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Cost effective anode material with rational design is of significance for rechargeable

potassium ion batteries (KIBs). Graphite anode currently still suffers unfavorable rate

capability and moderate cycling stability. In this work, we report a mesoporous carbon

sphere with rich porous structure as an anode material for KIBs with the assistance of

an aerosol spray technology. The as-developed carbon spheres exhibit a well-defined

spherical structure with favorable surface area of 1106.32 m2 g−1. Furthermore, the

effect of different electrolytes on the electrochemical performance of the carbon anode

has been investigated systematically. As expected, the carbon material shows excellent

potassium storage performance in terms of improved specific capacity of 188.2 mAh

g−1, rate capability and prolonged cyclability with a high capacity of 105.3 mAh g−1

after 500 cycles at a rate of 100mA g−1 toward potassium storage in KFSI based

carbonate electrolyte.

Keywords: mesoporous carbon spheres, electrolyte, anode, aerosol spray, potassium ion batteries

INTRODUCTION

There are an ever-growing energy storage demands for high efficiency and low cost to power
portable electronics, electric vehicles, and smart grid. In the past two decades, rechargeable
lithium ion batteries (LIBs) have drawn significant attention due to their characteristics of
high energy density, desirable cycle life and environmentally friendly (Peng et al., 2017; Liu Y.
et al., 2019; Li X. et al., 2019; Sun et al., 2019; Wang F. et al., 2019; Chen et al., 2020). It
is currently highly desirable to develop alternative battery systems with low cost and excellent
cyclability to meet the increasing demand due to the limited resources of lithium and their uneven
global distribution. Potassium locates within the same group in the periodic table with lithium,
which exhibits similar chemical properties with the Li element. As a new energy storage device,
potassium ion batteries show great potential for large scale application because of the abundant
reserves of potassium resources in the earth’s crust as well as a lower redox potential of K/K+

(−2.93V vs. SHE) compared with Na/Na+ (−2.71V), thus a wider potential window and higher
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GRAPHICAL ABSTRACT | Aerosol-assisted assembly of mesoporous carbon spheres as anodes for K-ion batteries.

energy density could be achieved (Le et al., 2017; Wu et al., 2017;
Jiang et al., 2019; Li L. et al., 2019; Liu et al., 2019a; Zhang R. et al.,
2019; Hosaka et al., 2020). Unfortunately, the relatively large
radius of K+ (1.38 vs. 0.76 Å of Li+) leads to sluggish kinetics and
poor cycling performance for most electrode materials in KIBs.

As compared to LIBs, the research on potassium ion batteries
is still in its infant stage. Great efforts have been made to develop
suitable host material with enhanced the K+ insertion/extraction
kinetics. Currently, various electrode materials such as carbon
materials (Hu et al., 2020; Liu M. et al., 2020; Zhang et al.,
2020), alloys (Zhang et al., 2017; Lei et al., 2018; Zheng et al.,
2019), metal oxide/sulfides (Li et al., 2020a; Liu Y. et al., 2020;
Zhou et al., 2020), titanium based insertion materials (Sultana
et al., 2016; Dong et al., 2018), and MXene (Okubo et al.,
2018; Tang et al., 2020; Zhao et al., 2020) have been extensively
studied as promising anodes for K-ion storage. Benefiting
from the abundant resources, low cost, allotrope, and excellent
physical/chemical stability, carbon materials have been widely
reported and used for KIBs (Jian et al., 2015; Liu et al., 2019b;
Zhang R. et al., 2019; Huang et al., 2020; Li et al., 2020b). The
application of carbon based material for potassium ion storage
requires high conductivity and large interlayer space for large K+

insertion. Commercially available graphite has been investigated
as anode materials for KIBs with a theoretical capacity of 279
mAh g−1 based on reversible KC8 phase formation (Komaba
et al., 2015; Luo et al., 2015). However, the material suffers
from moderate cycling stability and unfavorable rate capability
owing to large volume expansion (∼58%) during K+ insertion.
Therefore, the remaining issues existed in carbon materials for
KIBs including limited reversible capacity and poor cycling
stability need to be addressed.

Aerosol-spray shows great potential as a promising
technology for the preparation of advanced functional materials
for various application (Lu et al., 1999; Nie et al., 2018a).
Aerosol-spray process mainly includes three steps: atomization,

droplet to particle conversion, and product collection (Nie
et al., 2017, 2018a,b). The synthesis begins with a liquid
solution or suspension as a precursor, then desired material
can be obtained through a simple and fast process, which
is easy to produce electrode materials in scale. This method
combines the advantages of both gas phase and liquid phase
synthesis. By changing the process parameters such as precursor
concentration, carrier gas flow rate, reaction temperature, and
residence time, products with different sizes and morphologies
can be prepared. Compared to other methods, aerosol-spray
technology exhibits the great advantages in the preparation of
materials for energy storage, where electrode materials with a
rich porous structure and adjustable size can be obtained. The
perfect structure obtained by aerosol is beneficial to ion transfer,
increasing the electrolyte contact area, and accommodating
volume change during cycling.

Herein, we have designed and fabricated a mesoporous
carbon sphere (MCS) with rich porous structure as an
anode material for potassium ion batteries with the assistance
of an aerosol spray technology. Commercial available silica
colloidal was chosen as a template because of its good
dispersibility and nanosized particles with a size of 10–
20 nm. The carbon sphere exhibits a well-defined spherical
structure with favorable surface area. Furthermore, the effect
of different electrolytes on the electrochemical performance
of the porous carbon has been investigated. As expected,
the mesoporous carbon shows excellent potassium storage
performance in terms of improved specific capacity of 188.2
mAh g−1, rate capability, and prolonged cyclability in KFSI based
carbonate electrolyte.

RESULTS AND DISCUSSION

The mesoporous carbon spheres were prepared by a simple
aerosol-spray pyrolysis technology as described in our previous
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FIGURE 1 | Schematic illustration of the preparation of mesoporous carbon spheres by aerosol-spray pyrolysis technology.

work with colloidal silica and sucrose as precursors (Nie et al.,
2017, 2018a,b; Liu X. et al., 2018), as shown in Figure 1. The
precursor solution experienced an aerosol spraying process and
subsequent carbonization under nitrogen flow at 900◦C to derive
the SiO2/carbon spheres. Then, the final mesoporous carbon
spheres were obtained by removing the silica templates using
dilute hydrofluoric acid (HF) etching.

Field emission scanning electron microscope (FESEM) and
transmission electron microscopy (TEM) were performed to
investigate the structural features of the as-preparedMCSs. It can
be seen that well-defined spherical SiO2/C particles with a size
ranging from 100 nm to 2µm were successfully synthesized by
aerosol spraying process followed by carbonization in an inert
atmosphere (Figure 2a). TEM image of SiO2/C spheres confirms
their typical porous structure consisting of small primary
nanocrystals with an average size of ca. 10 nm (Figure 2c). After
annealing at high temperature, the original spherical morphology
was well-maintained with a negligible size change even upon
acid etching (Figure 2b), indicating superior structure stability of
the carbon particles. Further characterization shows the resulting
carbon spheres exhibited more substantial porosity (Figure 2d),
which was generated by the removal of the silica templates.
Such a perfect porous spherical structure can not only increase
the tap density of the carbon material, but also facilitate the
fast ion/electron transfer, and effectively accommodate volume
expansion upon K-ion insertion.

To get further insight into the structure of the MCS, XRD
patterns, and Raman spectra of the SiO2/C composite and the
MCS were collected. As shown in Figure 3A, two broad peaks
located at 22.1 and 43.3◦ can be observed for the MCS, which
can be indexed to the (002) and (101) diffractions, typical
characteristic peaks of carbon materials, indicating that porous
carbon has been successfully obtained via the aerosol spray.
Raman spectroscopy is another powerful and widely used tool to
characterize the structural properties of carbon based materials.

Figure 3B presents the Raman spectra of SiO2@C and MCS,
respectively. For SiO2/C, two prominent peaks at 1,588 and
1,360 cm−1 are observed, corresponding to the well-documented
G band (sp2 type graphitized carbon) and D band (sp3 type
disordered carbon), respectively (Li et al., 2010; Hu et al., 2020).
The Raman spectra of the MCS also contain both G and D bands.
Notably, the peak intensity ratio (ID/IG) of MCS is calculated to
be 0.88, suggesting the disordered carbonaceous structure.

The nitrogen adsorption-desorption isotherms of SiO2/C
precursors and MCS are shown in Figures 3C,D. The Brunauer-
Emmett-Teller (BET) specific surface area is calculated to be
about 180.71 m2 g−1 for SiO2/C and 1106.32 m2 g−1 for
MCS, respectively. The pore volume increases from 0.133 to
1.81 cm3 g−1 after etching. It found that etching away the
silica template by HF greatly increases the specific surface area
and pore volume of the carbon material. The SiO2/C exhibit
pores centered from 2.1 to 33.2 nm, as shown in Figure 3C.
Furthermore, the pore size of MCS is mainly distributed in
3.4–20 nm (Figure 3D, insert), demonstrating the mesoporous
structure, which is well in accordance with the TEM result.
The porous structure of MCS could significantly accelerate the
permeation of electrolytes into the active material and shorten
the diffusion pathway of potassium ion (Wu et al., 2019). X-
ray photoelectron spectroscopy (XPS) was carried out to further
characterize the surface chemical composition of the MCS. As
shown in Figures 3E,F, the high resolution C1s spectrum ofMCS
reveal the existence of the C-C bond (284.8 eV), oxygen groups
including C-O at 286.3 eV and C=O at 288.3 eV, respectively
(Jayaramulu et al., 2018).

The electrochemical properties of the porous carbonmaterials
were investigated in half-cells using metal potassium foil as
both the counter and reference electrode. To evaluate the effect
of different electrolytes on K-ion storage performance, three
electrolytes including 0.8M KPF6 in EC: DEC = 1:1 vol%
(KP-001), 1.0M potassium bis(fluorosulfonyl)imide (KFSI) in
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FIGURE 2 | FESEM images of (a) the SiO2/C composite, (b) the MCS material; TEM images of (c) SiO2/C composite, (d) as-prepared MCS material.

EC: DEC = 1:1 vol% (KP-044), and 1.0M potassium bis(tri-
fluoromethylsulfonyl) imide (KTFSI) in TETRAGLYME = 100
vol% (KP-056) were investigated for galvanostatic cycling.
Figures 4A–C exhibit the galvanostatic discharge-charge curves
of MCS in KP-001, KP-044, and KP-056 at a current density of
50mA g−1. The initial discharge and charge capacities are 1080.4
and 108.7 mAh g−1 for KP-001, 1603.1 and 170.5 mAh g−1 for
KP-044, 607.5 and 187.3 mAh g−1 for KP-056, respectively. It
is remarkable to note that all of them present a long voltage
plateau at 0.8–1.0V, followed by a sloping curve down to the
cutoff voltage of 0.01V during the first discharge, which is a
common phenomenon in carbon based anodes. The relatively
large irreversible capacity loss can be related to the high specific
surface area, causing irreversible electrolyte decomposition and
the formation of solid electrolyte interphase (SEI) layer (Liu Y.
et al., 2018), which leads to low Coulombic efficiency (CE). The
first CE of MCS is 10.06, 10.63, and 30.38% in KP-001, KP-044,
and KP-056, respectively. The reversible specific capacity in the
second cycle is 125.5 mAh g−1 for KP-001, 188.2 mAh g−1 for
KP-044, 130.7 mAh g−1 for KP-056. From the charge-discharge
curves, we can conclude that the materials show good capacity
retention in KP-001 and KP-044. Especially, the MCS exhibits
the highest specific capacity in KP-044 electrolyte. After the 20th
cycle, the discharge capacity is up to 178.9 mAh g−1, giving rise
to a high CE of 95.1%.

As illustrated in Figure 4D, the porous carbon exhibits better
cycling stability in KP-001 and KP-044 electrolyte. The discharge
capacity is 124.9 and 154.5 mAh g−1 after 200 cycles at a current
density of 50mA g−1, respectively. High capacity of 84.9 and
105.3 mAh g−1 can be achieved after 500 cycle at a current
density of 100mA g−1, respectively. Compared with KP-001,
KP-044 enables a higher capacity for the MCS anode, no obvious
fading was observed over 500 cycles at 100mA g−1. However,
for KP-056 case, the carbon shows a fast capacity decay with
a capacity of 104.4 mAh g−1 at 60th cycle. Notably, the rate
capability of the MCS is also the best for KP-044. Figure 4E
shows the rate performance of the MCS electrode at the current
density from 50mA g−1 to 2A g−1. For the KP-001 electrolyte,
the carbon material exhibits the capacity of 156.2, 121.2, 95.5,
74.5, 67.1, and 51.1 mAh g−1, respectively, compared to KP-044
with the discharge capacity of 170.5, 138.1, 111.6, 84.8, 69.1,
and 55 mAh g−1 under the same current density. Furthermore,
when the current density was returned back to 0.05A g−1

after 60 cycles, the capacity could recover again, indicating
the excellent reversibility of the MCS. The electrochemical
performance of the mesoporous carbon in different electrolytes
is also compared and summarized in Table 1. It should be
noted that the potassium storage performance is comparable
to those of many carbon based materials reported in
literature (Table 2).
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FIGURE 3 | (A) XRD patterns and (B) Raman spectra of SiO2/C and MCS; N2 adsorption-desorption isotherms and pore size distribution of (C) SiO2/C and (D) MCS;

XPS spectra of C 1s (E) and O 1s (F) for MCS.

FIGURE 4 | Electrochemical performance of the MCS anode under different electrolyte. The charge-discharge profiles at a current density of 0.05A g−1: (A) KP-001,

(B) KP-044, and (C) KP-056; (D) Cycling performance for KP-001, KP-044, and KP-056; (E) Rate performance for KP-001 and KP-044, (F) CV curves of MCS

electrode with KP-044 electrolyte.

Figure 4F presents the CV curves of MCS electrode in KP-044
at different scan rate from 0.1 to 2.0mV s−1 in the voltage range
of 0.01−2.5V. The CV curve shows a significant broad peak at

around 0.75V during the first cathodic scan and then disappears
in the subsequent cycles, which is due to the decomposition
of the electrolyte and formation of SEI layer. The sharp peak
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located at around 0.1V is related to the insertion of K-ion into
carbon (Hu et al., 2019). After the first cycle, the shape could
be well-maintained with the increasing scan rate, indicating its
excellent stability. Such good electrochemical potassium storage
performance can be attributed to its unique porous architecture
for the accessibility for electrolyte and electron transfer with
enhanced conductivity. Moreover, the large specific surface area
could provide sufficient space for K ion reaction at interface.
Most importantly, previous reports have suggested that KSFI salt-
based electrolyte could form a stable and robust SEI layer on
electrode surface, and effectively suppress K dendrite growth and
inhibit electrolyte decomposition to boost stable performance for
K storage (Xiao et al., 2017; Wang H. et al., 2019).

To further demonstrate the effect of different electrolytes,
electrochemical impedance spectroscopy (EIS) was conducted
in the frequency range from 100 kHz to 0.01Hz. As shown in
Figure 5, the Nyquist plots consist of a depressed semicircle
in the high- and middle-frequency regions and a straight line
in the low-frequency region, which correspond to the SEI film
and contact resistance, charge-transfer resistance (Rct) and the
diffusion of K-ion ions into bulk electrode, respectively (Li et al.,

TABLE 1 | Electrochemical performance of the MCS anode by using different

electrolytes.

Electrolyte Initial

CE

Specific capacity

(mAh g−1)

50mA g−1

Rate performance

(mAh g−1)

2rd

cycle

60th

cycle

200th

cycle

200mA

g−1

500mA

g−1

1,000mA

g−1

KP-044 10.63% 188.2 174.2 154.5 111.6 84.8 69.1

KP-001 10.06% 125.5 114.4 124.9 95.5 74.5 67.1

KP-056 30.38% 130.7 104.4 – – – –

2018; Wang et al., 2018; Liu Y. et al., 2019; Zhang et al., 2019a,b).
Figure 5 compares the EIS spectra of the carbon electrode before
and after 5 cycles in KP-001 and KP-044 electrolytes. All the
electrodes exhibit an increased Rct after cycling, consistent with
the results reported (Li et al., 2018).

CONCLUSION

In summary, mesoporous carbon spheres have been synthesized
through a simple aerosol spray method by using low cost
sucrose and silica colloid as precursors. The as-prepared
porous carbon exhibited a well-defined spherical morphology
with a size ranging from 100 nm to 2µm. The elaborately
designed nanostructure of the carbon spheres with high electrical
conductivity and high surface area facilitates fast potassium ions

FIGURE 5 | Nyquist plots of the MCS before and after 5 cycles using KP-001

and KP-044 electrolyte, respectively.

TABLE 2 | Electrochemical characteristics of reported carbon materials for KIBs in literature and our work.

Anode materials Specific surface

area (m2 g−1)

Pore size (nm) ICE (%) Current density

(mA g−1)

Specific capacity

(mAh g−1)

Cycle life References

Ordered mesoporous carbon 1,089 0–20 63.6 50 257.4 100 Wang et al., 2018

Hierarchical porous carbon 604.4 0.2–8 50 211.5 50 Wu et al., 2019

CNTs/GCF 52.7 0–20 24 100 228 800 Zeng et al., 2019

Hard carbon 354 1.0–4.0 73 200 175 80 He et al., 2018

rGO 50 234 Luo et al., 2015

NHCNs 627 1,000 165 500 Liu et al., 2020

Crumbled graphene 318 39 40 340 Lee et al., 2020

OMFC-30 31.4 50 277 100 Zhang R. et al.,

2019

HNCS 163.3 35 100 198 200 Sun et al., 2020

N-HCN 228.0 50 241 100 Ruan et al., 2019

Cellular N-C 465.3 100 279.3 200 Li et al., 2020b

N-CNS 654.42 1,000 369 500 Huang et al., 2020

SC-500 379.9 2.0 30 50 225.9 100 Tao et al., 2020

N-doped carbon nanosheets 827.5 1–100 100 210 450 Qin et al., 2019

MCS 1,106 3.4–20 10.63 50 154.5 200 This work
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and electrons transport, which make the mesoporous carbon
sphere remarkable K storage property in terms of moderate
reversible capacity, rate capability, and excellent cyclic stability.
Furthermore, the KFSI electrolyte enables the porous carbon
excellent electrochemical cyclability and improved capacity at
high rate due to the formation of a stable and robust SEI layer.
Encouragingly, the porous carbon material exhibited a high
specific capacity of 154.5 mAh g−1 after 200 cycles at a current
density at 50mA g−1, and the capacity could be achieved at 105.3
mAh g−1 after 500 cycles at a rate of 100 mA g−1.

EXPERIMENTAL

Materials Synthesis
Typically, 15 g of colloidal silica (particles size: 10–20 nm) kindly
provided by Nissan Chemical America Corporation (Houston,
TX) was firstly mixed with 17 g 0.1mol L−1 HCl aqueous
solution. Then, 4 g sucrose was added to obtain a homogeneous
solution under magnetic stirring. The precursor solution was
next atomized by using nitrogen as a carrier gas with the heating
zone maintaining at a constant temperature of 450◦C. The
collected samples were further annealed at 500◦C for 5 h and
900◦C for another 5 h under the N2 atmosphere with a heating
rate of 10◦C min−1 to obtained SiO2/carbon composite. The
product obtained was subsequently washed with 5% HF and
distilled water to remove the silica templates. After drying at 60◦C
in vacuum for 12 h, mesoporous carbon spheres were collected.

Characterization
The crystal structure of the experimentally prepared porous
carbon spheres was characterized by X-ray diffraction (XRD,
Rigaku d/max PC2500) in the range of 5 to 90◦. The morphology
and microstructure characteristics of the samples were observed
using a field emission scanning electron microscope (FESEM,
JSM-7800F) and a high resolution transmission electron
microscope (TEM, JEM-2100, JEOL). The pore size and
specific surface area of the sample were analyzed using an
Isorb-HP2 analyzer (Quantachrome Instruments) to measure
the N2 adsorption/desorption isotherms at 77K under liquid
nitrogen. The X-ray photoelectron spectrum (XPS) was collected
on a ESCALAB 250Xi spectrometer with a mono Al Kα

radiation. The Raman spectra were tested by a Renishaw
2000 System.

Electrochemical Measurement
For the electrochemical measurements, the as-preparedmaterials
were mixed with acetylene black and sodium alginate in a weight
ratio of 70:15:15. The mixture was prepared to form uniform

slurry in deionized water and spread onto copper foil current
collector by using a doctor-blade technique. After drying at
70◦C in vacuum, the foil was roll-pressed and cut into circular
pieces. Coin-cells were assembled in an argon-filled glove box
using metal potassium as the counter electrode and Whatman R©

glass fiber as the separator. Three different electrolytes were
used, including 0.8M KPF6 in EC: DEC = 1:1 vol% (KP-
001), 1.0M KFSI in EC: DEC = 1:1 vol% (KP-044), 1.0M
KTFSI in TETRAGLYME = 100 vol% (KP-056). Galvanostatic
charge/discharge cycles were tested on a cell test instrument
(CT2001A, LAND Electronic Co., China) at a current density
of 50mA g−1 between 0.01 and 2.5V. The specific capacity was
calculated based on the weight of themesoporous carbon spheres.
Cyclic voltammetry (CV) was performed using a CHI 660E
electrochemical workstation (CH Instruments, Chenhua, China)
at a scan rate of 0.1mV s−1 within the voltage range of 0.01–
2.5V. Electrochemical impedance spectra (EIS) were collected
in the frequency range from 100 kHz to 0.1Hz on the CHI
660E electrochemical workstation with a voltage perturbation
of 5 mV.
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