AUTHOR=Brovarets' Ol'ha O. , Muradova Alona , Hovorun Dmytro M. TITLE=A Quantum-Mechanical Looking Behind the Scene of the Classic G·C Nucleobase Pairs Tautomerization JOURNAL=Frontiers in Chemistry VOLUME=8 YEAR=2020 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2020.574454 DOI=10.3389/fchem.2020.574454 ISSN=2296-2646 ABSTRACT=
For the first time, at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory, a comprehensive quantum-mechanical investigation of the physico-chemical mechanism of the tautomeric wobblization of the four biologically-important G·C nucleobase pairs by the participation of the monomers in rare, in particular mutagenic, tautomeric forms (marked with an asterisk) was provided. These novel tautomeric transformations (wobblization or shifting of the bases within the pair) are intrinsically inherent properties of the G·C nucleobase pairs. In this study, we have obtained intriguing results, lying far beyond the existing representations. Thus, it was shown that Löwdin's G*·C*(WC) base pair does not tautomerize according to the wobblization mechanism. Tautomeric wobblization of the G*·C*(rWC) (relative Gibbs free energy ΔG = 0.00/relative electronic energy ΔE = 0.00 kcal·mol−1) (“r”—means the configuration of the base pair in reverse position; “WC”—the classic Watson-Crick configuration) and G*t·C*(H) (ΔG = −0.19/ΔE = 0.29 kcal·mol−1) (“H”—Hoogsteen configuration;”t” denotes the O6H hydroxyl group in the