AUTHOR=Zhong Fangfang , Yang Minghui , Ding Mei , Jia Chuankun TITLE=Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design JOURNAL=Frontiers in Chemistry VOLUME=8 YEAR=2020 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2020.00451 DOI=10.3389/fchem.2020.00451 ISSN=2296-2646 ABSTRACT=

This is a critical review of the advances in the molecular design of organic electroactive molecules, which are the key components for redox flow batteries (RFBs). As a large-scale energy storage system with great potential, the redox flow battery has been attracting increasing attention in the last few decades. The redox molecules, which bridge the interconversion between chemical energy and electric energy for RFBs, have generated wide interest in many fields such as energy storage, functional materials, and synthetic chemistry. The most widely used electroactive molecules are inorganic metal ions, most of which are scarce and expensive, hindering the broad deployment of RFBs. Thus, there is an urgent motivation to exploit novel cost-effective electroactive molecules for the commercialization of RFBs. RFBs based on organic electroactive molecules such as quinones and nitroxide radical derivatives have been studied and have been a hot topic of research due to their inherent merits in the last decade. However, few comprehensive summaries regarding the molecular design of organic electroactive molecules have been published. Herein, the latest progress and challenges of organic electroactive molecules in both non-aqueous and aqueous RFBs are reviewed, and future perspectives are put forward for further developments of RFBs as well as other electrochemical energy storage systems.