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Low-dimensional organic-inorganic hybrid materials have attracted tremendous
attentions due to their fascinating properties as emerging star materials for light-emitting
applications. Taking advantage of their rich chemical composition and structural diversity,
here, a novel lead-free organic-manganese halide compound, (1-mPQBr)2MnBr4
(1-mPQ = 1-methylpiperazine, 1-C5H14N2) with zero-dimensional structure has been
rationally designed and successfully synthesized through solvent-evaporation method.
Systematical characterizations were carried out to investigate the structure, thermal
and photophysical properties. The (1-mPQBr)2MnBr4 was found to crystallized into an
orthorhombic crystal (P212121) with lattice parameters of a= 8.272(6) Å, b= 15.982(10)
Å and c = 17.489(11) Å. The structure consists of isolated [MnBr4]2− clusters and free
Br− ions as well as [C5H14N2]2+ molecules. Thermal analysis indicates that it is stable
up to 300◦C. Upon ultraviolet photoexcitation, the (1-mPQBr)2MnBr4 exhibits intense
green emission centered at 520 nm with a narrow full width at half-maximum of 43 nm
at room temperature, which should be assigned to the spin-forbidden internal transition
(4T1(G) to 6A1) of tetrahedrally coordinated Mn2+ ions. The superior photoluminescence
properties coupled with facile and efficient synthesis method of this material suggest its
considerable promise to be utilized as light-emitting materials.

Keywords: organic-metal halides, photoluminescence, single crystal, lead-free materials, manganese

INTRODUCTION

In recent decades, organic metal halide materials have flourished as star materials in
solution-processed optoelectronics fields (Kojima et al., 2009; Chen et al., 2017; Yang et al.,
2019a), arising from their superior properties including high absorption coefficient, long
electron-hole diffusion length, ultralow trap density and high photoluminescence quantum
yield (PLQY) as well as facile synthesis including low cost, high efficiency and flexibility
(Dang et al., 2015; Liu et al., 2015, 2018; Huang et al., 2017). Benefitting from their
remarkable advantages, they have shown great potential for photovoltaic solar cells (Kojima
et al., 2009; Cheng et al., 2019; Yang et al., 2019b), light-emitting diodes (Ling et al., 2016;
Thirumal et al., 2017; Lin et al., 2018), photodetectors (Adinolfi et al., 2016; Ahmadi et al.,
2017; Shrestha et al., 2017), field-effect transistors (Yu et al., 2018; Zhu et al., 2019), and
lasers (Yakunin et al., 2015; Zhu et al., 2015; Gu et al., 2016). Lately, the certified power

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2020.00352
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2020.00352&domain=pdf&date_stamp=2020-04-28
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhaolaichen@sdu.edu.cn
mailto:txt@sdu.edu.cn
https://doi.org/10.3389/fchem.2020.00352
https://www.frontiersin.org/articles/10.3389/fchem.2020.00352/full
http://loop.frontiersin.org/people/955878/overview
http://loop.frontiersin.org/people/782310/overview
http://loop.frontiersin.org/people/899550/overview


Jiang et al. (1-C5H14N2Br)2MnBr4 With Intense Green Photoluminescence

conversion efficiency of organic lead halide solar cells have
achieved 25.2%1, which outperforms that of CdTe and
CuInGaSe2 solar cells. In spite of their rapid development,
the presence of toxic lead in these materials is deemed to be
a seriously concern, becoming a huge hindrance in their way
to wide-scale exploitation. Based on this circumstance, it is
therefore of urgent need to look for the alternative lead-free
hybrids for future commercial optoelectronic applications.

Hence, immense efforts in reducing lead contents or exploring
lead-free substitutes offer a viable solution for high-performance
eco-friendly optoelectronic devices. Noteworthy, this class of
materials endows with rich chemical and structural diversities. In
addition to modifying the length of the organic components, the
diverse structural dimensionality, referring to three-dimensional
(3D), two-dimensional (2D), one-dimensional (1D) and zero-
dimensional (0D) structures, can also be achieved by tuning the
inorganic frameworks, which results in fascinating properties.
In the first place, the most obvious alternative substitution to
Pb2+, should be the elements in the same group in the periodic
table, namely Sn2+ and Ge2+ (Zhumekenov et al., 2017; Fu
et al., 2018; Ju et al., 2018a; Nazarenko et al., 2019). In addition,
heterovalent elements in Group 15 (Bi3+ and Sb3+) (Abulikemu
et al., 2016; Sun et al., 2016; Ji et al., 2017, 2018; Ju et al.,
2018b; Zhang et al., 2018; Tao et al., 2019) and in Group
13 (In3+) (Zhou et al., 2019) have also been demonstrated as
the alternative metals. Moreover, a range of divalent transition
metal ions [Cu2+ (Cortecchia et al., 2016; Jun et al., 2018; Li
et al., 2018; Park et al., 2018), Fe2+ (Han et al., 2014, 2015;
Nakayama et al., 2017), Mn2+ (Bai et al., 2018; Park et al.,
2018)] can also serve as substitutes for Pb2+. Among which,
large number of researches have reported that organic manganese
(Mn2+) halides possess brilliant photoluminescence ranging
from green to red due to the variable metal-ion coordination
geometry, with the photoluminescence lifetimes varying from
microseconds to milliseconds. Many groups have made great
efforts in exploring octahedral- coordinated Mn (Han et al.,
2015; Lv et al., 2016; Nakayama et al., 2017; Bai et al., 2018)
single crystals, such as 3D-structured (CH3)3NCH2ClMnCl3
(You et al., 2017) and (3-Pyrrolinium)MnX3 (X = Cl, Br)
(Ye et al., 2015), 2D-structured NH3(CH2)5NH3MnCl4 (You
et al., 2017) and (C6H5CH2CH2NH3)2MnCl4 (Lv et al., 2016),
1D-structured (N-Methylpyrrolidinium)MnCl3 (Ye et al., 2015),
and (pyrrolidinium)MnBr3 (Sun et al., 2017), as well as 0D-
structured (C4NOH10)5Mn2Cl9·C2H5OH (Zhang et al., 2015),
etc. In comparison, less attention has been paid on the search and
investigation of tetracoordinated Mn2+ counterparts (Xu et al.,
2017; Gong et al., 2019; Jana et al., 2019; Sun et al., 2019).

It is well-known that single crystals can exhibit better intrinsic
properties of materials compared with the polycrystalline
counterparts. Hence, in this work, we first rationally designed
and synthesized a novel organic manganese halide, (1-
mPQBr)2MnBr4 (1-mPQ=1-methylpiperazine, 1-C5H14N2)
single crystal with a 0D structure. Systematical characterizations
were applied to investigate the structures, photophysical and

1National Renewable Energy Labs (NREL) Efficiency Chart. Available online at:
https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200203.pdf.

thermal properties. The facile solvent-evaporation method,
the intense green emission with high PLQY of 60.70% as well
as good stability makes the (1-mPQBr)2MnBr4 suitable as
green phosphors.

MATERIALS AND METHODS

Materials
Analytical-grade manganese (II) monoxide (MnO, 99.0%,
Sinopharm Co. Ltd.), 1-methylpiperazine (1-C5H12N2, 99.0%,
Sinopharm Co. Ltd.), hydrobromic acid (HBr, 40 wt% in
H2O, Sinopharm Co. Ltd.), and hypophosphorous acid aqueous
solution (H3PO2, 50% in H2O, Sinopharm Co. Ltd.) were used as
received without any further processing or refining.

Preparation of (1-mPQBr)2MnBr4 Single
Crystal
As a typical process, the yellow crystals of (1-mPQBr)2MnBr4
were obtained by slowly evaporating HBr/H3PO2 (3:1) mixed
solutions containing 1-methylpiperazine and MnO with molar
amounts of 2:1.

Characterizations
Powder X-ray diffraction (PXRD) patterns were performed

on a Bruker-AXS D8 Advance X-ray diffractometer with CuKα1
radiation (λ = 1.54186 Å) in the range of 10–90◦ (2θ).

Single crystal’s structure was determined by Bruker SMART
APEX-II diffractometer equipped with a CCD detector (graphite-
monochromatized Mo-Kα radiation, λ = 0.71073 Å) at 300K.
Data integration and cell refinement were performed using the
APEX2 software. The structure was analyzed by direct methods
and refined using the SHELXTL 97 software package. All non-
hydrogen atoms of the structure were refined with anisotropic
thermal parameters, and the refinements converged for Fo2 >

2σIJFo2. All the calculations were performed using SHELXTL
crystallographic software package. Symmetry analysis on the
model using PLATON revealed that no obvious space group
change was needed. The crystallographic data was deposited in
Cambridge Crystallographic Data Center (CCDC #1979443).

Fourier transform infrared (FTIR) spectrum in the region
700–4,000 cm−1 was examined on a spectrometer (Nicolet 330)
with KBr pellets.

X-ray photoelectron spectroscopy (XPS) measurements of
the newly synthesized (1-mPQBr)2MnBr4 samples about 2 × 1
× 1 mm3 in size were performed on an ESCALAB 250 (Thermo
Fisher Scientific) instrument under vacuum (1.7× 10−10 mbar).

UV-vis diffuse reflectance spectroscopy was recorded using
a Shimadzu UV 2550 spectrophotometer equipped with an
integrating sphere over the spectral range 200–800 nm. The (1-
mPQBr)2MnBr4 single crystals were ground into powders for
tests. A BaSO4 plate was used as the standard (100% reflectance).
The absorption spectrum was calculated from the reflectance
spectrum by using the Kubelka-Munk function: α/S = (1–
R)2/(2R), where α is the absorption coefficient, S is the scattering
coefficient, and R is the reflectance.
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Photoluminescence Measurements
The excitation wavelength dependent-photoluminescence (PL)
spectra and PL excitation spectra (PLE) were carried out
by a laser of 365 nm with a photomultiplier (PMTH-S1-
CR131) and DSP lock-in amplifier (SRS 830). The time-
resolved photoluminescence measurements (TRPL) were carried
by FLS920 all functional fluorescence spectrometer (Edinburgh).
The output laser wavelength was set to be 520 nm. The
photoluminescence quantum yields (PLQY) were tested by
an absolute PLQY measurement system (FLSP920) in an
integrating sphere.

Thermalgravimetric Analysis (TGA) and
Differential Scanning Calorimetry (DSC)
Measurements
TGA andDSC curves were collected using a TGA/DSC1/1600HT
analyzer (Metter Toledo Instruments). The polycrystalline
sample was placed in an aluminum crucible and heated at a rate
of 10 K/min from room temperature to 800◦C under flowing
nitrogen gas.

RESULTS AND DISCUSSION

Crystal structure of the (1-mPQBr)2MnBr4 single crystal
was obtained through SCXRD test, which belongs to the
orthorhombic crystal system (a non-polar D2 and chiral space
group P212121) at room temperature, with lattice parameters of
a = 8.272(6) Å, b = 15.982(10) Å and c = 17.489(11) Å. In this
structure, four formula units of (1-mPQBr)2MnBr4 are present
in the unit cell. Further details for crystallographic parameters
are provided in Tables S1–S3 (in the Supporting Information)
and the crystal structure and local structure descriptions are
displayed in Figure 1. It is clearly seen that each Mn atom is
coordinated by four Br atoms to form an isolated [MnBr4]2−

tetrahedral cluster as inorganic part of the title compound.
Such isolated [MnBr4]2− tetrahedral are surrounded by free
Br− and [C5H14N2]2+ molecules (organic part), featuring a 0D
structure. In Figure 2 shows that the experimental PXRD pattern
corresponds well to that calculated from SCXRD result with
slightly varying intensities.

The FTIR spectrum in Figure S1 further verifies the existence
of the organic component. The broad peak around 3,353 cm−1

belongs to the N-H stretching peak. The peaks in the range of
2,950–2,820 cm−1 are assigned to the CH2 and CH3 symmetric
and asymmetric stretching vibrations and the peak around
1,410 cm−1 is ascribed to CH bending vibrations. Also, the
strong signal at nearly 1,630 cm−1 indicates asymmetric NH+

3
deformation. Figure S2 shows the scanning electron microscope
photograph of (1-mPQBr)2MnBr4 crystal. Table S4 provides
the detailed results of energy dispersive X-ray spectroscopy
to further confirm the composition of inorganic and organic
parts, respectively.

Additionally, the XPS spectrum in Figure 3A evidences the
signatures of carbon (C 1s), oxygen (O 1s), nitrogen (N 1s),
manganese(Mn 2p), and bromide (Br 3d), and the appearance
of adventitious oxygen in the spectrum is generally ascribed to

FIGURE 1 | (A) Single crystal structural packing of (1-mPQBr)2MnBr4 viewed
along a-axis direction (H atoms are omitted for clarity). Ball-and-stick scheme
of (B) a single [C5H14N2]2+ organic cation and (C) a single [MnBr4]2−

tetrahedron.

FIGURE 2 | Simulated SCXRD and experimental PXRD patterns of
(1-mPQBr)2MnBr4 powders at 300K.

a contamination of the sample by physical adsorption during
ambient exposure. We further recorded high-resolution spectra
of the constituents in designated energy ranges (Figures 3B–E).
The Mn doublet shows a spin-orbit splitting of 11.7 eV with
the peaks corresponding to the binding energies of Mn 2p1/2
and 2p3/2 orbitals located at 653.3 and 641.6 eV, respectively.
Similarly, the core-level spectrum of Br 3d contains a couple
of split peaks at 69.2 and 68.1 eV corresponding to Br 3d3/2
and Br 3d5/2 orbitals with a separation of 1.1 eV, which are
in good agreement with Br. By calculating the integrated peak
areas of the XPS spectra, we can roughly estimate that Mn to
Br possessed a molar ratio of 1:5.88. According to the analytical
results of SCXRD, PXRD, EDS, and XPS, we can verify that
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FIGURE 3 | (A) XPS survey spectra of (1-mPQBr)2MnBr4. High-resolution XPS spectra of (B) C 1s, (C) N 1s, (D) Mn 2p, and (E) Br 3d.

pure (1-mPQBr)2MnBr4 were successfully synthesized through
the solvent-evaporation method.

Figure 4 displays the optical image of a rod-shaped (1-
mPQBr)2MnBr4 single crystal and powders under ultraviolet
light irradiation, and it is clearly seen that the title compound
emits strong green light. To characterize the photophysical
properties of (1-mPQBr)2MnBr4, the UV-vis absorption
spectroscopy and PL spectroscopy were carried out at room
temperature. In Figure 5, typical absorption spectra for organic
manganese halides materials can be observed. The peaks below
340 nm originates from the transitions within the [C5H14N2]2+

cation and peaks from 345 to 600 nm should be ascribed to
the electronic transitions between the ground and the first
excited triplet states of the Mn2+ ion in the crystal field, which is
consistent with previous reports as listed in Table S5.

To further investigate the origin of this green emission,
Figures 6A,B display the wavelength dependent PL spectra
and PLE spectrum of (1-mPQBr)2MnBr4 single crystals. Upon
excitation, the (1-mPQBr)2MnBr4 exhibits an intense green
emission located at 520 nm with a narrow full width at half-
maximum (FWHM) of 43 nm, corresponding to a characteristic
transition from the ground state of the d-electron configuration
(eg)2 (t2g)3 to the upper state of the configuration (eg)3 (t2g)2

(Wrighton and Ginley, 1974; Jiang et al., 2019). It is clearly noted
that the PLE spectra are consistent with the absorption spectra.
In the region between 300 and 500 nm, the discernable peaks
correspond to radiative transitions from the ground state 6A1

FIGURE 4 | Optical photograph of (1-mPQBr)2MnBr4 single crystal and
powders (A,B) without UV light excitation, (C,D) with 365 nm UV light
excitation.

of tetrahedral Mn (II) to the excited states of 4T1(G), 4T2(4G),
4A1(G), 4E(G), 4E(D), 4T1(P), 4T1(F), and 4A2(F), respectively,
according to the excited states of Mn2+ system (d5) in the
Tanabe-Sugano diagram (Rodríguez-Lazcano et al., 2009).

The PLQY at room temperature is calculated to be about
60.70% and the Commission Internationale de l’Eclairage (CIE)
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chromaticity coordinate for this green emission is determined to
be (0.175, 0.589) (Figure 6C). Upon the excitation of 453 nm,
the room-temperature TRPL decay curve is monitored for the

FIGURE 5 | UV-visible absorption spectrum of (1-mPQBr)2MnBr4.

emission peak at 520 nm as shown in Figure 6D. The decay curve
is modeled with the biexponential decay function:

I (t)= A1e
−

t

τ1 + A2e
−

t

τ2

where I(t) is the time-resolved PL intensity, t is the time after
excitation, A1 and A2 are the relative amplitudes, and τ1 and τ2
are lifetimes for fast and slow decays. The effective decay times
are calculated to be 52.9 and 185.0 µs, respectively.

Furthermore, such highly emissive bulk crystals and powders
were examined to exhibit considerable thermal stability. TGA
curve suggests that (1-mPQBr)2MnBr4 does not lose any mass
until 300◦C (Figure 7), which is comparatively higher than that
of other organic-manganese halides reported in literature. This is
hypothesized to be due to the large amounts of hydrogen bonding
interaction between the organic and inorganic components in
the 0D structure benefiting from the extra presence of free
bromide ions. It possesses a two-step decomposition including
the evaporation of organic parts and MnBr2, respectively. In
DSC scan, a sharp endothermic peak, which occurred at 250◦C,
corresponds to the melting point of (1-mPQBr)2MnBr4.

More importantly, the stability of hybrid metal halides
is deemed as an important criterion for evaluation of their

FIGURE 6 | Optical properties of (1-mPQBr)2MnBr4: (A,B) wavelength-dependent PL spectra and PLE spetrum at room temperature, (C) CIE chromaticity
coordinates, (D) TRPL decay curve monitored at 520 nm under 453 nm excitation.

Frontiers in Chemistry | www.frontiersin.org 5 April 2020 | Volume 8 | Article 352

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Jiang et al. (1-C5H14N2Br)2MnBr4 With Intense Green Photoluminescence

FIGURE 7 | TGA and DSC data for (1-mPQBr)2MnBr4.

potential for practical applications. Therefore, we evaluated
the thermal stability of (1-mPQBr)2MnBr4 single crystals by
annealing them at 150◦C for 12 h on a hotplate. Notably,
negligible change can be observed in the PXRD pattern
(Figure S3). Moreover, after exposure to ambient conditions
for 2 months, it still remain 96.3% of the original PL
intensity (Figure S4).

CONCLUSIONS

In summary, we have synthesized a novel lead-free
organic-manganese halide compound (1-mPQBr)2MnBr4
(1-mPQ=1-methylpiperazine, 1- C5H14N2), with 0D structure
through solvent-evaporation method. A highly luminescent

green emission at 520 nm was observed for this novel organic-
inorganic hybrid material, which should be resulted from
the spin-forbidden internal transition (4T1(G) to 6A1) of
tetrahedrally coordinated Mn2+ ions. We believe the superior
photophysical properties and high stability makes it potential for
light-emitting applications.
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