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The novel hollowed Ni-Co layered double hydroxide polyhedron (H-(Ni, Co)-LDHP)

is synthesized via a template-sacrificing approach using ZIF-67 as template. The

morphology, crystallinity, porous texture, and chemical state of H-(Ni, Co)-LDHP are

examined. It demonstrates that the H-(Ni, Co)-LDHP not only provides rich redox sites but

also promotes the kinetics due to presence of numerous rational channels. As a result,

the H-(Ni, Co)-LDHP manifests the desirable lithium ions storage performance when

employed as anode. This study paves a new way for preparing hollowed nanostructure

toward advanced electrochemical applications.
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INTRODUCTION

Currently, the environmental tolerance is priority to the development of new energy storage devices
which are of great significance to our daily life (He et al., 2018). Among all candidates, lithium ion
batteries (LIBs) are considered to be the suitable one due to many advantages such as high energy
density, high specific capacity, and long lifetime (Li et al., 2019).

Layered double hydroxides (LDHs) are hydrotalcite-like compounds. The general formula of
LDH can be expressed as [M2+

1−xM
3+

x(OH)2] [An−]x/n·zH2O (Chen et al., 2013) where M2+

generally indicates the Mg2+, Zn2+, Ni2+, and Cu2+, and M3+ represents the Al3+, Ga3+, Fe3+,
and Mn3+. Moreover, the LDH often exhibits the laminated structure which is composed of
exchangeable interlayer anions and positively charged host layers (Wang and O’Hare, 2012). In the
past few years, the LDHs have been widely applied in many fields, such as catalysis, photoelectricity,
and bioengineering (Zand et al., 2019). Owing to the presence of abundant active sites and layered
structure, the expected redox reaction incorporated short diffusion lengths of ions and electrons
are affiliated with LDH, making it a potential anode for LIBs. However, the poor conductivity
and serious aggregation of LDH nanosheets restricts its lithium storage performance (Xuan et al.,
2019). Based on many cases, one of the effective strategies is to modify LDHs with rational carbon
materials coatings enabling the improved conductivity and expected electrochemical properties,
such as aerogel, graphene nanosheets, and carbon nanotubes (Gao et al., 2011; Yang et al., 2013;
Song et al., 2017).

Metal organic frameworks (MOFs) representing a class of unique 3D carbon materials are
synthesized via linking metal ions with organic molecules. As a result, the MOFs have superior
advantages of well-defined porosity, controllable particle size, and tunable electronic structure.
Most significantly, MOF have been extensively proposed and developed as sacrificing template for
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the synthesis of LDH@C nanocomposites for electrochemical
applications since it is able to derive the desirable transitionmetal
oxides and sufficient specific surface area (Furukawa et al., 2013;
Gao et al., 2019).

In this work, we developed a facile strategy to prepare
hollowed Ni-Co layered double hydroxide polyhedron [H-(Ni,
Co)-LDHP]. The typical ZIF-67 was synthesized initially and
then employed as sacrificing template and Co source to couple
with nickel ions, forming polyhedron-like Ni-Co LDH with
hollowed nanostructure. The hollowed structures have shown
significant advantages of huge specific surface area and excellent
mass permeability enabling to create plenty of active sites and
promote charge transfer during the charge/discharge process and
further enhance the electrochemical performance. The structure,
crystallinity, porous texture, and chemical state are examined
using transmission electron microscopy (TEM), high-resolution
TEM (HRTEM), X-ray diffraction (XRD), nitrogen adsorption-
desorption, and X-ray photoelectron spectrum (XPS). Moreover,
the electrochemical performances of H-(Ni, Co)-LDHP have
been explored by applying H-(Ni, Co)-LDHP as anode
for LIBs.

EXPERIMENTAL

Preparation of H-(Ni, Co)-LDHP
Firstly, 30 mmol of Co(NO3)26H2O and 120 mmol of
dimethylimidazole were dissolved in 400ml mixed solution
consisting of methanol and absolute ethanol in a volume
ratio of 1:1. After stirring for 5min, the mixed solution was
placed for 24 h, and then the purple precipitates which are
ZIF-67 nanoparticles were collected. Subsequently, 120mg of
ZIF-67 powders and 400mg Ni(NO3)26H2O were dissolved
in 100ml absolute ethanol, which was then subjected to
ultrasonic bath for 90min. The ultrasonic power was
120W. Finally, the green H-(Ni, Co)-LDHP powders were
obtained via centrifugation and washed three times using
absolute ethanol.

Electrochemical Tests
The cyclic voltammetry (CV) curves and electrochemical
impedance spectroscopy (EIS) within the frequency range
from 0.1 to 10 000Hz were carried out on electrochemical
workstation (Princeton PARSTAT 3000-DX, USA). The
galvanostatic charging/discharging curves (GCD) were
measured on Land battery test system (CT2001A, China).
All tests were performed under a CR2032 coins-type cell which
was assembled in a glove box filled with argon gas. Regarding
the cell, the lithium metal foil and Celgard membrane were
employed as counter electrode and separator, respectively. The
active materials, acetylene carbon black and polyvinylidene
fluoride (PVDF), were dissolved in N-methylpyrrolidinone
(NMP) in a mass ratio of 8:1:1 to fabricate electrode, and the
average mass loading of anode is 10mg. Besides, 1M LiPF6
in ethylene carbonate (EC), propylene carbonate (PC), and
Dimethyl Carbonate (DEC) (1:1:1 V/V/V) was employed as
the electrolyte. In general, the volume of electrolyte is set
as 1.2 ml.

RESULTS AND DISCUSSION

Figures 1a,b show the scanning electron microscope (SEM,
Hitachi SU5000, Japan) and transmission electron microscopy
(TEM, Hitachi HT7700, Japan) images of H-(Ni, Co)-LDHP,
respectively. Through employing ZIF-67 as sacrificing template,
the irregular Ni-Co LDH hollow polyhedral nanocages were
obtained. Roughly, the average geometrical size of H-(Ni,
Co)-LDHP is 500 nm. Beyond that, the fine structure of H-
(Ni, Co)-LDHP is explored by high-resolution TEM (HRTEM,
FEI TalosF200s, USA). In Figure 1c, the H-(Ni, Co)-LDHP is
assembled by a large number of nanosheets. It is proposed that
the multistage structure is beneficial to increase the specific
surface area (SSA) and expose as much as active cites for the
diffusion of electrolyte ions, which promote the reaction kinetics
and thus contribute to high LIBs’ performance. Further, the
distinct lattice fringe spacing of 0.26 nm corresponding to the
(009) crystal plane of NiCo-LDHs is verified from the inset of
Figure 1c, indicating the good crystallinity of LDHs. Figure 1d
is the combined elemental mapping image of H-(Ni, Co)-
LDHP, suggesting the even distribution of C, Co, Ni, and O.
According to the respective atomic fraction of C, Co, and Ni,
the content of carbon is thereby obtained as 3.45%. Further,
the element mapping reveals that LDH nanosheets uniformly
disperse on ZIF-67, suggesting that the ZIF-67 as sacrificing
template effectively inhibits the agglomeration of LDH and
improves the specific surface area. The mechanism of MOF-
derived hollow structure can be briefly stated as follows: ion
exchange initiates the interchange of cation/anions during the
synthesis of MOF-directed hollowed structures. When excess
Ni(NO3)2 and ZIF-67 are dissolved in absolute ethanol, the
hydrolysis of Ni2+ ions would etch the surface of ZIF-67.
Meanwhile, Co2+ released from ZIF-67 is partially oxidized by
O2 and NO

3− ions (Hu et al., 2015; Xu et al., 2018b). Afterwards,
the Co2+ and Ni2+ consume large amount of hydroxide ions to
co-precipitate around the ZIF-67 polyhedron forming an LDH
layer. Besides, the continuous ultrasonic vibration and outflow of
Co2+ ions empty ZIF-67 polyhedron, leading to the formation of
hollowed Ni-Co layered double hydroxide polyhedron.

Figure 2A exhibits the X-ray diffraction (XRD, Rigaku Smart
Lab, Japan) pattern of H-(Ni, Co)-LDHP and ZIF-67 precursor.
The XRD pattern of ZIF-67 corresponds to previous report
very well (Kong et al., 2018). Regarding H-(Ni, Co)-LDHP,
the peaks located at 11.6, 23.8, 33.7, and 60.4◦ are ascribed to
(003), (006), (009), and (110) crystal plane of hydrotalcite-like
NiCo-LDH (Jiang et al., 2013). Figure 2B illustrates the Fourier
transform infrared spectroscopy spectrum (FTIR PerkinElmer
S2, USA) of H-(Ni, Co)-LDHP. The broad band emerging at
3,450 cm−1 is associated to O-H stretching mode of hydrogen-
bonded hydroxyl, and the unimpressive bands presenting at
1,636 and 2,970 m−1 are assigned to the water molecules in
the interlayer and adsorbed on the sample (Hu et al., 2019).
Further, the intense band focusing at 1,386 cm−1 is ascribed to
the N-O vibration mode of NO3− (Xu et al., 2018a). Besides,
the successive band in the low wavenumber ranging from 500 to
1,000 cm−1 are identified as the stretching vibrations of M-O-
H (M represents Ni or Co) (Tang et al., 2015). The component
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FIGURE 1 | SEM (a) and TEM (b) image of H-(Ni, Co)-LDHP, (c) HRTEM images, and (d) element mapping image of H-(Ni, Co)-LDHP.

elements and chemical states of H-(Ni, Co)-LDHP were detected
by X-ray photoelectron spectrum (XPS, Thermo Fischer DXR,
USA). The full XPS survey spectrum shown in Figure 2C verifies
the existence of C, N, O, Co, and Ni. Figure 2D draws the
Ni 2p spectrum of H-(Ni, Co)-LDHP. Two dominant peaks
showing at 855.8 and 873.5 eV with spin-energy separation
of 17.7 eV indicate the presence of Ni2+, together with two
satellite peaks located at 861 and 879.7 eV, respectively (Lee
et al., 2018). In terms of the high-resolution spectra of Co
2p (Figure 2E), two peaks emerging at 781.2 and 796.5 eV are
resulted from Co3+, while the binding energy corresponds to
783 and 798.2 eV conforming the appearance of Co2+ (Su et al.,
2019). The pore texture and SSA of sample were investigated
by nitrogen adsorption-desorption system (JW-BK200, CHN).
As implied in Figure 2F, it manifests distinct hysteresis loop
which signifies the imbalance of adsorption-desorption process
due to the hollow structure of H-(Ni, Co)-LDHP. Note that

the SSA of H-(Ni, Co)-LDHP is 60.65 m2/g which is superior
to traditional NiCo-LDHs nanosheets in previous reports,
originating from the unique nanostructure (Qian et al., 2019).
Meanwhile, the pore size distribution curve extracted from the
inset of Figure 2F demonstrates that the dominant pore size
is 3 nm, which is favorable for penetrating Li+, resulting in
high kinetics.

Figure 3A shows the first, second, and third GCD profiles
of H-(Ni, Co)-LDHP anode at current density of 100 mA/g.
In the first circle, the initial discharge capacity is 928.3 mAh/g,
and the reversible charge capacity is 630.8 mAh/g, illustrating
that the coulumbic efficiency (CE) is 68%. The inferior CE
can be attributed to the formation of steady solid electrolyte
interphase (SEI) film. The obvious discharge plateau appears
from 0.6 to 1.2V which is in accordance with the characteristic
peaks from CV curves. The cyclic performance and CE are
exhibited in Figure 3B. As it is shown, the discharge capacity
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FIGURE 2 | (A) XRD pattern, (B) FTIR spectrum, (C) XPS survey spectrum, (D) high-resolution Ni 2p spectrum, (E) high-resolution Co 2p spectrum, and (F) Nitrogen

adsorption-desorption isotherm and pore size distribution curve of H-(Ni, Co)-LDHP.

FIGURE 3 | (A) GCD curves of H-(Ni, Co)-LDHP at current density of 100 mA/g, (B) cycling performance and Columbic efficiency, (C) enlarged Columbic efficiency

curve, (D) CV curves, (E) rate capability, and (F) Nyquist plots of the H-(Ni, Co)-LDHP.
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decreased from 928.3 to 335.4 mAh/g after 50 cycles at current
density of 100 mA/g, suggesting 36.1% capacitance retention.
In terms of the CE, the initial value increased from 68 to
98% after subsequent cycle and then became stable. Besides
the SEI film, the unexpected CE should be ascribed to the
crack of H-(Ni, Co)-LDHP associated with the porous hollowed
microstructure and low carbon content. Furthermore, there is
obvious downtrend in CE after undergoing several times cycles in
Figure 3C. Actually, the frequently insertion and de-insertion of
Li+ damages the nanoarchitecture of H-(Ni, Co)-LDHP, leading
to serious collapse. As a result, the fresh SEI is generated on
the surface of cracked H-(Ni, Co)-LDHP, which continuously
consumes electrolyte and transferable Li+, causing the fact that
the CE only maintains at 98%. On the other hand, the coulombic
inefficiency (CI) is equal to 1-CE, which is helpful to evaluate
the lithiation reversibility of H-(Ni, Co)-LDHP. In Figure 3C,
the fluctuant CI curve again verifies the formation of unstable
SEI layer and continuous capacity attenuation of H-(Ni, Co)-
LDHP anode. Figure 3D draws the CV curves of H-(Ni, Co)-
LDHP anode at scan rate of 0.1 mV/s with the potential range
from 0 to 3V. In the first curve, a deflected anodic peak at
1.03V is assigned to the formation of SEI film. In the subsequent
curves, the cathodic peaks at 0.63V can be ascribed to conversion
of Ni2+ to Ni0, and anodic peak at 2.32V is attributed to
oxidation of Ni0 to Ni2+. Meanwhile, the reduction peak at
1.13V and oxidation peak at 1.73V represent the redox reactions
of ionic Co2+ and Co0. Figure 3E exhibits the rate capability
of H-(Ni, Co)-LDHP anode. When the current density is set
as 50, 100, 200, 500, and 1,000 mA/g, the discharge capacity
stabilizes at 641.6, 566, 361, 204.8, and 103.6 mAh/g, respectively.
Significantly, it is found that the specific capacity reached 520.4
mAh/g when the current density returned to 1,000 mA/g from
50 mA/g. Figure 3F demonstrate the Nyquist plots of H-(Ni,
Co)-LDHP, and equivalent circuit (insert). In simulation, the

Rs and Rct represent the resistance of Li+ passing through
the SEI and charge transfer process, respectively. The Warburg
resistance (W) is on behalf of the diffusion rate of Li+ in the

electrolyte. Originating from the fitting, the Rs and Rct can
be calculated, which are 5.66 and 170.7Ω , respectively. Such
low value indicates the superior reaction kinetics and preferable
electron transport characteristics.

CONCLUSION

In summary, the H-(Ni, Co)-LDHP has been synthesized by
a rational template-sacrificing approach. Benefiting from the
abundant active sites and convenient diffusion path of charge
transfer, the H-(Ni, Co)-LDHP anode exhibited delivered high
specific capacity (928.3 mAh/g at 100 mA/g). Thus, this work
provides a newmethod to design hollow LDH nanocages for high
specific capacity LIBs.
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