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Kakeromamide A (1), the first marine cyclopeptide inducing neural stem cells

differentiation into astrocytes, was synthesized in 12 longest linear steps and 14% overall

yield. Using this synthetic approach, four analogs of kakeromamide A were prepared and

evaluated for neural differentiation- modulating activity.
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INTRODUCTION

Marine cyanobacteria have been playing a pivotal role in producing structurally diversified and
biologically intriguing peptides (Luesch et al., 2001; Guzman-Martinez et al., 2007; Zainuddin et al.,
2007). In 2018, we reported the isolation of a novel cyclopeptide, kakeromamide A (Figure 1),
from the marine cyanobacterium Moorea bouillonii collected near Japan (Nakamura et al., 2018).
Preliminary biological tests revealed that kakeromamide A exhibits moderate cytotoxicity (IC50

= 10µM) against Hela cells. To the best of our knowledge, this is the first example of marine
cyclopeptide that can induce neural stem cells differentiation into astrocytes (2.5–10µM). The
constitutional information of kakeromamide A, featuring a peptidal macrocycle embedded with a
thiazole ring and a β-amino acid, was revealed on the basis of in-depth spectroscopic analysis. The
absolute configurations of kakeromamide A (1) were established by the advancedMarfey’s method.
Our laboratory’s long-standing interest in the synthesis of bioactive marine natural products (Yang
et al., 2000; Lei et al., 2014; Liao et al., 2016; Zhou et al., 2016; Guo et al., 2017; Cheng et al., 2018;
Yu et al., 2019) prompted us to launch a synthetic program targeting kakeromamide A and its
structural variants.

MATERIALS AND METHODS

Experimental procedure and compound characterization data are furnished in the
Supplementary Material (Data Sheet 1).

RESULTS AND DISCUSSION

The retrosynthetic plan is depicted below (Figure 2). Strategic disconnection of the macrocycle at
the least sterically demanding amide bond results in the linear pentapeptide 2. Further dissection of
2 reveals that the pentapeptide may be most conveniently constructed by the assembly of tripeptide
3 and dipeptide 4, derived from the disconnection of the bonds between two tyrosines. Tripeptide
3 and dipeptide 4 could be constructed from amino acid derivatives 5–8. The 3+2 strategy has the
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FIGURE 1 | Structure of Kakeromamide A (1).

advantage in terms of convergence and efficiency. However,
the amidation between polypeptidyl acids and N-methyl
amines is sometimes unattainable because of notoriously latent
epimerization (Humphrey and Chamberlin, 1997; Teixidó et al.,
2005; Nabika et al., 2014). Therefore, as an alternative plan, we
envisioned that the pentapeptide 2 could also be assembled in
a linear fashion with corresponding amino acid synthons 5–8,
which could circumvent the potential loss of stereo-integrity via
oxazolone mechanism.

As shown in Figure 3, the synthesis of the nonconventional
β-amino acid (11) commenced with the known N-tert-
butanesulfinimine 9 (Staas et al., 2002). Following Ellman’s
protocol (Tang and Ellman, 1999, 2002), methyl propionate was
treated with lithium diisopropylamide (LDA) and the following
transmetalation with chlorotriisopropoxytitanium provided the
titanium enolate, which added to sulfinimine 9 in THF at
−78

◦

C to furnish the α,β-disubstituted β-amino ester 10 in
82% yield. The high (10:1) diastereoselectivity observed in the
addition process may be explained by analysis of Zimmerman–
Traxler transition state Zimmerman and Traxler, 1957 during the
nucleophilic addition step. Acidic cleavage of the chiral auxiliary
was achieved by exposure of 10 to methanolic HCl solution and
the resulting amine was protected by Cbz group to afford 5 in
83% yield over two steps. Saponification of methyl ester 5 with
lithium hydroxide underwent smoothly to afford the desired acid
11, which was readily used in the following fragment coupling
process without further purification.

We next embarked on the assembly of the pentapeptide
2 (Figure 4). The synthesis began with the preparation
of thiazole amino acid 6 from the known thioamide 12

(Aguilar and Meyers, 1994) following the modified Hantzsch
conditions reported by Aguilar and Meyers (1994). Thus,
thioamide 12 was treated with sodium bicarbonate and
methyl bromopyruvate in dimethoxyethane and generated the
intermediary hydroxythiazoline, which underwent dehydrative
aromatization under the mediation of trifluoroacetic anhydride

and 2,6-lutidine to afford thiazole amino acid 6 in 88%
yield. Removal of the Boc group was accomplished by the
treatment of thiazole amino acid 6 with trifluoroacetic acid
to provide the corresponding ammonium salt, which was
then subjected to 1-[bis(dimethylamino)methylene]-1H-1,2,3-
triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU)
promoted amidation conditions and successfully incorporated
the known L-tyrosine derivative 7 (Ramanjulu et al., 1997)
to afford the dipeptide 4 in 77% yield over three steps. In
parallel, the known L-tyrosine derivative 13 (Chen et al., 2002)
was converted into tripeptide 3 via a three-step sequence of
transformations including HATU/HOAt promoted coupling of
amino ester 13 with N-Boc-L-valine (8) to provide dipeptide
20 in 96% yield; Cleavage of the N-terminal Boc protective
group of 20 (HCl, MeOH) to give rise to the corresponding
amine followed by coupling to Cbz protected beta amino acid
11 to provided 3 in 63% yield. With both dipeptide 4 and
tripeptide 3 in hand, the stage was now set for their assembly
to afford the corresponding macrocyclization precursor 2. In
the event, methyl ester of 3 was saponified, in quantitative
yield, to its corresponding carboxylic acid by the mild action
of Me3SnOH. Reaction of this carboxylic acid with the amine
derived from PdCl2 deprotection of Cbz-protected 4 under a
variety of peptide coupling procedures including EDCI–HOAt,
HATU, PyAOP, BOPCl, and Mukaiyama reagent, afforded at
low yields of pentapeptide 2 as a diastereomeric mixtures.
Apparently, somewhere along the line, most likely at the fragment
coupling step, the conditions employed caused epimerization.
This outcome, a consequence of the sensitivity of these molecules
toward epimerization, forced upon us a change in strategy and
tactics toward pentapeptide 2, as will be described below.

In order to circumvent the problems encountered in the
3+2 route (Figure 4), a more stepwise approach starting from
dipeptide 4 was pursued. Thus, hydrogenolysis of the Cbz
group in 4 using palladium chloride smoothly afforded the
corresponding amine as its HCl salt, which was then condensed
with the known L-tyrosine derivative 7 to provide tripeptide
14 in 77% yield over two steps. Removal of the Cbz group
of 14 under identical conditions as for 4, and the resulting
amine salt was coupled with N-Boc-L-valine in the presence
of HATU/HOAt and DIPEA tetrapeptide 15 in 83% yield. To
continue the linear chain elongation, Boc group was selectively
removed with TFA/DCM, further coupling with the β-amino
acid 11 promoted by HATU/HOAt and DIPEA to give rise to
the desired linear pentapeptide 2 in 71% yield. To set the stage
for the final macrocyclization (Figure 5), the C-terminal methyl
ester was saponified with trimethyltin hydroxide (Furlán et al.,
1996; Nicolaou et al., 2005) in toluene at 80

◦

C. Cleavage of the N-
terminal Cbz protective group under identical conditions as for
4 provided the corresponding amino acid cyclization precursor,
which was immediately subjected to macrolactamization as
promoted by pentafluorophenyl diphenylphosphinate (FDPP)
(Chen and Xu, 1991; Pradhan et al., 2013) and DIPEA in DMF
to provide kakeromamide A (1) in 40% yield over three steps.
The spectroscopic data of the synthetic material were consistent
with those for the natural kakeromamide A, as evident from the
1H and 13C NMR spectra and optical rotation [α]22D = +6.15
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FIGURE 2 | Retrosynthetic Plan of Kakeromamide A (1).

FIGURE 3 | Synthesis of β-amino acid 11.

(c 0.065, MeOH); versus the reported [α]23.8D = +6.2 (c 0.065,
MeOH); (Tables 1, 2). The synthesis therefore confirmed the
relative and absolute configuration of the natural product and
also sets the stage for a study of the structure–activity relationship

of kakeromamide A, with analogs containing “point mutations”
at every site within the cyclic compounds.

With completion of the total synthesis of kakeromamide A,
we decided to employ the same approach in our analog synthesis.
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FIGURE 4 | 3+2 Strategy for the Synthesis of Pentapeptide 2.

FIGURE 5 | Total Synthesis of Kakeromamide A (1).

An alanine scan (Morrison and Weiss, 2001; Shaheen et al.,
2012) of each residue of the cyclopeptide may identify key sites
responsible for or contributing to the biological properties. The

preparation of a complete set of individual residue analogs should
allow an assessment of each structural feature of kakeromamide
A and provide a detailed account of the structure function
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TABLE 1 | Comparison of the 1H NMR Data of Synthesized 1 with Literature Data.

No. 1H NMR (δH)

Kakeromamide Aa Compound 1b

NH-28 8.60 d (9.3) 8.60 d (9.0)

NH-34 8.51 d (10.4) 8.51 d (10.3)

H-26 8.01 s 8.01 s

H-19/H-23 6.99 d (8.6) 6.99 d (8.6)

H-10/H-14 6.88 d (8.7) 6.88 d (8.6)

H-11/H-13 6.77 d (8.7) 6.77 d (8.7)

H-20/H-22 6.56 d (8.6) 6.55 d (8.7)

NH-2 6.53 d (7.3) 6.53 d (4.7)

H-7 5.53 dd (11.3, 4.6) 5.53 dd (11.3, 4.7)

H-28 5.33 dd (9.3, 5.5) 5.33 dd (9.0, 5.4)

H-16 5.25 dd (9.7, 5.2) 5.25 dd (9.7, 5.2)

H-2 4.3 dd (9.8, 7.3) 4.29 dd (9.8, 7.1)

H-34 4.09 dddd (12.0, 10.4, 3.4, 2.5) 4.09 m

O-CH3 3.73 s 3.73 s

O-CH3 3.48 s 3.48 s

N-CH3 3.05 s 3.04 s

H-18 2.97 dd (14.4, 5.2) 2.96 dd (14.4, 5.1)

N-CH3 2.86 s 2.85 s

H-9 2.7 dd (16.4, 11.3) 2.69 dd (16.3, 11.3)

H-17 2.61 dd (14.4, 9.7) 2.61 m

H-33 2.60 dq (7.0, 3.4)

H-29 2.01 dqq (6.8, 6.8, 5.5) 2.01 m

H-3 1.8 dqq (9.8, 6.8, 6.7) 1.80 m

H-35 1.7 dddd (14.1, 9.2, 7.0, 2.5) 1.70 m

H-36 1.45m 1.46 m

H-8 1.38 dd (16.4, 4.6) 1.37 dd (16.3, 4.6)

H-36 1.27m 1.26 m

H-38 1.09 d (7.0) 1.09 d (7.0)

H-35 1.07m 1.07 m

H-37 0.97 t (7.5) 0.96 t (7.3)

H-31 0.94 d (6.8) 0.95 d (6.8)

H-5 0.89 d (6.7) 0.89 d (6.6)

H-4 0.79 d (6.8) 0.79 d (6.9)

H-30 0.78 d (6.8) 0.78 d (6.8)

aData obtained from the isolation paper (Nakamura et al., 2018). bData recorded

in CD3CN.

relationships. In the event, four analogs 16–19 (Figure 6) of
kakeromamide A, constituting the alanine scan, were constructed
from thioamide 12 (Figure 5). Attempts to replace the thiazole
amino acid with alanine failed to deliver the desired cyclopeptide
from the corresponding linear precursor, presumably due to the
added conformational constraints of the linear precursor during
macrolactamization.

Bioactive compounds modulating proliferation and
differentiation of neural stem cells are required as chemical
probes to study about mechanism of neural development or
lead compounds for regenerative medicine. In order to evaluate
neural differentiation-modulating activities of kakeromamide

TABLE 2 | Comparison of the 13C NMR Data of Synthesized 1 with Literature

Data.

No. 13C NMR (δC)

Kakeromamide Aa Compound 1b

C-1 176.8 177.0

C-6 174.0 173.8

C-32 173.3 173.3

C-27 170.0 170.2

C-15 169.9 170.0

C-24 161.4 161.6

C-26 159.5 159.7

C-12 159.2 159.4

C-25 150.4 150.5

C-19/ C-23 131.3 131.5

C-18 131.0 131.1

C-9 130.1 130.3

C-10/C-14 130.0 130.1

C-26 123.6 123.8

C-20/C-22 115.2 115.3

C-11/C-33 114.9 115.0

C-16 63.7 63.9

C-2 57.2 57.4

C-28 57.2 57.4

O-CH3 55.9 56.1

O-CH3 55.7 55.8

C-34 52.8 53.0

C-7 52.3 52.4

C-33 44.6 44.7

C-29 36.8 36.9

C-17 34.6 34.7

C-8 33.4 33.5

C-3 32.0 32.1

C-35 31.9 32.1

N-CH3 31.7 31.8

N-CH3 29.7 29.9

C-31 20.8 21.0

C-36 20.2 20.4

C-5 20.2 20.4

C-4 18.9 19.0

C-30 17.8 18.0

C-37 14.6 14.8

C-38 14.4 14.5

aData obtained from the isolation paper (Nakamura et al., 2018). bData recorded

in CD3CN.

A and its analogs, we elected to perform the biological tests
using the same procedure that we reported in the isolation
paper (Nakamura et al., 2018). Neural stem cells were obtained
following the procedure (Nakayama and Inoue, 2006; Iwata et al.,
2016) with modification. 2.5, 5, and 10µM of kakeromamide
A or its respective derivative was added to astrocytes or
neurons. The cell cytotoxicity of kakeromamide A and its
analogs toward astrocytes or neurons was carried out using
Hoechst 33342 staining (Figure 7). No significant cytotoxicity
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FIGURE 6 | Synthesis of Structural Variants of Kakeromamide A.

FIGURE 7 | Cytotoxicity of Kakeromamide A and Its Analogs. (A) Percentages of cell numbers calculated by Hoechst 33342 positive cells, compared to that of

control, in evaluating effects of kakeromamide A and its analogs for astrocytes (n = 3, means ± S.D., *p < 0.05). (B) Percentages of cell numbers calculated by

Hoechst 33342 positive cells, compared to that of control, in evaluating effects of kakeromamide A and its analogs for neurons (n = 3, means ± S.D., *p < 0.05).
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FIGURE 8 | Neural Differentiation-Modulating Activity of Kakeromamide A and Its Analogs. (A) Fluorescent microscopic images of differentiation of neural stem cells

(NSCs) into astrocyte. Astrocytes and nuclei were colored by anti-GFAP (glial fibrillary acidic protein, green) and Hoechst 33342 (blue), respectively (5µM, Scale bar;

100µm). (B) Rates for astrocytic differentiation of NSCs compared to that of control (n = 3, means ± S.D., *p < 0.05, **p < 0.01). (C) Fluorescent microscopic

images of differentiation of NSCs into neuron. Neurons and nuclei were stained by NeuO (green) and Hoechst 33342 (blue), respectively (5µM, Scale bar; 100µm).

(D) Rates for neuronal differentiation of NSCs compared to that of control (n = 3, means ± S.D., *p < 0.05, **p < 0.01).
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was observed upon the treatment with kakeromamide A and
its analogs.

Next, kakeromamide A or its respective derivative was
exposed at three concentrations (2.5, 5, and 10µM) during
differentiation of neural stem cells (NSCs). The effects of
kakeromamide A and its analogs on the neural differentiation
into neurons or astrocytes were evaluated by using NeuO (Er
et al., 2015) a fluorescent probe which could selectively stain
neurons, or immunostaining of an astrocyte marker GFAP
(glial fibrillary acidic protein), respectively. The nuclei were
stained by using Hoechst 33342 followed by the microscopic
analysis. Their activities were determined by calculating a ratio
NeuO or GFAP positive cells to whole cells and comparing
with that of the control. As a result, the synthetic product of
kakeromamide A (1) showed the same activity as the sample
isolated from natural source, promoting differentiation of
NSCs into astrocytes while inhibiting neuronal differentiation
of NSCs (Figure 8). Furthermore, the astrocytic or neuronal
differentiation were promoted or inhibited, respectively, by
treatment with four analogs of compound 1. It was found that
derivative 17modulated the differentiation most strongly among
derivatives. These results suggested that kakeromamide A and its
analogs modulated neural differentiation of NSCs via common
target (s) and especially derivative 17 had the highest affinity to
the target (s).

CONCLUSIONS

In summary, we have achieved the first synthesis of a new
cyclopeptide kakeromamide A (1) from the known thioamide
12 in 14% overall yield with the longest linear sequence
being 12 steps. The present work confirms the originally
assigned structure of kakeromamide A (1) and also allows
access to four analogs. Neural differentiation-modulating
activities of kakeromamide A and four analogs were
performed, which revealed that kakeromamide A and its
analogs promoted astrocytic differentiation while inhibited
neuronal differentiation of NSCs and derivative 17 showed
the strongest activity. Further analyses of the detailed
mechanism for their biological activity are currently under

investigation in our laboratories and will be described in
due course.
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