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In traditional Chinese medicine, dihydroartemisinin (DHA) is the focus of extensive

attention because of its unique activity with Fe2+ to produce reactive oxygen species

(ROS) and promote apoptosis. In this work, we designed a newfangled ink@hydrogel

containing FeCl3, traditional Chinese ink (Hu Kaiwen ink), and agarose hydrogel to create

a synergistic activity with DHA in the treatment of cancer. When the system is irradiated

under 1,064 nm for a few minutes, the ink in the ink@hydrogel converts the light to

heat and hyperthermia causes the reversible hydrolysis of hydrogel. Then, Fe3+ quickly

diffuses from the hydrogel to the tumor microenvironment and is reduced to Fe2+ to

break the endoperoxide bridge in pre-injected DHA, which results in the release of free

radicals for a potent anticancer action. To our knowledge, this is the first report of a

hydrogel tumor therapy system that induces a photo-thermal response in the second

near infrared window (NIR-II). in vivo experiments also showed a significant effect of

DHA-Fe2+ in chemodynamic therapy (CDT) and in photo-thermal therapy. This hydrogel

platform provided an encouraging idea for synergistic tumor therapy.

Keywords: injectable hydrogel, NIR-II photothemal therapy, dihydroartemisinin, Hu Kaiwen ink, chemodynamic

therapy

INTRODUCTION

Cancer is the leading cause of death worldwide and poses a huge threat to human health, even
after the recent significant research advances (Li et al., 2017; Wu et al., 2018; Zhang et al., 2019).
Recently, new tumor treatments, such as photothermal therapy (PTT) (Chu andDupuy, 2014; Song
et al., 2015; Sun et al., 2017; Yang et al., 2017; Jiang et al., 2018; Zhou et al., 2018; Liu et al., 2019) and
chemodynamic therapy (CDT) (Jia et al., 2016), have attracted much attention due to the limited
side effects and drug resistance compared with traditional strategies like chemotherapy, surgery,
and radiotherapy.

The emerging PTT treatment uses nanoparticles as photo-thermal agents (PTAs) (Sun et al.,
2017; Jiang et al., 2018; Cao et al., 2019; Yang et al., 2019) since they have a high absorbance
in the near-infrared (NIR) to convert light to thermal energy and induce tumor ablation. PTT
causes little damage to the patient and has minimal side effects. It can be used by itself or
combined with other therapies like photodynamic therapy (PDT) (Hu et al., 2019; Liang et al.,
2019). However, most PTAs have a limited penetration depth since they are only active in
the NIR-I window (750–1,000 nm), which reduces their efficiency and clinical performance.
Although NIR-II radiation (1,000–1,350 nm) (Lin et al., 2017; Yu et al., 2017; Cao et al., 2019)
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has a better maximum permissible exposure (MPE) and a
larger penetration depth, there is a lack of PTAs with a strong
enough absorption and a high enough photo-thermal conversion
efficiency. Therefore, it is necessary to explore PTAs that are
active in the NIR-II window for tumor therapy. Traditional
Chinese ink like the Hu Kaiwen ink has a good photo-thermal
conversion efficiency, a high stability in liquid, and an excellent
biocompatibility. It is therefore expected to have a great potential
as an NIR-II photo-thermal material (Wang et al., 2017; Ouyang
et al., 2019). Recently, light-responsive hydrogel (Xing et al.,
2016; Niu et al., 2017; Hou et al., 2018; Qiu et al., 2018; Wu
et al., 2019) was introduced as creative and novel drug release
vessel for tumor treatment. It has attached much attention and
has a great potential for the controlled release of active agents.
Furthermore, the drug release rate can be controlled by changing
the power density of the incident light and the exposure time
to modify the dissolution of the hydrogel. However, the photo-
thermal response of hydrogels in the NIR-II spectrum has not yet
been studied.

In traditional Chinese medicine, dihydroartemisinin (DHA)
and its derivatives have been extensively used as an effective
anti-malaria drug since the 1970s (Wang et al., 2016). Recently,
they have been studied as alternative tumor therapeutic agents
to kill various tumor cells in vitro and in vivo through the
generation of active oxygen radicals via the homolytic cleavage of
the weak endoperoxide bridge accelerated by high concentrations
of ferrous irons (Wang et al., 2016). However, the insufficient
availability of Fe2+ in the tumor tissues severely limits the clinical
performance and an urgent solution is needed to increase the
Fe2+ content in the tumor tissues and create a synergetic therapy
with DHA.

Herein, we designed a newfangled ink@hydrogel containing
FeCl3, traditional Chinese ink (Hu Kaiwen ink), and agarose
hydrogel to act synergistically with DHA in the treatment of
cancer. When the system is irradiated at 1,064 nm for a few
minutes, the ink in the ink@hydrogel converts light to heat
and hyperthermia causes the reversible hydrolysis of hydrogel.
Then, Fe3+ ions diffuse from the hydrogel to the tumor
microenvironment and are reduced to Fe2+ to promote the
breakage of the endoperoxide bridge in the pre-injected DHA.
This results in the release of free radicals for a potent anticancer
effect. To our best knowledge, this is the first report of a
hydrogel system for tumor therapy that creates a photo-thermal
response in the NIR-II biological window. In vivo experiments
are carried out to determine the efficiency of DHA-Fe2+ in
chemodynamic therapy (CDT) and in photo-thermal therapy.
This special hydrogel treatment way provided a great idea for
synergistic tumor therapy.

RESULTS AND DISCUSSION

Synthesis and Characterization of the
Hydrogel
First, the ink was diluted to a light concentration to produce a
usable sample. Figure 1A show the various hydrogels prepared.
Each hydrogel was prepared in a centrifuge tube and did not
flow downwards once gelation was complete. The nanoscale

morphology of the ink was determined by transmission electron
microscopy (TEM) (Figure 1B). The ink mostly presented
small aggregates. Rheology measurements on the ink@hydrogel
(a mixture of agarose hydrogel and ink) with different ink
concentrations showed a decrease in the storage modulus for
increasing ink concentrations, as shown in Figure 1C. When
the temperature increases, the storage modulus of the hydrogel
decreases, which confirms the successful formation of the
hydrogel. Representative SEM (scanning electron microscope)
images of the ink@hydrogel (Figures 1D,E) indicated a complex
pore size distribution where different concentrations and
temperatures produced different pore sizes. A power density
of 1 W/cm2 at 1,064 nm irradiation was used to evaluate
the temperature control ability of ink@hydrogel (Figure 1F).
Initially, the dark colors of conglomerated ink@hydrogel were
observed, but persistent laser irradiation faded the colors,
indicating the degradation of the ink@hydrogel. Infrared
thermal imaging (Figure 1F) also confirmed the increase of
the temperature in the ink@hydrogel upon laser irradiation.
We measured the release rate of Fe3+ in the hydrogel with
or without laser irradiation (Figure 1G). The ink@hydrogel
gradually dissolved and released Fe3+ under laser irradiation at
1,064 nm (1 W/cm2), whereas there was no significant change
in the group without laser irradiation, which showed that the
hydrogel was irradiated by laser irradiation to dissolve and release
iron ions.

Photo-Thermal of the ink@hydrogel for PTT
The photo-thermal performance of the ink was estimated
by irradiating a centrifuge tube containing an aqueous ink
dispersion at various concentrations (0, 10, 25, 50, and
100µg/mL) with an NIR laser (1,064 nm, 1 W/cm2) in
parallel, while capturing the infrared thermal images of the ink
solutions to confirm the temperature response during irradiation
(Figures 2A,B). The photo-thermal heating effect of the ink was
concentration-dependent for a fixed irradiation power. Higher
ink concentrations resulted in a greater heating effect, which
indicated that the ink efficiently converted light to thermal
energy. Furthermore, the temperature of the ink solution at
100µg/mL increased from the initial 35◦C to nearly 60◦C
in 5min. This suggests that the laser irradiation triggers a
forceful hyperthermia and the elevated temperature is sufficient
to damage tumor cells through the destruction of the intracellular
protein and genetic materials. The ink solution was irradiated
at 1,064 nm with 1 W/cm2 for 5min. Then, the laser was
turned off to allow the initial temperature to recover. This cycle
was repeated four times (Figure 2C) to demonstrate that the
variation of the peak temperature in every cycle was negligible
and that the photo-thermal performance of the ink was stable
and reproducible during cycling. The photo-thermal conversion
efficiency (η) of the ink was calculated from the data of
Figures 2D,F and was as high as 35.0%, which is higher than Au
nanorods (21%), graphene quantum dots (28.58%), and Ti3C2

nanosheets (30.6%) (Liu et al., 2015; Rasool et al., 2016; Shao
et al., 2016; Deng et al., 2019). Figure 2E shows the UV-visible-
NIR absorbance spectrum of the ink solution, revealing a broad
and strong absorbance between 800 and 1,100 nm, without any
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FIGURE 1 | (A) Various hydrogels prepared. (B) TEM image of the ink. (C) Rheological curve (red line) and corresponding temperature curve (blue line) of

ink@hydrogel under NIR irradiation at 1 W/cm2. (D) SEM image of the ink@hydrogel. (E) SEM image of the ink@hydrogel at a lower magnification. (F) Hydrogel

dissolved by the 1,064-nm laser irradiation (1 W/cm2). (G) Release rate of Fe3+ from the ink@hydrogel with (red) and without (black) laser irradiation.

obvious peak. This indicates that the hydrogel is a very suitable
photo-thermal material.

In vitro Combination Therapy
We prepared appropriate amounts of ink@hydrogel to generate
ROS in vitro. After the 4T1 cells were treated with different
hydrogels for 2 h, the ROS stress level in the cells wasmeasured by
fluorescence microscope (Figures 3A,B). Upon laser irradiation,
the ink@hydrogel samples had a high ROS level, whereas the
un-irradiated hydrogel samples and irradiated PBS control had
lower ROS levels. This might be attributed to the dissolution
of the ink@hydrogel released Fe3+ ions that were then locally
reduced to Fe2+, which can be coupled with DHA. Next, we
examined the fluorescence images of the 4T1 cells stained
with FDA (Fluorescein diacetate) (live cells, green fluorescence)
and PI (propidium iodide) (dead cells, red fluorescence) under
different conditions (Figure 3C). By comparing the images of
the ink@hydrogel group with or without laser irradiation, the
viability of the 4T1 cells significantly decreased upon laser
irradiation most likely due to the temperature increase that
triggers the dissolution of the hydrogel and releases Fe3+ ions.
The group with ink@hydrogel and DHA subjected to the laser

irradiation showed a high level of apoptosis due to the generation
of hydroxyl radicals from the breakage of endoperoxide bridges
during the action of DHA and Fe2+. Figure 3D later confirmed
the cell toxicity of the hydrogel with DHA upon laser irradiation.
The cells incubated with hydrogel were damaged and died after
5min of laser irradiation.

In vivo Anti-tumor Study
Since the in vitro results were very encouraging for the
ink@hydrogel combined with DHA, we studied the in vivo
potential. Mice bearing 4T1 tumors were split into five groups
when the tumor volume reached ≈200 mm3 (n = 5): (1)
PBS solution group, (2) laser irradiation group, (3) 5 mg/kg
DHA solution group, (4) ink@hydrogel with laser irradiation,
(5) ink@hydrogel and DHA with laser irradiation. The five
groups significantly demonstrated the efficiency of a therapy
using hydrogel combined with DHA and laser irradiation.
DHA was administered by intra-peritoneal injection whereas
the other solutions were administered by orthotopic injection.
DHA was injected 12 h before the ink@hydrogel. Figure 4A
shows an infrared image of the PBS group and the hydrogel
with DHA group under laser irradiation. The temperature in the
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FIGURE 2 | (A) Infrared thermographic maps of ink solution in the centrifuge tube upon NIR laser irradiation for 0–5min. (B) Temperature increase for the different ink

concentrations upon laser irradiation at 1,064 nm and 1 W/cm2 for 5min. (C) Temperature variation of an ink solution at 100 mg/mL under cyclic laser irradiation

during which the laser is on for 20min in each cycle. (D) Temperature profile of an ink solution at 100 mg/mL upon heating when the laser is on and subsequent

cooling once the laser is turned off. (E) UV-visible-NIR absorbance spectrum of an ink solution. (F) Calculation of the time constant for the heat transfer using a linear

regression of the cooling profile.

FIGURE 3 | (A) DCFH-DA (2,7-Dichlorodi-hydrofluorescein diacetate) staining in 4T1 cells upon different treatments. Scale bar: 50µm. (B) Fluorescence intensity of

DCFH-DA from (A). (C) Fluorescence images of 4T1 cells stained with FDA (live cells, green fluorescence) and PI (dead cells, red fluorescence) after incubation with

different formulations. (D) Cell viability of 4T1 cells cultured in the presence of various formulations after laser irradiation. ***p < 0.005.

control group barely increased, whereas the in vivo temperature
distribution in the ink@hydrogel with DHA group was raised by
about 15◦C in 5min (Figure 4B). The reduced heat tolerance

of the tumor tissue compared to normal cells results in the
selective destruction of the tumor cells at temperatures above
hyperthermia (42–47◦C) (Yang et al., 2017). The volume of the
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FIGURE 4 | (A) Infrared images of the mice tissue under laser irradiation after the administration of PBS and ink@hydrogel (Hy). (B) Temperature of the mice upon

laser irradiation. The data represent mean ± standard deviation (n = 3). (C) Evolution of the tumor weight during therapy. (D) Evolution of the volume of 4T1 tumors

bearing female BALB/C mice after various treatments. (E) Body weight of nude mice recorded every other day for various treatments. (F) H&E and TUNEL staining of

tumor sections from the 4T1 tumor-bearing mice. ***p < 0.005.

FIGURE 5 | Evaluation of the toxicity in vivo. Histological data (H&E staining) obtained in the major organs (heart, liver, spleen, lung, and kidney) of the mice 14 days

after injection under various conditions. Scale bar: 100µm.
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tumors in each of the five groups was measured every other
day using a digital caliper and the tumor weight was calculated,
as shown in Figures 4C,D. Compared with the PBS and NIR
irradiation group, the tumor grew slowly in the DHA group and
the ink@hydrogel without DHA group under laser irradiation.
The volume and the weight of the tumor in the hydrogel with
DHA group were significantly lowered as the average mice
weight in hydrogel with DHA group were only 0.11 g. The body-
weight regularly increased in all groups during the whole therapy
(Figure 4E), which confirmed that these treatments produced
negligible adverse effects on the mice. We also examined the
micrographs of tumor tissues stained with H&E and TUNEL
(Figure 4F). The combination of the photo-thermal therapy with
DHA yielded the highest apoptosis rate for the tumor cells.

Histological Analysis
We performed a histological analysis of the major organs (heart,
liver, spleen, lung, and kidney) for the ink@hydrogel combined
with DHA group (Figure 5). The results indicated that the
synergistic ink@hydrogel and DHA therapy did not cause deep
pathological changes in the organs, suggesting that there was no
significant histological abnormality in the treatment groups.

CONCLUSION

In summary, we designed a newfangled ink@hydrogel system,
which can produce a synergistic activity with DHA for the
treatment of cancer. The ink in the ink@hydrogel could generate
huge heat energy and hyperthermia when under 1064 nm laser
irradiation as it possessed good photothermal performance and
stability. Furthermore, Hu Kaiwen ink as a an NIR-II photo-
thermal material has great maximum permissible exposure
(MPE) and a larger penetration depth. Then, Fe3+ ions rapidly
diffused from the hydrogel to the tumor microenvironment

with dissolution of ink@hydrogel and were reduced to Fe2+

to promote the breakage of the endoperoxide bridges in the
previously-injected DHA. This resulted in the release of free
radicals for a potent anti-cancer effect. And the drug release
rate can be controlled by changing different condition. In vitro
and in vivo experiments illustrated the great therapeutic effect of
DHA-Fe2+. To our best knowledge, this is the first report of a
hydrogel tumor therapy system that generates a photo-thermal
response in the NIR-II window. We envisioned that this special
hydrogel treatment way holds great potential in synergistic
tumor therapy.
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