

corresponding (N + 1)-electron system, with the excited state of
the (N + 1)-electron system being a unbound resonance state.

For achieving an accurate prediction of QP energies with
ground-state density functional methods, it is crucial to reduce
the delocalization error associated with the adopted DFA.
Enormous efforts have been made, which have led to the
development of the GSC (Zheng et al., 2011) and local scaling
correction (LSC) (Li et al., 2015) approaches, which alleviate
substantially the delocalization error of various DFAs for systems
involving global and local fractional electron distributions,
respectively. This is done by imposing explicitly the PPLB
condition on the form of DFA. Recently, a localized orbital
scaling correction (LOSC) (Li et al., 2017; Su et al., 2020) has
been constructed to join the merits of GSC and LSC. The LOSC
approach is capable of correcting the energy, energy derivative,
and electron density of any finite system in a self-consistent and
size-consistent manner. In particular, the LOSC approach has
been applied in conjunction with the QE-DFT to predict QP and
excitation energies of molecules (Mei et al., 2019).

In this work, we revisit the non-empirical GSC approach
(Zheng et al., 2011, 2013, 2015; Zhang et al., 2015) and explore
the possibility of using it to achieve an accurate prediction of
QP and excitation energies. With a perturbative treatment of
the orbital relaxation induced by the addition (removal) of an
infinitesimal amount of electron to (from) a molecule, the GSC
approach has been demonstrated to improve systematically the
prediction of KS frontier orbital energies and band gaps of
molecules (Zhang et al., 2015). Based on the idea of QE-DFT,
we will extend the scope of GSC from the frontier orbitals to the
other KS/GKS orbitals.

The remainder of this paper is organized as follows. In
section 2, we present the QE-DFT method to calculate the
QP and excitation energies within the framework of ground-
state DFT, as well as the GSC approach to achieve the accurate
KS/GKS orbital energies. In section 3, numerical results of
the QP energies, electronic excitation energies, and resonance
energies are presented and discussed. Finally, we summarize this
work in section 4.

2. METHODOLOGY

2.1. QE-DFT Method for the Calculation of
QP, Excitation, and Resonance Energies
In the QE-DFT method, the following Koopmans-like relations
are adopted, which use the energies of occupied and virtual
KS/GKS orbitals to approximate the quasihole and quasielectron
energies, respectively.

εa(N) ≈ ωa(N) = Ea(N + 1)− E0(N),

εi(N) ≈ ωi(N) = E0(N)− Ei(N − 1). (3)

Here, {εi(N)} and {εa(N)} are the occupied and virtual orbital
energies of theN-electron system, respectively. Ea(N+1) denotes
the energy of the (N + 1)-electron system formed by adding
an excess electron to the ath virtual orbital of the N-electron
system at its ground state. Note that the subscript a refers to the
N-electron system, and the value of such an orbital index may
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vary in the (N + 1)-electron system because of the relaxation
and re-ordering of the orbitals upon the perturbation induced by
electron addition. A similar argument applies to the ith occupied
orbital of the N-electron system.

From Equation (3), it is obvious that the excitation energy
of an electron from the HOMO to a virtual orbital of the N-
electron system, which corresponds to the ath orbital of the
(N − 1)-electron system, can be calculated as follows (Haiduke
and Bartlett, 2018; Mei et al., 2019):

1Ea(N) ≡ Ea(N)− E0(N)

= [Ea(N)− E0(N − 1)]− [E0(N)− E0(N − 1)]

= ωa(N − 1)− ωLUMO(N − 1)

≈ εa(N − 1)− εLUMO(N − 1). (4)

Here, in the second equality of Equation (4), we have chosen to
use the (N−1)-electron system as a reference system. This means
the electronic excitation from the HOMO to a virtual orbital
can be regarded as consisting of two steps: first an electron is
removed from theHOMOof theN-electron system, giving rise to
an (N−1)-electron system in its ground state, and then an excess
electron is put to the ath virtual orbital of the (N − 1)-electron
system, which is energetically higher than the frontier orbitals,
resulting in an excitedN-electron system. Accordingly, E0(N−1)
is the ground-state energy of the (N − 1)-electron system, and
Ea(N) denotes the energy of the N-electron system that is finally
obtained. Thus, Equation (4) can describe the excitation of an
electron from the HOMO to any virtual KS/GKS orbital (LUMO
and above), as long as the orbital finds its counterpart in the
(N − 1)-electron system.

Specifically, if we presume the (N − 1)-electron reference
system contains onemore spin-α electrons than spin-β electrons,
the first triplet-state excitation energy of the N-electron system is
calculated by

1ET1(N) ≡ ET1(N)−E0(N) ≈ εα,LUMO(N−1)−εβ ,LUMO(N−1).
(5)

Higher triplet-state excitation energies can be
calculated similarly.

We now consider the first singlet excited state formed by
adding a spin-β electron to the ath virtual orbital of the ground-
state (N − 1)-electron system. It is well-known that the accurate
calculation of open-shell singlet states is quite challenging for
the density functional methods within the KS/GKS scheme. This
is because the electronic wavefunction naturally involves more
than one Slater determinant, and such a multireference character
is hardly captured by the presently used DFAs due to their
intrinsic static correlation error (Cohen et al., 2008b). Moreover,
an open-shell singlet wavefunction in the form of a single Slater
determinant of KS/GKS orbitals is not an eigenstate of the total
spin operator. In practice, people have attempted to circumvent
the problem of static correlation error by explicitly using more
than one Slater determinant. For instance, the singlet-state energy
of an N-electron system has been written as (Ess et al., 2011)

ES(N) = EM(N)+ χ[EM(N)− ET(N)]. (6)

Here, EM(N) represents the energy of a single-Slater-determinant
wavefunction with the excited spin-β electron occupying the
virtual orbital. The second term on the right-hand side is a
correction to the singlet-state energy, which accounts for the spin
contamination of the single-Slater-determinant wavefunction,
with χ being a parameter. The singlet-state excitation energy of
the N-electron is thus obtained as

1ES(N) ≡ ES(N)− E0(N)

= [EM(N)− E0(N)]+ χ[EM(N)− ET(N)]

≈ [εβ ,LUMO+a(N − 1)− εβ ,LUMO(N − 1)]

+ χ[εβ ,LUMO+a(N − 1)− εα,LUMO+a(N − 1)]. (7)

To improve the accuracy of 1ES, a spin purification procedure
has been proposed (Ziegler et al., 1977), which amounts to χ =

1 in Equation (6). Specifically, the first singlet-state excitation
energy is calculated by

1ES1(N) ≡ ES1(N)− E0(N) ≈ 2εβ ,LUMO+1(N − 1)

−εα,LUMO(N − 1)− εβ ,LUMO(N − 1). (8)

Obviously, with the QE-DFT method, the calculation of
excitation energies requires the SCF calculations to be performed
explicitly only for the ground-state (N − 1)-electron system.

Regarding temporary anions, we only consider the scenario
that the LUMO of the neutral molecule is already an unbound
orbital, which corresponds to a negative EA. Consequently,
addition of an excess electron to the LUMO gives rise to
a resonant state. Traditionally, the molecular EA is obtained
by performing SCF calculations separately for the neutral and
anionic systems and taking the energy difference between them.
This is referred to the 1SCF method. However, in practice it is
extremely difficult to carry out an SCF calculation for the anionic
species if it is in a resonant state.

Since the LUMO is a frontier orbital, the PPLB condition holds
exactly, and thus the negative EA can be obtained directly from
the positive LUMO energy via the following equality:

A = −εLUMO(N). (9)

By using Equation (9), the SCF calculation on the temporary
anion that is potentially problematic is no longer needed.

2.2. GSC Approach for the Accurate
Prediction of KS/GKS Orbital Energies
From section 2.1, the prediction of QP and excitation energies
is transformed to the accurate calculation of KS/GKS orbital
energies. To this end, we employ a non-empirical GSC approach
developed in our previous works Zheng et al. (2013), Zhang et al.
(2015) to reduce the delocalization error of some frequently used
DFAs. It has been demonstrated that the GSC approach greatly
improves the accuracy of the frontier KS/GKS orbitals. In the
following, we shall go beyond the frontier orbitals and extend the
application of GSC to all the KS/GKS orbitals.

In the KS or GKS scheme, the total electronic energy in the
ground state is E0(N) = Ts + Vext + J + Exc. With the KS/GKS
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orbitals fixed as the electron number is varied, the KS kinetic
energy Ts and external potential energy Vext are linear in ρ(r),
while the electron Coulomb energy J is quadratic, and Exc is
usually non-linear in ρ(r). The GSC approach establishes a linear
energy function that satisfies the PPLB condition,

Ẽ0(N + n) ≡ (1− n)E0(N)+ nE0(N + 1), (10)

by linearizing both J and Exc with respect to the fractional
electron number n. The difference between Ẽ0 and E0 is just the
GSC for the energy:

1EGSC0 = Ẽ0(N + n)− E0(N + n). (11)

Here,1EGSC0 can express explicitly by the electron density ρ(r) =
∑

m nm[φm(r)]2 and some other quantities, where φm(r) and nm
are the mth KS/GKS orbital and electron occupation number,
respectively. For simplicity, the spin indices are omitted.

The addition of the n fractional electron to the LUMOpresents
a perturbation to the N-electron system, and the change in
electron density in response to such a perturbation is

δρ(r) = ρN+n(r)− ρN(r) = nf (r)+ n2γ (r)+ · · · , (12)

where f (r) ≡ limn→0
∂ρ(r)
∂n |vext and γ (r) ≡ limn→0

1
2
∂2ρ(r)
∂n2

|vext
are the first- and second-order Fukui functions (Parr and Yang,
1984; Yang et al., 1984; Yang and Parr, 1985), respectively.
Accordingly, the relaxation of KS/GKS orbitals upon the addition
of n fractional electron can be expanded in a perturbative series

as δφm(r) = φN+n
m (r) − φNm(r) = nδφ

(1)
m (r) + n2δφ

(2)
m (r) + · · · ,

with δφ(k)m (r) being the kth-order orbital relaxation. Thus, the
Fukui functions can be expressed explicitly in terms of orbital
relaxation. For instance, the first-order Fukui function is

f (r) = |φf (r)|
2 + 2

∑

m

nmδφ
(1)
m (r)φm(r). (13)

Here, the subscript f denotes the frontier orbital, with f =

LUMO (f = HOMO) in the case of electron addition (removal).
The explicit forms of orbital relaxation up to the third order
have been derived and provided in Zhang et al. (2015), with
all the perturbation Hamiltonian matrices determined by a self-
consistent process. Ultimately, all orders of orbital relaxation and
Fukui quantities are expressed in terms of {φm(r)} and {εm} of the
N-electron system. The scaling correction to the frontier orbital
energy is then evaluated by the Janak’s theorem (Janak, 1978) in a
post-SCF manner,

1εGSCf =
∂1EGSC0

∂n
= 1ε

(1)
f

+1ε
(2)
f

+ · · · , (14)

where 1ε
(k)
f

is the kth-order correction to the frontier

orbital energy.
An accurate prediction of molecular IP and EA has been

achieved by employing the GSC approach (Zheng et al., 2013,
2015; Zhang et al., 2015, 2018) via

I = −εGSC−DFA
HOMO = −(εDFAHOMO +1εGSCHOMO), (15)

A = −εGSC−DFA
LUMO = −(εDFALUMO +1εGSCLUMO). (16)

In practical calculations, the perturbative series needs to be
truncated at a certain order. It is worth pointing out that the
accuracy of the GSC does not necessarily increase with further
inclusion of higher order orbital relaxation. This is because the
present form of GSC only treats the exchange energy Ex, while the
correlation energy Ec is presumed to be much smaller and hence
its correction is omitted. However, the correction to Ec may have
a comparable magnitude to the high-order corrections to Ex. For
instance, regarding the prediction of EA, while the inclusion of
first-order orbital relaxation is found optimal for the LDA and
GGA (such as BLYP, Becke, 1988; Lee et al., 1988), the inclusion
of orbital relaxation up to second-order is most favorable for the
hybrid functional B3LYP (Lee et al., 1988; Becke, 1993).

To extend the GSC approach beyond the frontier KS/GKS
orbitals, we presume that the PPLB condition could be
generalized to the following energy linearity relation:

Ẽa(N + n) ≡ (1− n)E0(N)+ nEa(N + 1). (17)

The GSC to the energy of the (N + n)-electron system is

1EGSCa = Ẽa(N + n)− Ea(N + n), (18)

where Ea(N + n) is the energy of the (N + n)-electron system
in an excited state, since the n fractional electron is now added
to the ath virtual orbital of the N-electron system. Similarly, the
changes of electron density and KS/GKS orbitals in response to
the perturbation caused by the electron addition process, as well
as their contributions to 1EGSCa , are calculated by using the self-
consistent perturbation theory presented in Zhang et al. (2015).
This finally gives rise to the GSC to the KS/GKS orbital energies:

1εGSCa =
∂1EGSCa

∂n
= 1ε(1)a +1ε(2)a + · · · . (19)

Likewise, for the scenario that n fractional electron is deprived
from the ith occupied orbital of the N-electron system, we have

1εGSCi =
∂1EGSCi

∂n
= 1ε

(1)
i +1ε

(2)
i + · · · . (20)

With the QE-DFT method, we can now use the scaling corrected
KS/GKS orbital energies to approximate the QP energies and the
related vertical IPs and EAs as follows:

ωi = −Ivi ≈ εGSC−DFA
i = εDFAi +1εGSCi ,

ωa = −Av
a ≈ εGSC−DFA

a = εDFAa +1εGSCa . (21)

3. RESULTS AND DISCUSSIONS

3.1. QP Energies
3.1.1. Quasihole Energies of Molecules
Because of the lack of highly accurate experimental or theoretical
data for the molecular quasielectron energies (except for those
associated with the LUMOs), in this work we only compare
the calculated quasihole energies that are associated with the
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FIGURE 1 | The mean absolute errors (MAEs) (in units of eV) between the occupied Kohn–Sham (KS)/generalized KS (GKS) orbital energies {εi} calculated by various

density functional approximations (DFAs) and the experimentally measured quasihole energies {ωi}. The experimental data are extracted from Chong et al. (2002) and

Schmidt (1977). The basis set adopted in the density functional calculations is aug-cc-pVTZ (Kendall et al., 1992; Woon and Dunning Jr, 1993).

FIGURE 2 | A comparison between 56 Kohn–Sham (KS)/generalized KS

(GKS) orbital energies {−εi} calculated by B3LYP and GSC-B3LYP and the

corresponding vertical ionization potentials (IPs) {Ivi } measured experimentally

for 12 molecules (see the main text). The green solid line indicates exact

equality.

occupied KS/GKS orbitals to the reference data available in
the literature.

We first look into 56 quasihole energies of 12 molecules
by calculating the scaling corrected orbital energies, and
make comparison with experimentally measured vertical IPs.
The examined molecules are cyanogen, CO, acetylene, water,

ethylene, ammonia, acetonitrile, fluoromethane, benzene,
naphthalene, furan, O2, and formic acid, which exhibit
diversified geometric and electronic features. Among these
molecules, the geometries of benzene and naphthalene are
extracted from Mei et al. (2019), while the structures of the other
molecules are optimized with the B3LYP/6-311+g** method by
using the Gaussian09 package (Frisch et al., 2009).

The GSC approach presented in section 2.2 is employed to
correct the orbital energies calculated by various mainstream
DFAs, including the LDA, the GGAs (BLYP and PBE, Perdew
et al., 1996), and the hybrid functional B3LYP. For these DFAs,
the orbital relaxation up to the second order is considered
for calculating the scaling corrections of the occupied orbital
energies. The GSC approach is implemented in an in-house built
quantum chemistry software package QM4D (Hu et al., 2020).

Figure 1 compares the averaged deviations of the calculated
{εDFAi } and {εGSC−DFA

i } from the quasihole energies {ωi}

extracted from the experimentally measured vertical IPs. It is
shown clearly that the mean absolute errors (MAEs) associated
with the original DFAs are as large as several eVs, while by
applying the GSC approach, the MAEs are substantially reduced
to less than 0.5 eV. Take the B3LYP functional as an example. It
yields an MAE of 3.05 eV, which is the smallest among all the
uncorrected DFAs, and the MAE is greatly reduced to 0.28 eV by
using the GSC-B3LYP. If instead the orbital relaxation is treated
up to the first and third order, the MAE becomes 0.74 eV and
0.43 eV, respectively. The dependence on the order of orbital
relaxation is consistent with the trend observed in our previous
work (Zhang et al., 2015).

In a previous study by Chong et al. (2002), 10 out of
12 molecules examined in Figure 1 (without benzene and
naphthalene) have been investigated by calculating their KS/GKS
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A B

FIGURE 3 | A comparison between the experimental and simulated photoemission spectra (PES) of (A) a maleic anhydride and (B) a benzoquinone. The experimental

PES are extracted from Brundle et al. (1972), Knight et al. (2016), with the rightmost quasielectron peak added manually. The quasielectron peak is centered at the

experimental EA of the molecule, and is broadened artificially by a Gaussian function with the width of λ = 0.2 eV. The simulated PES by using the QE-DFT is

explained in the main text, and the results of the self-consistent GW (scGW) and non-self-consistent G0W0 methods are extracted from Knight et al. (2016).

orbital energies by using an approximate XC potential obtained
with the statistical averaging of (model) orbital potentials
(SAOP). For these 10 molecules, the MAE reported in Chong
et al. (2002) is 0.38 eV, while the GSC-B3LYP yields a somewhat
smaller MAE of 0.28 eV, albeit the different molecular geometries
and basis sets adopted.

The comparison between the individual orbital energies {−εi}
calculated by B3LYP and GSC-B3LYP and the experimentally
measured vertical IPs {Ivi } is depicted in Figure 2. It is apparent
that the uncorrected orbital energies deviate systematically and
significantly from the experimental QP energies, while such
deviations are largely alleviated by applying the GSC approach.

3.1.2. Photoemission Spectra
The QP energies can also be extracted from the peak positions
of experimentally measured photoemission spectra (PES). We
employ the QE-DFT to study the PES of 14 molecules. The same
molecular geometries and basis set (cc-pVTZ, Dunning, 1989;
Woon andDunning Jr, 1993) as those adopted inMei et al. (2019)
are used here. The PES are simulated by setting the energy of each
KS/GKS orbital as the center of a QP peak, and assuming all QP
peaks have the same amplitude and are broadened by the same

Gaussian function e−(ε−εi)2/2λ2 with λ = 0.2 eV.
Figure 3 depicts the experimentally measured and

theoretically simulated PES of a maleic anhydride and a
benzoquinone, while those of the other 12 molecules are
presented in Supplementary Material. Clearly, both the PBE

and B3LYP yield considerable errors in the peak positions of the
simulated PES. More specifically, they tend to predict much too
high quasihole energies and too low quasielectron energies. This
is because the uncorrected DFAs (PBE and B3LYP) suffer from
delocalization error, as they violate the rigorous PPLB condition
and the extended energy linearity relation.

The use of GSC improves significantly the simulated PES.
For GSC-PBE, the orbital relaxation is considered up to the
first and second order for the virtual and occupied KS/GKS
orbitals, respectively; while for GSC-B3LYP, the orbital relaxation
is included up to second order for all the KS/GKS orbitals. From
the comparison shown in Figure 3, it is evident that the GSC-
DFAs achieve at least the same level of accuracy as the results of
GW method (Knight et al., 2016). Moreover, the computational
cost of the QE-DFT method by using a GSC-DFA is supposedly
much cheaper than that of the GW method, because the former
requires only a single SCF calculation at the DFT level.

3.2. Energies of Low-Lying Excited States
We now turn to the energies of low-lying excited states of
molecules. By employing the QE-DFT method, we carry out
calculations on 48 low excitation energies of the 16 molecules
investigated previously in Mei et al. (2019). The cationic
species of all these molecules indeed contain one more spin-
α electrons than spin-β electrons, and hence their triplet and
singlet excitation energies are computed by using equations
5 and 7, respectively. Since the calculations involve only the
virtual KS/GKS orbitals of the cations, the orbital relaxation is
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FIGURE 4 | The mean absolute errors (MAEs) of the energies of different types of excitations calculated by using the QE-DFT method with various density functional

approximations (DFAs) and the basis set 6-311++G(3df, 3pd). For comparison purpose, the MAEs of the TDDFT-B3LYP results extracted from Mei et al. (2019) are

also displayed. Excitation energies calculated by high-level wavefunction methods are used as the reference data (Schreiber et al., 2008). T1 and S1 (T2 and S2) refer

to the triplet and singlet HOMO to LUMO (LUMO+1) excitations, respectively. The numbers in the parentheses record the numbers of energy data belonging to the

different types of excitations.

considered up to the second order for GSC-B3LYP and up to the
first order for other GSC-DFAs, respectively.

Figure 4 compares the MAEs of different types of excitation
energies calculated by various DFAs, and the detailed results can
be found in the Supplementary Material.

Intriguingly, for the lowest (HOMO-to-LUMO) triplet
excitations, the uncorrected DFAs yield reasonably accurate
excitation energies, and the application of the GSC approach
does not lead to any improvement. In particular, B3LYP yields an
MAE as small as 0.17 eV for the T1 excitations. Such an appealing
accuracy is likely due to the cancellation of delocalization error.
Equation (5) involves the difference between a pair of virtual
orbital energies. Thus, when two virtual orbitals are close in
energy, their associated delocalization errors are expected to
cancel out (Mei et al., 2019). Consequently, the GSC approach
does not help. Such an error cancellation mechanism becomes
less favorable for higher excitations. For instance, as displayed
in Figure 4, the uncorrected DFAs tend to yield a larger MAE
for the T2 excitations, and applying the GSC indeed leads to
improved accuracy. The latter is because the scaling correction
to each individual QP energy starts to take effect.

For the S1 excitations, the GSC-DFAs yield MAEs that are
somewhat larger than the original DFAs. This is because a second
type of systematic error of the DFAs, the static correlation error,
becomes prominent and significantly affects the calculated1ES1.

Taking the LDA functional as an example. If the first singlet
excited state is described by a single Slater determinant, i.e., by
setting χ = 0 in Equation (6) and (7), the MAEs of 1ES1
are 1.44 eV and 1.33 eV for the original LDA and GSC-LDA,
respectively. In contrast, after adopting the spin purification
procedure (by setting χ = 1), the MAEs reduce to 0.73 eV
and 0.92 eV for the original LDA and GSC-LDA, respectively.
Therefore, the spin purification procedure indeed diminishes the
MAE of1ES1 by circumventing the problem of static correlation
error. However, the somewhat larger MAE of the GSC-LDA
seems to indicate that the spin purification formula is not
entirely compatible with the present GSC scheme. For higher
singlet excitations, the static correlation error becomes much
less significant, as signified by the much smaller second term
on the right-hand side of Equation (6). Consequently, the MAE
of 1ES2 experiences a rather minor change by invoking the
spin purification. For instance, the MAE increases slightly from
0.68 eV to 0.70 eV with the original LDA, while it reduces slightly
from 0.57 eV to 0.53 eV with the GSC-LDA.

Among all the DFAs examined, the GSC-B3LYP functional
achieves an optimal performance for all the low-lying excitations
studied. The overall accuracy of GSC-B3LYP is comparable to
the TDDFT-B3LYP. This affirms that it is entirely possible and
practical to access excited-state properties ofmolecules within the
framework of ground-state DFT.
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TABLE 1 | Calculated and experimental ionization potentials (IPs) and T1

excitation energies of various transition metal atoms and compounds.

Final state Exp. CCSD(T) B3LYP GSC-B3LYP

IP

Cu d10 7.73 7.69 5.35 7.90

Ag d10 7.58 7.52 5.30 7.80

Au d10 9.23 9.13 6.61 9.28

MAEa 0.07 2.43 0.14

T1

Cu d10p1 3.81 3.87 4.92 3.94

Ag d10p1 3.84 3.74 4.80 3.87

Au d10p1 4.95 5.01 6.06 5.00

CuF 36+ 1.81 1.81 2.73 2.05

CuCl 36+ 2.35 2.43 3.24 2.35

CuBr 36+ 2.54 2.56 3.19 2.35

AgF 136+ 3.09 3.27 3.26 2.54

AgCl 136+ N/A 3.50 3.66 2.97

AgBr 136+ N/A 3.37 3.43 2.83

AuF 136+ N/A 2.08 2.17 1.80

AuCl 136+ N/A 2.53 2.61 2.14

AuBr 136+ N/A 2.60 2.52 2.09

MAEa 0.07 0.83 0.17

MAEb 0.50 0.31

The experimental excitation energies and the CCSD(T) calculation results are extracted

from Guichemerre et al. (2002). The experimental geometries (Guichemerre et al., 2002)

and the def2-TZVPD basis set (Schäfer et al., 1994; Rappoport and Furche, 2010) are

used for all the calculations.
aThe MAE is between the calculated values and the experimental data.
bThe MAE is between the DFT and the CCSD(T) results.

We further extend our test to cover three transition metal
atomsM (M = Cu, Ag, Au) and nine transition metal compounds
MX (X = F, Cl, Br). The calculated results are presented
in Table 1 along with the CCSD(T) results and the available
experimental data. The small MAEs between the calculated
results and experimental data further affirm the applicability of
the GSC approach.

3.3. Resonance Energies of Temporary
Anions
For a temporary anion in a resonant state, the corresponding
neutral molecule has a negative EA, for which the conventional
1SCF method often yields problematic results. This is because
the choice of an appropriate basis set is difficult for the SCF
calculation of a temporary anion. On the one hand, the energy of
a temporary anion is rather sensitive to the inclusion of diffuse
basis functions (Guerra, 1990). On the other hand, the diffuse
basis functions may artificially delocalize the excess electron
(Cohen et al., 2008c, 2012), and thus result in incorrect electron
density distribution.

Alternatively, using the scaling corrected LUMO energy
to determine the energy of the temporary anion has made
impressive progress. It has been demonstrated that the GSC-
PBE functional predicts highly accurate negative EAs by using
Equation (16) (Zhang et al., 2018). For a set of 38 molecules
proposed in Tozer and De Proft (2005), the resulting MAE is
as small as 0.18 eV with the aug-cc-pVTZ basis set. Recently,

a similar accuracy has been reached by the explicit inclusion
of derivative discontinuity in the GGA exchange potential
(Carmona-Espíndola et al., 2020). In this section, we extend
our calculation to 26 new molecules that are beyond the
above mentioned works, and hence expand the test set to a
total of 64 molecules. The molecular geometries are optimized
at the B3LYP/6-311+G** level with the Gaussian09 suite of
programs (Frisch et al., 2009). For the GSC approach, the
relaxation of KS/GKS orbitals is considered up to second-
order for GSC-B3LYP, and to first-order for other GSC-
DFAs, respectively.

Table 2 lists the experimental and calculated EAs of the newly
added 26 molecules. The experimental data are extracted from
Jordan and Burrow (1978), Chiu et al. (1979), andNg et al. (1983),
while the theoretical data take either the values of −εLUMO

(or −εa if it is the ath virtual orbital that is related to the
resonant state) or the energy difference between the neutral and
anionic species (the1SCF method). More details are given in the
Supplementary Material.

Figure 5 visualizes the MAEs of the calculated EAs of
the extended set of 64 molecules. Obviously, the application
of the GSC approach greatly improves the accuracy of the
virtual orbital energies (particularly the εLUMO). The MAE is
reduced from several eVs with the original DFAs to less than
0.5 eV with the GSC-DFAs. Moreover, the MAE is further
reduced by adopting a more diffuse basis set. This is because
a more complete basis set is more favorable for a perturbative
treatment of scaling correction and orbital relaxation. The
lowest MAE reached for the whole extended set is 0.14 eV with
the GSC-LDA.

As already been pointed out in Zhang et al. (2018), the use
of a very diffuse basis set (such as aug-cc-pVTZ) may give rise
to highly delocalized virtual KS/GKS orbitals with energies
close to the molecular chemical potential. These orbitals are
actually not relevant to the resonant state of the temporary
anion of our interest, and should be left out of theoretical
analysis. Therefore, we need to choose carefully the virtual
orbital, which is genuinely pertinent to the formation of the
temporary anion. For instance, in the case of a cis-butene
molecule, the few lowest virtual orbitals calculated at the
B3LYP/cc-pVTZ and B3LYP/aug-cc-pVTZ levels are depicted
in Figure 6. Apparently, with the B3LYP/aug-cc-pVTZ method,
the three lowest virtual orbitals (from LUMO to LUMO+2)
are rather diffuse. Occupation on any of these orbitals by an
excess electron will lead to an unbound state. Therefore, these
orbitals are not relevant to the formation of the temporary anion.
By scrutinizing the spatial distribution of the virtual KS/GKS
orbitals, it is recognized that φLUMO+3(r) would give rise to
the resonant state of the temporary anion, as it exhibits a same
shape as φLUMO(r) obtained with the cc-pVTZ basis set. In such
a case, instead of using Equation (16), the EA is predicted by
A = −εGSC−B3LYP

LUMO+3 = −(εB3LYPLUMO+3 + 1εGSCLUMO+3). Similarly,
with the B3LYP/aug-cc-pVTZ method there are some other
molecules for which a virtual orbital other than the LUMO
should be chosen. The virtual orbital pertinent to the temporary
anion is φLUMO+1(r) for 9 molecules (aniline, propene,
CO2, guanine, 1,4-cyclohexadiene, cis-1,2-difluoroethylene,
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TABLE 2 | Experimental and calculated electron affinities (EAs) of 26 new molecules that are not included in Tozer and De Proft (2005) and Zhang et al. (2018).

Molecule Exp. LDA BLYP B3LYP PBE GSC- LDA GSC- BLYP GSC- B3LYP GSC- PBE 1SCF- PBE 1SCF- B3LYP

Monofluoroethylene −1.91 1.25 0.95 0.31 1.03 −1.97 −2.18 −2.06 −2.15 −0.47 −0.52

trans-1,2-difluoroethylene −1.84 1.32 1.01 0.39 1.07 −1.95 −2.18 −2.09 −2.16 −0.50 −0.58

cis-1,2-difluoroethylenea −2.18 1.14 0.82 0.19 0.89 −2.18 −2.42 −2.34 −2.40 −0.36 −0.40

1,1-Difluoroethylenea −2.39 1.09 0.79 0.17 0.84 −2.15 −2.32 −2.09 −2.33 −0.42 −0.47

Trifluoroethylenea −2.45 1.06 0.74 0.11 0.77 −2.30 −2.53 −2.38 −2.53 −0.41 −0.45

Tetrafluoroethyleneb −3.00 0.82 0.47 0.21 0.49 −2.71 −3.04 −3.07 −3.03 −0.89 −0.91

Nitrogen −2.20 2.18 1.88 0.98 1.92 −2.20 −2.41 −2.40 −2.41 N/A −1.83

Formaldehyde −0.86 2.91 2.57 1.75 2.66 −0.92 −1.18 −1.14 −1.14 N/A −0.46

Butadiene −0.62 2.12 1.76 1.18 1.90 −0.61 −0.93 −0.85 −0.82 N/A −0.73

Biphenyl −0.30 2.04 1.63 1.13 1.80 0.01 −0.40 −0.39 −0.24 N/A −0.37

Trichloromethane −0.35 2.47 2.22 1.55 2.31 −0.24 −0.44 −0.46 −0.38 −0.15 −0.26

Dichlorofluoromethane −0.96 1.99 1.74 1.08 1.81 −0.90 −1.06 −1.00 −1.04 −0.36 −0.44

Dichlorodifluoromethane −0.98 2.37 2.11 1.43 2.17 −0.61 −0.80 −0.79 −0.77 −0.42 −0.48

Dichloromethane −1.23 1.74 1.52 0.90 1.59 −1.02 −1.08 −0.89 −1.09 −0.31 −0.38

Benzene −1.15 1.44 1.06 0.50 1.21 −1.18 −1.52 −1.48 −1.40 −0.36 −0.42

CO −1.80 2.24 1.94 1.12 2.00 −1.89 −2.07 −1.96 −2.08 −1.05 −1.11

Cyanogen −0.58 3.87 3.48 2.84 3.61 −0.48 0.12 0.23 0.23 0.21 0.29

Propyned −2.95 0.13 0.02 −0.40 0.01 −2.29 −1.83 −1.23 −2.13 −0.40 −0.47

Butadiyne −1.00 2.09 1.73 1.16 1.87 −0.77 −1.07 −0.96 −0.97 −0.25 −0.36

Tetramethylethylenee −2.27 0.42 0.20 −0.31 0.28 −1.81 −1.79 −1.48 −1.86 −0.34 −0.41

Acetylenec −2.60 0.57 0.32 −0.28 0.39 −2.51 −2.58 −2.36 −2.61 −0.46 −0.53

Acrylonitrile −0.21 3.00 2.62 2.01 2.76 −0.01 −0.35 −0.27 −0.24 0.02 −0.16

1,4-Cyclohexadienea −1.75 1.05 0.67 0.34 0.81 −1.45 −1.80 −1.89 −1.68 −0.34 −0.56

Toluene −1.11 1.39 1.01 0.46 1.16 −1.11 −1.45 −1.43 −1.33 −0.34 −0.42

Ethylbenzene −1.17 1.37 0.99 0.47 1.14 −1.07 −1.43 −0.90 −1.31 −0.28 −0.37

Isopropylbenzene −1.08 1.39 0.99 0.44 1.16 −1.01 −1.38 −1.41 −1.25 −0.26 −0.34

MAE 3.17 2.85 2.23 2.95 0.17 0.25 0.30 0.21 1.22 1.01

The calculated EAs are obtained by using the 1SCF method, or take the values of the uncorrected −εDFA
LUMO

or scaling corrected −εGSC−DFA
LUMO

. All energies are in units of eV. The

aug-cc-pVTZ basis set is adopted for all the calculated data listed in this table.
aThe −εLUMO+1 calculated with the GSC-B3LYP is taken as the EA of this molecule.
bThe −εLUMO+1 calculated with the GSC-B3LYP, GSC-BLYP, and GSC-PBE are taken as the EA of this molecule.
cThe −εLUMO+2 calculated with the GSC-B3LYP is taken as the EA of this molecule.
dThe −εLUMO+2 calculated with the GSC-B3LYP and −εLUMO+1 calculated with other DFAs are taken as the EA of this molecule.
eThe −εLUMO+3 calculated with the GSC-B3LYP and −εLUMO+1 calculated with other DFAs are taken as the EA of this molecule.

1,1-difluoroethylene, trifluoroethylene and tetrafluoroethylene),
φLUMO+2(r) for 3 molecules (trimethylethylene, propyne
and acetylene), φLUMO+3(r) for 3 molecules (pyrrole, trans-
butene, and tetramethylethylene), and φLUMO+4(r) for one
molecule (cyclohexene).

As shown in Figure 5, unlike the QE-DFT method,
increasing the size of basis set does not improve the accuracy
of the 1SCF method. This is because through the SCF
calculation of the molecular anion by using a diffuse basis
set, the excess electron is more inclined to reside on the
delocalized orbital, which has a lower energy. Consequently,
it is difficult to have the excess electron correctly occupying
the virtual orbital that is pertinent to the resonant state
of temporary anion. In contrast, the QE-DFT method
in conjunction with the GSC approach does not require
an SCF calculation for the anionic species, and is clearly
more favorable for the prediction of resonance energies of
temporary anions.

4. CONCLUSION

To summarize, we have calculated the QP, excitation, and
resonance energies of molecules by employing the QE-DFT
method. A non-empirical GSC approach is used to reduce the
delocalization error associated with the DFAs by imposing an
energy linearity condition for systems with a fractional number
of electrons. The accuracy of the results obtained in this work
with the GSC-DFAs is overall similar to that achieved in Mei
et al. (2019) by the LOSC method (Li et al., 2017). For instance,
the GSC-B3LYP yields an MAE of 0.36 eV and a mean sign error
(MSE) of−0.16 eV for the 48 excitation energies of 16 molecules
(see section 3.2). These errors are slightly smaller than the MAE
of 0.49 eV and the MSE of −0.19 eV resulted by the LOSC-
B3LYP method (Mei et al., 2019). The marginal superiority in
the performance of the GSC is because of the explicit treatment
of the relaxation of KS/GKS orbitals upon electron addition or
removal. Relaxation of KS/GKS orbitals and electron density
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FIGURE 5 | The mean absolute errors (MAEs) of the EAs for an extended set of 64 molecules calculated by employing the QE-DFT method with various density

functional approximations (DFAs) and by using the 1SCF method. Note that when the more diffuse aug-cc-pVTZ basis set is adopted, the energy of a certain virtual

Kohn–Sham (KS)/generalized KS (GKS) orbital should be taken as the predicted EA; see Table 2 for details. If the orbital relaxation is considered up to the first order

for the GSC-B3LYP, the MAEs become 0.21 and 0.28 eV with the cc-pVTZ and aug-cc-pVTZ basis sets, respectively.

FIGURE 6 | Contour plots of the lowest virtual Kohn–Sham (KS)/generalized KS (GKS) orbitals of the neutral cis-butene molecule calculated at the B3LYP/cc-pVTZ

and B3LYP/aug-cc-pVTZ levels. The isosurfaces of ±0.022 a.u. are shaded in yellow and green, respectively).
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could also be included in the LOSC calculations (Su et al., 2020),
which will further improve the accuracy of predictedQP energies.
Moreover, as the size of the molecule increases to a certain
extent, the energies at integer electron numbers may become less
accurate. For such systems, the correction offered by the GSC
approach may be inadequate, and the LOSC method with size-
consistent corrections (Su et al., 2020; Yang et al., 2020) to DFA
should be used.

For the various DFAs considered in this paper, the GSC-
B3LYP yields the overall best performance. Our calculation
results achieve at least the same level of accuracy as some
more expensive methods, such as the GW method for QP
energies, the TDDFT method for excitation energies, and the
EOM-CC method for resonance energies. This thus affirms
that it is entirely possible and practical to study excited-state
properties within the framework of ground-state DFT. Despite
the promising results, the prediction of singlet excitation energies
still has plenty of room for improvement. This is because
another source of error associated with the DFAs, the static
correlation error, comes into play, which may be corrected
by imposing a constancy condition on systems with fractional
spins (Cohen et al., 2008b). Further work is needed along
this direction.
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