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A neoteric hollow-NiPt@SiO2 core–shell structure catalyst with 7-nm-sized hollow NiPt

alloy nanoparticle (NP) packaged by SiO2 shell was prepared by a classic Stober method.

Compared with hollow-NiPt/SiO2 supported catalyst, the hollow-NiPt@SiO2 core–shell

catalyst exhibited better activity and thermal stability in dry reforming of methane (CH4)

(DRM) with CO2 reaction, with CH4/CO2 conversion to 97% and service life to 200 h

at 800◦C, respectively. In addition, the activity and stability of core–shell catalysts with

different nuclei were tested. In contrast to the continuous deactivation of the supported

catalyst, all the core–shell catalysts were able to maintain stability for 200 h, and the

activity sequence was Hollow-NiPt > NiPt NPs > Pt NPs > Ni NPs. By characterization,

we learned that hollow structure had an inner surface and thus had a larger active specific

surface area than NP structure. In addition, NiPt NPs had better activity than Ni NPs

and Pt NPs because Ni and Pt formed as alloy in NiPt NPs. Therefore, the efficient

and thermally stable hollow-NiPt@SiO2 core–shell catalyst has a promising application

prospect in DRM reaction and can make a considerable contribution to the sustainable

use of energy.

Keywords: hollow-NiPt@SiO2 core–shell catalyst, renewable energy, dry reforming of methane (CH4) (DRM)

reaction, NiPt alloy, sintering resistance of SiO2

INTRODUCTION

Coal and oil are the most important energy consumed in the world; fossil fuels accounted
for 85% of global energy consumption in 2018. When fossil fuels are used, a large amount of
greenhouse gas-CO2 will be produced, accompanied by the generation of polluted flue gas, leading
to increasingly serious environmental pollution (Michael et al., 1993; Gurney et al., 2009). On the
other hand, coal and oil are non-renewable resources, and the reserves are limited and dwindling.
The global fossil-energy revolution has begun, with abundant and cheap natural gas accounting for
a growing share of the world’s energy consumption.With the breakthrough of shale gas exploitation
technology, the application of natural gas has become a worldwide research hotspot in recent years
(Wu et al., 2016; Middleton et al., 2017). As the main component of natural gas, there are direct and
indirect methods for effective use of methane (CH4) (Reddy et al., 2013). Direct transformation
of CH4 includes oxidation coupling, chlorination coupling, and direct dehydrogenation (Otsuka
et al., 1987; Sun and Klabunde, 1999; Zhang et al., 2015). The simple conversion process has
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potential theoretical advantages. However, due to the difficulty
of activation of CH4 molecule, direct conversion is usually
conducted under harsh conditions of high temperature, high
pressure, and high energy consumption. In addition, the complex
product composition greatly limits the use of CH4. Indirect
transformation of CH4 includes steam reforming, CO2 dry
reforming, and partial oxidation, etc. (Iulianelli et al., 2016;
Amin et al., 2017; Parola et al., 2018). CH4 and CO2 can be
catalytic converted to syngas (CO and H2) by dry reforming of
CH4 (DRM) reaction. In general, syngas can be converted to
liquid fuel by Fischer–Tropsch process or removed from CO via
pressure swing adsorption (PSA) to obtain high purity hydrogen
(99.999%) which can be used in proton exchange membrane fuel
cell (PEMFC) (Miura et al., 2012, 2013; Qiu et al., 2017; Rosli
et al., 2017). In recent years, DRM reaction has made significant
progress in industrial applications, but large-scale commercial
distribution has yet to address the following issues: catalyst
thermal stability and carbon resistance (Bian et al., 2016).

The DRM reaction catalysts can be classified into noble metal
catalysts and non-noble metal catalysts according to the active
metal component. Noble metal catalysts such as Pt, Pd, Rh,
and Ru have high activity, high stability, and excellent carbon
resistance in DRM reaction (Graf et al., 2007; Özkara-Aydinoglu
et al., 2009). Nagaoka et al. (2001a) loaded Pt on ZrO2 and Al2O3,
respectively, to study the effect of support on DRM reaction,
and results showed that ZrO2 had better performance and could
run for 500 h without loss of activity. Nagaoka et al. (2001b)
studied the high-pressure reaction performance of Ru/TiO2

catalyst for DRM reaction and found that the 2%Ru/TiO2 catalyst
showed excellent carbon resistance at 750◦C and 2MPa pressure.
However, the high price and scarce resources of noble metal limit
its industrial application prospect, while non-noble metals such
as Ni, Co, and Fe also show high initial activity (Nagaoka et al.,
2003; Guo et al., 2004; Wang et al., 2011; Djinović et al., 2012).
The Ni is relatively cheap and widely used in industrial hydrogen
production. However, the most serious issue of Ni-based catalyst
is easy to sinter and carbon deposit, leading to deactivation of the
catalysts. In order to solve this problem, Ni wasmodified by using
the carbon resistance of noble metal. The work of García-Diéguez
et al. (2010) showed that the Pt addition in Ni/Al2O3 formed
the Pt-Ni alloy active site which could promote the reduction
of NiO to Ni and inhibit the formation of the inactive site of
NiAl2O4. Liu et al. (2010) showed that adding a small amount of
Pd or Pt to Ni/MCM-41 increased the dispersion and reductivity
of NiO, although no alloy formation was observed. Nowosielska
et al. (2009) found that the DRM activity of Ni-Rh was better
than the single metal Ni due to the formation of Ni-Rh alloy
active site in the catalyst when studying the modification effect
of Rh on Ni/Al2O3 and Ni/SiO2. In addition, Guczi et al. (2010)
concluded that Au can also effectively improve the DRM activity
and stability of Ni/Al2O3 as additive.

Due to the rarity of noble metals, how to use them efficiently
is the focus. The general method is to reduce the size of the
nanoparticles (NPs) (Qiao et al., 2011) or to obtain a special
morphology catalyst. Compared with solid NPs, hollow metal
nanospheres have become a very effective material to improve the
utilization of noble metals due to the advantages of incomparable

surface area, lower density, and metal consumption (Kim et al.,
2002; Chen et al., 2005; Zhou et al., 2007; Li et al., 2008, 2010).
Hollow alloy or bimetallic materials are hot topics in the field of
materials research. Chen et al. (2007) synthesized Co-Pt hollow
spheres with adjustable composition by an one-step synthesis
method; in comparison with Pt NPs, the hollow material showed
enhanced electrocatalytic activity toward methanol oxidation.
PdCo bimetallic hollow nanospheres synthesized in polyethylene
glycol solution was applied to catalysis of the Sonogashira
reaction, which displayed obvious advantages of environmentally
friendly reaction condition, good catalyst recyclability, simple
experimental operation, and high yields (Li et al., 2006). Li et al.
(2011) prepared hollow Ni-Pt alloy nanospheres with alterable
particle size by an element substitution method, the hollow alloy
nanoparticle exhibits higher activity, enhanced selectivity, and
better stability than the solid Pt NP on p-chloronitrobenzene
hydrogenation reaction.

Since the DRM reaction temperature is required to be very
high, usually above 700◦C, the sintering resistance ability of the
catalyst is also significant. The thermal stability of supported
catalyst could usually be improved by increasing the metal–
support interaction. However, at such an extremely high DRM
reaction temperature, the regular supported catalysts could
not completely prevent sintering through such metal–support
interaction. It is a reliable strategy to improve the catalyst
thermal stability to anchor the metal to the center of the support
or between the interlayer by sandwiched structure or core–
shell structure. Zhao et al. (2018a) prepared Al2O3/Ni/Al2O3

sandwiched catalyst by depositing Al2O3 thin films on Al2O3

support to coat Ni NPs through atomic layer deposition (ALD)
method, and this catalyst exhibited excellent thermal stability,
running stably for over 400 h without activity loss. Core–shell
catalysts also maintain outstanding thermal stability in DRM
reactions (Zhao et al., 2018b). At present, high-stability core–
shell catalysts with various metals (Ag, Au, Pt, Ni, etc.) have been
reported except those with hollow-NiPt as the core (Radloff and
Halas, 2001; Chen et al., 2013).

Herein, we reported a novel hollow-NiPt@SiO2 core–shell
catalyst, which performed excellent activity and operated steadily
for 200 h. The hollow-NiPt NPs were prepared by a modified
galvanic replacement method as shown in Figure 1. The
premise of replacement reaction is oxidation reduction potential.

FIGURE 1 | Schematic diagram of synthesis mechanism of hollow-NiPt

nanoparticles.
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The corresponding standard electrode potentials are: Ni2+/Ni,
−0.250 eV; PtCl2−6 /Pt, 0.735 eV. Due to the rapid replacement
reaction, platinum atoms nucleate rapidly on the surface of the Ni
NP to form smaller particles. Meanwhile, the precipitated Ni2+ is
rapidly reduced by BH−

4 and redeposited on the surface of Ni NP.

Because the reductant is added drop by drop, the limited PtCl2−6
will be dispersed on multiple Ni NPs, and the porous structure
on the surface makes the inner Ni metal can be continuously
replaced to form the ion diffusion, finally deposited on the outer
surface, forming a porous shell structure. Compared with Ni,
Pt, and NiPt solid NPs, hollow NPs had better activity, and the
stability of core–shell catalysts are better than that of support
catalysts. It is clear that the hollow-NiPt catalyst is a suitable
catalyst for converting CH4 by DRM into syngas, and the SiO2

coating provides very reliable thermal stability for the catalyst.

EXPERIMENTAL SECTION

Catalyst Preparation
Preparation of Hollow-NiPt@SiO2

NiCl2·6H2O 0.068 g and poly(vinylpyrrolidone) (PVP; MW =

40,000) 0.2 g were dissolved in 400ml deionized water. The
mixed solution was sonicated for 15min and then purified with
N2 for another 15min. NaBH4 80ml (80.0mg) solution was
added to the above solution drop by drop and stirred at 25◦C
for 30min. After pumping 80ml of K2PtCl6 (65.6mg) solution
through a peristaltic pump at a speed of 5.0 ml·min−1 into
the above solution, continue stirring for 30min to get hollow-
NiPt NPs. At room temperature, the resulting 480-ml solution
containing hollow-NiPt NPs was mixed with 1,000ml ethanol
solution containing 150 µl tetraethyl orthosilicate (TEOS, 98%),

and then 10ml aqueous ammonia solution was added. After
stirring for 6 h, 200ml toluene was added as settler. The sediment
in the bottom was centrifuged and washed with ethanol three
times to obtain hollow-NiPt@SiO2 NPs.

Preparation of Ni@SiO2, Pt@SiO2, and NiPt@SiO2

Ni and Pt NPs with particle sizes of ∼7 nm were synthesized
by adding 0.77 g nickel(II) acetylacetonate [Ni(acac)2, 95%]
or 1.17 g platinum(II) acetylacetonate [Pt(acac)2, 97%], 1.1ml
tributylphosphate (TBP, 97%), and 2.3ml trioctylphosphine
(TOP, 90%) to 20ml oleylamine (OAm, 70%) solution. After
being treated at 120◦C for 2 h in a vacuum oven to remove
water and oxygen, the mixture was heated to 220◦C and kept
heated for 1 h at this temperature. When the solution was
cooled to room temperature, the solid product was separated
by centrifugation and washed several times with a mixture of
ethanol and cyclohexane. The resulting NPs were dissolved in 50
ml cyclohexane.

NiPt NPs with a particle size of about 7 nm were obtained by
co-reduction method with organic reductant. Ni(acac)2 0.77 g,
Pt(acac)2 1.17 g, and 1,2-hexadecanediol 0.78 g were added to
the mixture of 3.2ml oleic acid (OAc), 4.6ml TOP, and 10ml
OAm. After the same pretreatment with the removal of water
and oxygen as in the previous preparation of Ni and Pt NPs,
the solution temperature was controlled to 90◦C, and 6ml OAm
[containing 0.79 g borane tributylamine complex (BTB, 97%)]
was quickly added and stirred for 1 h. In the same way that Ni
and Pt NPs were collected, the resulting NiPt NPs was dissolved
in 50ml of cyclohexane.

The Ni@SiO2, Pt@SiO2, and NiPt@SiO2 core–shell catalysts
were all synthesized by a reverse microemulsion method.

FIGURE 2 | Transmission electron microscopy (TEM) images of (a) Hollow-NiPt; (b) amplification of Hollow-NiP; (c) Hollow-NiPt@SiO2 before calcination; (d)

amplification of Hollow-NiPt@SiO2 before calcination; (e) Hollow-NiPt@SiO2 after calcination and subsequent reduction; (f) supported Hollow-NiPt/SiO2 after

reduction. The attached are the particle size distribution patterns.
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Organic phase (50ml cyclohexane), aqueous phase (2.0ml
aqueous ammonia solution), and surfactant (16ml igepal CO-
630) were stirred for 10min to form a reverse microemulsion.
The resulting microemulsion was then mixed with 50ml
cyclohexane containing 3.0 mmol metal NPs. After 30 s of
rapid stirring, 2.0ml tetramethyl orthosilicate (TMOS, 98%) and
2.0ml octadecyltrimethoxysilane (C18TMS, 90%) were added as
silicon sources. After stirring for 30min at room temperature,
10ml methanol was added as settling agent, and the solid
product was separated by centrifugation and washed with ethanol
several times.

Preparation of Hollow-NiPt/SiO2

The supported hollow-NiPt/SiO2 catalyst was prepared by
impregnation method. The SiO2 nanospheres was prepared by
the same microemulsion method as above, only without the
addition of metal NPs. Hollow-NiPt NPs were dispersed in water
as the impregnation liquid.

All catalysts were calcined at 800◦C for 4 h prior to
activity testing.

Catalyst Characterization
Metal contents in catalysts were determined by inductively
coupled plasma optical emission spectrometry (ICP-OES; Varian
VISTA-MPX).We used transmission electronmicroscopy (TEM;
JEOL JEM2100) to observe catalyst microstructure. The catalyst
reduction performance was tested by temperature programmed
reduction (TPR) on PCA-1200, 0.1 g catalyst was heated to
1,000◦C at a heating rate of 5◦C/min. The carbon deposition
of deactivated catalyst was analyzed by Perkin-Elmer, Pyris
Diamond TG/DTA instrument. CO chemisorption was used to
analyze the metal dispersion.

Activity Test
The DRM reaction was performed in a fixed-bed reactor (inner
diameter = 10mm). Before reaction, the catalysts should be
reduced under the condition of 10% H2/N2 (50 ml/min), and
then the reduced gas should be switched to N2 for 10min
before the reaction gas (CH4/CO2/N2 = 1:1:1) is vented into
the reactor. The reaction products were dehydrated and analyzed
by an online gas chromatograph (Agilent 7890B GC) with a
packed column (TDX-01) and a thermal conductivity detector
(TCD). The active data were collected 2 h after the reaction
began. The conversions of CH4 and CO2 were calculated by the
following equations:

XCH4 =
FCH4 ,in − FCH4 ,out

FCH4,in
× 100 (1)

XCO2 =
FCO2,in − FCO2,out

FCO2,in
× 100 (2)

Fi = Ftotal × Ci (3)

where X, F, and Ci are conversion, selectivity, gas flow rate, and
molar fraction of i in the feed gas or the effluent gas, respectively.

RESULTS AND DISCUSSION

Structural Characteristics
Figure 2 showed the TEM of core–shell and supported structure
hollow-NiPt catalyst. It can be seen from the TEM images in
Figures 2a,b that the hollow-NiPt NPs are present in the form
of hollow nanospheres with a particle size of about 7 nm. In

FIGURE 3 | Transmission electron microscopy (TEM) images of hollow-NiPt@SiO2 with different tetraethyl orthosilicate (TEOS) addition: (a) 100 µl; (b) 200 µl; (c) 300

µl; (d) 500 µl; (e) 1,000 µl.
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addition to uniform hollow nanospheres, however, there were
still some tiny particles, which were generated by direct reduction
of minority metal ions not complexed with PVP. In Figures 2c,d,
it can be found that the hollow-NiPt@SiO2 core–shell structure
catalyst is formed after SiO2 coating, and SiO2 also got the tiny
particles in. The total particle size of the core–shell structure
is about 50 nm. As shown in Figures 2e,f, after calcination and
reduction treatments, the hollow-NiPt NPs in the core–shell
structure catalyst remained stable without any agglomeration.
On the contrary, the hollow-NiPt NPs in the supported hollow-
NiPt/SiO2 catalyst had partially aggregated. In addition, we also
investigated the effect of TEOS addition on the morphology of
the hollow-NiPt@SiO2 core–shell catalyst as shown in Figure 3.
When 150 µl TEOS was added, the particle size of the core–shell
structure catlyst was about 50 nm; when the amount of TEOS
was increased to 200, 300, 500, and 1,000 µl, the particle size was
about 100, 120, 135, and 140 nm, respectively. On the other hand,
when only 100 µl TEOS was added, regular core–shell structure
could not be formed. This shows that the TEOS concentration

plays a significant role in determining the coating level (Liz-
Marzán et al., 1996). However, an excessively thick SiO2 shell
may lead to difficulty in reactants and products transfer in DRM
reaction, resulting in the reaction activity decrease. Therefore,
core–shell structure samples with a total particle size of 50 nm
were selected for the following activity test to explore whether
this thickness could be satisfied to keep hollow-NiPt NPs stable
at high temperature.

In order to verify whether the hollow-alloy structure is
superior to the solid-single metal structure, we prepared
solid Ni, solid Pt, and solid NiPt alloy NPs, respectively. In
addition, we also coated them with SiO2. For the activity
comparison consistent, the particle size of all metal NPs
is the same as that of hollow-NiPt, which is controlled at
about 7 nm. The thickness of SiO2 coating is the same as
that of hollow-NiPt@SiO2, the total particle size is about
50 nm. As shown in Figure 4, solid Ni@SiO2, Pt@SiO2, and
alloy NiPt@SiO2 catalysts were uniform core–shell structures
with only one metal NP in one SiO2 shell. Besides, the

FIGURE 4 | Transmission electron microscopy (TEM) images of (a) Ni nanoparticles (NPs); (b) Ni@SiO2 before calcination; (c) Pt NPs; (d) Pt@SiO2 before calcination;

(e) NiPt NPs; and (f) NiPt@SiO2 before calcination. The attached are the particle size distribution patterns.
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thermal stability of core–shell structures was also expressed
in these three catalysts. After calcination, the core–shell
structure remained unchanged, and the metal particles were
not agglomerated.

The TPR profiles in Figure 5 revealed the reducibility of
different catalysts. The reduction peaks of Ni and Pt oxides
from calcination of Ni and Pt NPs were near 665 and 259◦C,
respectively. After calcination, the hollow-NiPt catalyst had
only a single reduction peak at 485◦C, which is between the
reduction temperature of Ni and Pt oxides. We could speculate
the formation of NiPt alloy in hollow-NiPt catalyst (Yu et al.,
1997). It was worth noting that the reduction peak of solid NiPt
oxides is in the same region as that of hollow-NiPt catalyst,
indicating the formation of alloy in solid NiPt NPs. However,
it splits into two peaks, 451 and 511◦C, respectively. If solid
NiPt NP exists as alloy, the reduction peak must be the same
as that of hollow-NiPt NPs. On the contrary, if it exists as a
single metal, the reduction peak positionmust be the same as that
of single metal Ni and single metal Pt. Therefore, the splitting
of reduction peak demonstrates that solid NiPt NPs are in the
intermediate state of single metal and alloy, which manifests that
parts of solid NiPt particles are still in the form of single Ni
and Pt.

FIGURE 5 | Temperature programmed reduction (TPR) spectras of different

catalysts. TCD, thermal conductivity detector.

Catalytic Performance and Stability Test
In order to guarantee the comparability of all test results, the
metal content of catalyst in each activity test was constant,
which is 0.085 mmol. We can see from Table 1 that the hollow-
NiPt@SiO2 core–shell catalyst shows the highest initial CH4 and
CO2 conversion compared with other catalysts. In addition, the
activity was related to themetal dispersion of the catalyst, because
the catalytic reaction takes place on the surface of the active
site. This is because all catalytic reactions take place on the
catalyst surface, which means that the more active sites exposed
to the catalyst surface, the more active sites can participate in
the reaction, thus it has higher activity. Nevertheless, with the
same NiPt active site, the initial activity of core–shell catalyst was
higher than that of the supported catalyst. This may be related
to the dispersion state of the reduced hollow NiPi NPs. It can be
seen from the TEM in Figure 2f that some NPs agglomerate in
the supported catalyst after reduction, which did not appear in
the core–shell catalyst (Figure 2e). The aggregation of particles
reduced the metal dispersion, thus reducing the utilization of the
active sites of the catalyst and ultimately reducing the activity of
the catalyst.

Compared with solid core–shell catalysts, hollow-NiPt
catalysts had higher metal dispersion and CH4/CO2 conversions.
This is due to the fact that the hollow structure has both internal
and external reaction surfaces, which increases the contact
point between reactants and active sites and thus improves the
availability of noble metal Pt. In solid core–shell catalysts, the
activity decreased in the order: NiPt > Pt > Ni, and the activity
of Pt was only slightly higher than that of Ni, while the NiPt alloy
possessed a large superiority over Pt or Ni. The result showed
that the catalytic DRM reaction activity of Ni is comparable to
that of Pt at high temperature. The electron transfer between the
metals in the alloy catalyst makes the CH4/CO2 have a higher
activation efficiency at the active site and thus have a higher
reaction activity, which is also proved by our results.

We were surprised to find that the CH4 conversion is a little
bit higher than CO2 conversion only when the hollow-NiPt
catalysts are used, yet it is the opposite in solid catalysts which
may be explained by the reverse water gas shift (RWGS) reaction
(CO2+H2 → CO + H2O) (Goguet et al., 2004). So we got the
conclusion that hollow-NiPt catalysts can effectively reduce the
RWGS reaction, thus reducing the generation of by-product H2O
and improving the selectivity of syngas.

According to the ICP analysis, the metal loadings in the core–
shell and supported hollow-NiPt catalysts were determined as

TABLE 1 | Structural and catalytic parameters of different catalystsa.

Catalysts Hollow-NiPt@SiO2 Ni@SiO2 Pt@SiO2 NiPt@SiO2 Hollow-NiPt/SiO2

Metal loading (wt.%) 8.7 13.8 18.9 16.2 9.1

CO adsorption (µmol/g metal) 1,597 1,107 1,159 1,143 1,440

Metal dispersion (%) 22.6 15.6 16.3 16.1 20.3

CH4 conversion (%) 97.1 87.0 88.7 90.1 94.9

CO2 conversion (%) 96.5 87.9 89.3 91.3 94.8

aReaction conditions: 800◦C, CH4:CO2:N2 = 1:1:1, Gaseous Hourly Space Velocity = 600 L·g−1
M ·h−1.
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FIGURE 6 | Stability test of all catalysts. (A) CH4 conversion, (B) CO2 conversion. Reaction conditions: 800◦C, CH4:CO2:N2 = 1:1:1, Gaseous Hourly Space Velocity

= 600 L·g−1
M ·h−1.

8.7 wt. and 9.1%, which is significantly lower than that in solid
catalysts because the hollow NPs have a smaller density and the
mass of hollow NPs will be smaller than that of solid NPs with
the same size. Similarly, in these solid catalysts, the total metal
loading of the catalysts containing the denser Pt was higher.

The best way to determine whether the catalyst is suitable
for continuous and stable operations in such a high temperature
is to use the DRM reaction to investigate its catalytic stability.
We tested the activities of all core–shell and supported structure
catalysts with Gaseous Hourly Space Velocity of 600 L·g−1

M ·h−1.
As shown in Figure 6, within 20 h, all core–shell catalysts
maintained the same activity, while the CH4 and CO2 conversion
of supported hollow-NiPt/SiO2 decreased from 94.9 to 77.6%
and 94.8 to 84.3%, respectively. It can be found that after 20 h
reaction, the CO2 conversion of hollow-NiPt/SiO2 catalyst was
significantly higher than that of CH4. There may be two reasons
here, one is RWGS reaction, the other is the generated carbon
deposit, which reacts with CO2 to produce CO. The reason why
hollow-NiPt@SiO2 has better stability than hollow-NiPt/SiO2 is
that the core–shell structure has better ability to protect metal
active sites than the support structure at high temperature,
thus reducing the probability of CO disproportionation. The
activity of hollow-NiPt@SiO2 catalysts was higher than that of
hollow-NiPt/SiO2 catalysts due to the metal dispersion of catalyst
decreases caused by the agglomeration of particles. Figure 7
also reveals the long-term stability test of hollow-NiPt@SiO2

catalysts, which can keep stable for 200 h without any CH4 and
CO2 conversion change. This indicates that the SiO2-coated
hollow-NiPt core–shell catalyst has a considerable industrial
application prospect.

In order to investigate the cause for the divergence of
stability between core–shell catalyst and supported catalyst, we
characterized the catalysts after 20 h reaction. As shown in
Figure 8a, TEM images proclaim that hollow-NiPt@SiO2 catalyst
still holds its original core–shell structure after reaction, without

FIGURE 7 | Stability test for Hollow-NiPt@SiO2 core–shell catalyst. Reaction

conditions: 800◦C, CH4:CO2:N2 = 1:1:1, Gaseous Hourly Space Velocity =

600 L·g−1
M ·h−1.

evident active site aggregation and carbon deposition. Instead,
the hollow-NiPt NPs in the supported catalyst in Figure 8b

agglomerate seriously, and the SiO2 nanospheres change to the
carrier without a certain shape. It is aware that water will
partially dissociate at high temperature, producing generous
H+ and OH−. OH− will react with SiO2, thus destroying
the morphology of SiO2 nanospheres. After reduction, some
hollow-NiPt NPs on the supported catalysts agglomerate, which
promotes the generation of by-product H2O, thus destroying the
SiO2 morphology, further sintering NPs, forming a vicious cycle
(Keulen et al., 1997).

The thermogravimetric (TG) profile in Figure 8c illustrated
that hollow-NiPt@SiO2 catalysts produce no carbon deposit
after reaction at 800◦C for 20 h, but the weight loss of
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FIGURE 8 | Characterizations of core–shell catalyst and supported catalyst after dry reforming of methane (CH4) (DRM) reaction at 800◦C for 20 h. (a) Transmission

electron microscopy (TEM) image of Hollow-NiPt@SiO2, (b) TEM image of Hollow-NiPt/SiO2, (c) Thermogravimetric patterns. Reaction conditions: 800◦C,

CH4:CO2:N2 = 1:1:1, Gaseous Hourly Space Velocity = 600 L·g−1
M ·h−1.

hollow-NiPt/SiO2 catalyst was about 20% in the process of
heating up. The temperature range of weight loss was about
600–800◦C, corresponding to the process of carbon deposit
elimination (Yu et al., 2013). There is no obvious carbon crystal
lattice in TEM, but this is not the evidence of no carbon
deposition because the carbon deposit may exist in the form
of amorphous.

CONCLUSIONS

In conclusion, we prepared an original hollow-NiPt@SiO2

catalyst for the first time, which took hollow-NiPt as the core
and encapsulated it in an inert SiO2 shell with a classic TEOS
hydrolysis method. A series of core–shell materials with different
SiO2 thicknesses were obtained by adjusting the amount of
TEOS. In the reaction of CH4/CO2 converted to syngas by DRM
reaction, such hollow-NiPt catalysts had considerable activity
advantages compared with solid Ni, Pt, or NiPt alloy. The
conversion of CH4 and CO2 can be close to 100%. Furthermore,
the catalyst had very good thermal stability and can run stably at
800◦C for more than 200 h. By comparing the stability of core–
shell catalysts and supported catalysts, we got a conclusion that
SiO2 can keep hollow-NiPt constancy in DRM reaction at high
temperature. At the beginning of the reaction, hollow-NiPt in
the supported catalyst began to agglomerate and generate carbon
deposit, which showed continuous deactivation. Compared with
different solid metal core–shell catalysts, hollow-NiPt@SiO2 had

pretty good activity due to its double reaction surfaces and alloy
effect. On balance, this work provides a strategy for stabilizing the
hollowmetal material, and the compositematerial can be used for
high temperature reaction.
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