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In recent years, metal coordination macrocycles have obtained great interests due

to the fact that they combined the rich host-guest properties of macro-cyclic

hosts and the unique optical properties of the organic ligands. In this work, we

constructed two porphyrin-based organoplatinum(II) metallacycles (MC1 and MC2)

through coordination-driven self-assembly. 1H NMR, 31P NMR, and HRMS technologies

were used to characterize the structures of MC1 and MC2. Interestingly, MC1

and MC2 can be used as catalysts for photooxidization under light irradiation

with higher efficiency compared with the porphyrin ligand only. We hope that the

coordination-driven self-assembly strategy can provide an efficient method to construct

photo-active materials.

Keywords: self-assembly, macrocycle, porphyrin, photooxidization, coordination

INTRODUCTION

Macrocyclic host compounds, mainly including crown ethers (Zhu et al., 2012; Liu et al., 2017),
cyclodextrins (Lai et al., 2017; Li et al., 2019), calixarenes (Kim et al., 2012; Nimse and Kim,
2013), cucurbiturils (Kim et al., 2007; Barrow et al., 2015), and pillararenes (Xue et al., 2012;
Ogoshi et al., 2016; Yao et al., 2017; Chen J. et al., 2019), are the foundation of the development of
supramolecular chemistry (Dong et al., 2014; Sun et al., 2018; Gao L. et al., 2019; Xiao et al., 2019).
During the past two decades, the syntheses, host–guest properties, and applications of macrocycles
have been widely investigated (Chen Y. et al., 2019; Wu and Yang, 2019). Among various
macrocycles, discrete organoplatinum(II) metallacycles, which was fabricated by a new valuable
strategy called “coordination-driven self-assembly,” attracted great interests from both chemists
and materials scientists (Gao S. et al., 2019; Zhang et al., 2019). A remarkable advantage of the
“coordination-driven self-assembly” is that two-dimensional metallacycles or three-dimensional
metallacages can be easily obtained by the formation of metal–ligand bonds between metal
acceptors and organic donors when combining simple building blocks (Wang et al., 2019a; Yan
et al., 2019). Up to now, discrete organoplatinum(II) metallacycles have been investigated a lot
and widely applied in many areas, such as fluorescent detection, homogeneous catalysis, functional
materials, bioengineering, photodynamic therapy, and so on (Cai et al., 2020; Qin et al., 2019).

Porphyrin derivatives, which contain a large π-conjugated aromatic structure, are a class of
famous photo-activities (Liang et al., 2011; Ou et al., 2019; Wang et al., 2019b). Porphyrins usually
have very intense absorption bands in the UV–visible region. However, due to the strong π-π
stacking between the aromatic systems, porphyrins are easily aggregated in solvents, especially
in aqueous solution (Zou et al., 2017). Commonly, porphyrins aggregate more seriously as
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the concentration increased. This aggregation phenomenon
greatly decreases the efficiency of porphyrins to generate 1O2 and
therefore restrained their potentially wide applications (Zhou
et al., 2019). To address the aggregation of porphyrins in water,
chemistry and materials scientists usually introduce a large
substituent onto the platform of the porphyrin core (Slater
et al., 2015). However, these chemical synthesis and purification
processes have some other disadvantages, such as being time-
consuming, tedious, and with higher costs of preparation.

Herein we designed and synthesized two new
metallacycles (MC1 and MC2) with p-bipyridine-modified
porphyrin (Scheme S1, Scheme 1) as organic donor and
organoplatinum(II) (2 or 3) as the metal acceptor (Scheme 1).
The weak metal–ligand bonds will prevent the π-π stacking of
the conjugated aromatic porphyrin units, thus improving the
efficiency of generating 1O2 under irradiation. Interestingly,
compared with ligand 1 (Figure S1), the resultant metallacycle
MC1 orMC2 can be used as catalyst for photo-oxidizing phenols
much more efficiently.

MATERIALS AND METHODS

Synthesis of Metallacycles MC1 and MC2
Ligand 1 and organoplatinum(II) 2 (Figure 1A) and 3

(Figure 1C) were prepared according to a previous report
(Grishagin et al., 2014). In a 1:1 molar ratio, bipyridylporphyrin
1 (1.85mg, 3.00 µmol) and 60◦Pt (II) acceptor 2 (4.01mg, 3.
00 µmol) were placed in a 2-ml vial, followed by addition of
acetone (1ml). After stirring overnight at 50◦C, the mixture was
filtered to remove insoluble materials (Scheme S2). Then, the
solvent was removed by N2 flow to about 0.2ml, and MC1 was
obtained by the addition of diethyl ether (5.22mg, 89%). MC2

was prepared by the same method (Scheme S3).

MC1

Purple solid, 89%. 1H NMR (400 MHz, CD3COCD3) δ (ppm):
10.17 (d, 4H), 9.21 (s, 2H), 8.92–8.90 (m, 10H), 8.27–8.25
(m, 8H), 7.89–7.85 (m, 12H), 2.47–2.43 (m, 24H), 1.70–1.62
(m, 36H). 31P {1H} NMR (acetone, room temperature, 121.4

SCHEME 1 | Chemical structures and schematic diagram of

p-bipyridine-modified porphyrin 1, organoplatinum(II) 2 and 3, and

metallacycles MC1 and MC2.

MHz) δ = 9.53 (195Pt satellites, 1JPt−P = 2,662Hz). HR-ESI-
MS: calculated for C203H288F9N18O9P12Pt6S3 ([M – 3 OTf]3+):
1,646.78, found: 1,646.77.

MC2

Purple solid, 87%. 1H NMR (400 MHz, CD3COCD3) δ (ppm):
9.73 (s, 1H), 9.61 (s, 1H), 9.06 (s, 2H), 8.90 (s, 4H), 8.67–8.65 (m,
2H), 8.29–8.19 (m, 4H), 7.86–7.74 (m, 12H), 1.83–1.81 (m, 24H),
1.49–1.41 (m, 36H). 31P {1H} NMR (acetone, room temperature,
121.4 MHz) δ = −5.04 ppm (195Pt satellites, 1JPt−P = 3,156Hz).
HR-ESI-MS: calculated for C244H280F12N24O20P8Pt4S4 ([M + 8
CH3COCH3 – 4 OTf]

4+): 1,316.97, found: 1,316.92.

Materials
All reagents and solvents were commercially available in
analytical grade and used as received. Further purification
and drying by standard methods were employed and these
were distilled prior to use when necessary. Deuterated solvents
were purchased from Cambridge Isotope Laboratory (Andover,
MA, USA). All evaporations of organic solvents were carried
out with a rotary evaporator in conjunction with a water
aspirator. Melting point measurements were taken on a hot-
plate microscope apparatus and are uncorrected. 1H and 13C
NMR spectra were recorded with an Aviance III 400 MHz
or 600 MHz liquid-state NMR spectrometer. 31P{1H} NMR
chemical shifts are referenced to an external unlocked sample
of 85% H3PO4 (δ 0.0). Mass spectra were recorded on a
Micromass Quattro II triple–quadrupole mass spectrometer
using electrospray ionization with a MassLynx operating
system. UV–vis spectra were recorded on a Hitachi F-7000
fluorescence spectrophotometer.

RESULTS AND DISCUSSION

NMR Studies
The formation of discrete organoplatinum(II) metallacyclesMC1

andMC2 were characterized by multinuclear NMR (31P and 1H)
analysis. The 31P {1H} NMR spectra of MC1 and MC2 showed
a sharp singlet with concomitant 195Pt satellites at 9.53 ppm for
MC1 and at −5.04 ppm for MC2 (Figures 1B,D) corresponding
to a single phosphorous environment, indicating the formation
of discrete and symmetric metallacycles (Wei et al., 2014).

At the same time, downshifts were observed for β-pyridyl
hydrogen in 1H NMR spectra. As shown in Figure 2, β-pyridyl
hydrogen changed from 9.04 to 9.51 and 9.72 ppm in MC1

and from 9.04 to10.21 ppm in MC2. β-pyridyl hydrogen also
showed a downfield chemical shift. These chemical shift changes
in 1H NMR spectra are similar with the previous analogous
organoplatinum(II) system, indicating the formation of discrete
metallacycles (Yao et al., 2018).

Electrospray Ionization Time of Flight Mass
Spectrometry Studies
Electrospray ionization time of flight mass spectrometry (ESI-
TOF-MS) provided further evidence for the stoichiometry
formation of discrete metallacycles MC1 and MC2. In the mass
spectrum of MC1, the peak at m/z = 1,646.77 is consistent with
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FIGURE 1 | 31P{1H} NMR spectra (room temperature, 121.4 MHz) of (A) 60◦ acceptor 2, (B) metallacycle MC1, (C) 90◦acceptor 3, and (D) metallacycle MC2 in

acetone.

FIGURE 2 | 1H NMR spectra (CD3COCD3, room temperature) of (A) bipyridylporphyrin 1, (B) metallacycle MC1, and (C) metallacycle MC2.

an intact [M – 3OTf]3+ charge state, which supported a [3 +

3] metallacycle (Figure 3A). Similarly, for metallacycleMC2, the
peak at m/z = 1,316.92 is consistent with an intact [M + 8
CH3COCH3

− 4OTf]4+ charge state, which is expected only for
a [4 + 4] metallacycle (Figure 3B). All the evidence from 1H
NMR, 31P NMR, and ESI-TOF-MS confirmed the formation of
a discrete structure as the sole assembly product.

Photooxidization Studies
As we all know, porphyrins have the ability to generate 1O2

due to the fact that they could be excited into 3O2 state under
irradiation and the energy transfer process is accompanied with
molecular O2. However, due to the strong π-π interactions,

most porphyrins applied as photosensitizers are easily aggregated
in aqueous solution (Figures S4, S5). This aggregation will
greatly restrain the ability of the porphyrins to generate reactive
oxygen species. For our obtained metallacycles MC1 and MC2,
the coordination bonds will decrease the self-quenching of
the excited states and improve the photooxidization efficiency.
Therefore, metallacycles MC1 and MC2 can be used as an
expected catalyst for the photoreaction mediated by 1O2. Herein
quinol was selected as a model substrate for detecting the
reactivity, and UV–vis spectroscopy was used to monitor the
process. As shown in Figure 4, after 20ml of aqueous solution of
quinol (10−2 mmol L−1) was irradiated by a LED lamp (500 nm)
under air with MC1 (5mg) as catalyst, the absorption band
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FIGURE 3 | Experimental (blue) and calculated (red) ESI-TOF-MS spectra of (A) [M – 3OTf]3+ and (B) [M + 8 CH3COCH3 4OTf]4+.

FIGURE 4 | UV–vis spectra of quinol solution with MC1 upon light irradiation

at 500 nm with a xenon lamp.

of the phenyl moiety in quinol in 289 nm gradually decreased,
and 65% of quinol was consumed after irradiation for 60min
(Figure 4). As expected, MC2 has a similar catalytic efficiency
with MC1 (Figure S2). However, in the control experiments
using the ligand 1 as catalyst instead of MC1, only 8% of quinol
was reacted after irradiation at 500 for 60min under the same
conditions (Figure S2). Importantly, the investigation for the
recyclability of MC1 showed that they could be recovered by
simple filtration and reused without significant loss of catalytic
activity (yield loss within 5% for six cycles, Figure S3).

CONCLUSIONS

In this paper, we synthesized two metallacycles, MC1 and
MC2, with p-bipyridines modified porphyrin as the ligands
through coordination-driven self-assembly. Then, the obtained

metallacycles were characterized by 31P NMR, 1H NMR, and
ESI-TOF-MS methods. Furthermore, the metallacyclesMC1 and
MC2 can be used as an expected catalyst for the photoreaction
mediated by 1O2 due to the coordination bonds that will
decrease the self-quenching of the excited states of porphyrin
units and improve the photooxidization efficiency. Our next
study will focus on the application of our metallacycles in
photodynamic therapy.
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