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Protein aggregation, involving the formation of dimers, oligomers, and fibrils, is associated

with many human diseases. Type 2 diabetes is one of the common amyloidosis and

linked with the aggregation of human islet amyloid polypeptide (hIAPP). A series of

nanoparticles are reported to be able to interact with proteins and enhance/inhibit protein

aggregation. However, the effects of C60 (a model system of hydrophobic nanoparticle)

and C60(OH)8 (a hydroxylated fullerene) on hIAPP aggregation remain unknown. In this

study, we investigate the influences of pristine fullerene C60 and hydroxylated C60 on

the dimerization of hIAPP using molecular dynamics (MD) simulations. Extensive replica

exchange molecular dynamics (REMD) simulations show that isolated hIAPP dimers

adopt β-sheet structure containing the amyloid-precursor (β-hairpin). Both C60 and

C60(OH)8 notably inhibit the β-sheet formation of hIAPP dimer and induce the formation of

collapsed disordered coil-rich conformations. Protein—nanoparticle interaction analyses

reveal that the inhibition of hIAPP aggregation by C60 is mainly via hydrophobic and

aromatic-stacking interactions, while the prevention of hIAPP aggregation by C60(OH)8
is mostly through collective hydrogen bonding and aromatic-stacking interactions.

Conventional MD simulations indicate that both C60 and C60(OH)8 weaken the

interactions within hIAPP protofibril and disrupt the β-sheet structure. These results

provide mechanistic insights into the possible inhibitory mechanism of C60 and C60(OH)8
toward hIAPP aggregation, and they are of great reference value for the screening of

potent amyloid inhibitors.

Keywords: type 2 diabetes, hIAPP aggregation, inhibitory mechanism, replica exchange molecular dynamics

simulations, C60

INTRODUCTION

Human islet amyloid polypeptide (hIAPP) is an intrinsically disordered protein and plays a
significant role in the progression of type 2 diabetes (Cooper et al., 1987). hIAPP has a high
propensity to form amyloid aggregates (Larson and Miranker, 2004; Brender et al., 2010). Amyloid
deposits derived from hIAPP are observed in human islet extracellular space in type 2 diabetes
and the formation of intracellular hIAPP oligomers may conduce to β-cell loss in Type 2 diabetes
(Haataja et al., 2008). Inhibition of hIAPP aggregation and destabilization of preformed hIAPP
fibrils are considered as two major therapeutic strategies for treating Type 2 diabetes. Finding an
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effective inhibitor of hIAPP aggregation is a crucial step for
reducing islet β-cells death and the development of drugs against
Type 2 diabetes. Researchers have made great efforts to search for
inhibitors against hIAPP aggregation. Increasing experimental
studies show that peptides (Yan et al., 2006; Abedini et al., 2007;
Saunders et al., 2016), and natural small molecules (Cao and
Raleigh, 2012; Palhano et al., 2013; Young et al., 2015; Pithadia
et al., 2016) can modulate hIAPP aggregation and drive the
peptides into disordered off-pathway aggregates which almost
has no toxicity. Very recently, Ke et al. demonstrated that
nanomaterials can inhibit hIAPP aggregation and reduce the
toxicity in silico, in vitro, and in vivo (Wang et al., 2018; Faridi
et al., 2019; Ke et al., 2019).

Carbon nanoparticles including graphene, carbon nanotube,
fullerene, and its derivatives (especially hydroxylated fullerenes)
have also been of great concern due to their excellent
physicochemical properties (Mahmoudi et al., 2013) [such as
high capacity to cross biological barriers (Tsuchiya et al.,
1996; Sumner et al., 2010), low biotoxicity (Zhu et al., 2007),
and high solubility (Da Ros and Prato, 1999; Maciel et al.,
2011)]. Experimental studies have demonstrated that fullerenes
and their derivatives can prevent the aggregation of amyloid
proteins. For example, pristine fullerenes, carboxyfullerenes, and
hydroxylated fullerene, strongly inhibit the aggregation of Aβ

and Aβ fragments (Dugan et al., 1997; Kim and Lee, 2003;
Podolski et al., 2007; Bobylev et al., 2011). Hydroxylated carbon
nanotubes can significantly impede the aggregation of hIAPP
(Mo et al., 2018). Graphene quantum dots are able to prevent
the aggregation of hIAPP and reduce the toxicity in vivo (Wang
et al., 2018). On the computational side, researchers investigated
the interactions of amyloid proteins and carbon nanoparticles
at atomic level of details with an attempt to uncover the
underlying inhibitorymechanisms. By atomistic replica exchange
molecular dynamics (REMD) simulations, Li et al. found that
carbon nanotube can significantly suppress the formation of β-
sheet rich Aβ16−22 oligomers (Li et al., 2011). Using the same
simulation method, Xie et al. explored the effect of different size
of fullerenes on the aggregation of Aβ16−22. Their simulations
showed that fullerene C180, albeit with a smaller surface area than
3C60, exhibits an unexpectedly more effective inhibition of β-
sheet formation. The stronger inhibition of β-sheet formation
by C180 is due to the stronger hydrophobic and aromatic-
stacking interactions between the fullerene hexagonal rings and
the Phe rings than that between the pentagonal rings and the
Phe rings (Xie et al., 2014). MD simulations revealed that C60

can destabilize Aβ protofibrils by disrupting the D23–K28 salt
bridge (Andujar et al., 2012; Zhou et al., 2014). Guo et al.
explored the influences of graphene, carbon nanotube, and C60

on oligomerization of IAPP22−28 fragment and found that these
carbon nanoparticles inhibit the formation of the β-sheet-rich
oligomers (Guo et al., 2013). However, questions remain to be
addressed. For example, can pristine C60 inhibit the aggregation
of full length hIAPP and disrupt hIAPP protofibrils? If yes, what
is the inhibitory mechanism and how different is it from that of
hydroxylated C60?

In this work, we conducted extensive explicit solvent replica-
exchange molecular dynamics (REMD) simulations on hIAPP

dimer with and without four C60/C60(OH)8 nanoparticles. Our
aim is to explore the effects of pristine and hydroxylated
C60 nanoparticles on full-length hIAPP aggregation. REMD
simulations showed that both C60 and C60(OH)8 display a strong
inhibition of β-sheet formation. The nanoparticle—peptide
interactions analyses revealed that the strong β-sheet inhibition
results from the strong binding of C60/C60(OH)8 to hIAPP. C60

preferentially binds to the hydrophobic residues and aromatic
residues, while C60(OH)8 has a relatively high probability to
bind to hydrophilic residues and aromatic residues. In addition,
to examine whether C60/C60(OH)8 nanoparticles can disrupt
the preformed protofibril, we carried out conventional MD
simulations for hIAPP protofibril in the absence and presence
of C60/C60(OH)8. The MD simulations revealed that both C60

and C60(OH)8 can disrupt the β-sheet structure and destabilize
hIAPP protofibril.

MATERIALS AND METHODS

Systems
The hIAPP Dimer Systems
The hIAPP dimer with/without C60/C60(OH)8 nanoparticles,
were simulated, and they were denoted as hIAPP-dimer,
hIAPP-dimer + C60 and hIAPP-dimer + C60(OH)8. hIAPP
has 37 amino acid residues (with sequence KCNTATCATQ10

RLANFLVHSS20 NNFGAILSST30 NVGSNTY) with an amidated
C-terminus and a disulfide bond forming between Cys2 and
Cys7. In accordance with previous experimental studies (Nanga
et al., 2011), the N-terminus, the side chains of Lys1 and Arg11
were protonated (NH3

+, Lys+, and Arg+). And the sidechain of
H18 was uncharged to mimic the experimental conditions with
pH of∼7.3 (Goldsbury et al., 2000). It is true that the protonation
state of His will change along with the local environment changes.
As done recently by other groups (Dupuis et al., 2009, 2011;
Deng et al., 2013; Qiao et al., 2013), we neglected the pKa shift
in all of our simulations as the involvement of pKa calculation
in MD simulations makes it very computationally expensive.
Every hIAPP dimer was put in the center of a cubic box with
a side length of 6.7 nm. Four C60 or four C60(OH)8 molecules
were displaced in the solvated peptide system at random thus
nanoparticle: peptide is 2:1 at molar ratio, which were consistent
with previous simulation studies (Bai et al., 2019). The partial
charges of oxygen and hydrogen atoms in hydroxyl groups
were −0.8 and +0.3, and that of carbon atoms bonded with
hydroxyl groups in C60(OH)8 was +0.5, while other carbon
atoms were uncharged (Goldsbury et al., 2000). Six counter
ions (Cl−) were added to the three systems for neutralization.
More details about the system preparation could be found in the
Supporting Information section.

The hIAPP Protofibril Systems
The hIAPP protofibril with/without C60/C60(OH)8
nanoparticles, are simulated, and they are denoted as hIAPP-
protofibril, hIAPP-protofibril + C60 and hIAPP-protofibril +
C60(OH)8 systems. Kindly provided by Professor Tycko (Luca
et al., 2007), the initial structure of hIAPP protofibril is a hIAPP
decamer including two rotationally symmetric protofibrillar
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TABLE 1 | Secondary structure probabilities of hIAPP dimer in the absence or presence of carbon nanoparticles.

System Secondary structure content (%)

Coil β-sheet β-bridge Bend Turn Helix

hIAPP-dimer 40.5 ± 0.2 10.6 ± 0.4 2.6 ± 0.1 27.3 ± 0.4 11.5 ± 0.4 7.5 ± 0.1

hIAPP-dimer + C60 46.7 ± 0.2 1.8 ± 0.1 3.3 ± 0.4 28.6 ± 0.2 12.5 ± 0.05 7.0 ± 0.1

hIAPP-dimer + C60(OH)8 48.2 ± 1.4 4.2 ± 0.1 2.1 ± 0.06 29.7 ± 0.8 10.6 ± 0.3 5.2 ± 0.1

pentamers, Each pentamer contains two anti-parallel β-strand, β1
(spanning residues 8–17) and β2 (spanning residues 28–37), and
a “loop” (spanning residues 18–27). The three regions together
formed a U-shaped structure. There are 20 C60/C60(OH)8
nanoparticles in hIAPP-protofibril + C60/C60(OH)8 systems
(nanoparticle: peptide = 2:1 in molar ratio). Thirty counter ions
(Cl−) are added to the systems for neutralization. C60/C60(OH)8
nanoparticles are randomly distributed in the simulation box.
The dimensions of the simulation box are 9.5 × 9.5 × 9.5 nm3

for all the three systems.

REMD and MD Simulations
Both REMD and MD simulations are performed in the
isothermal-isobaric (NPT) ensemble at a pressure of 1 bar using
GROMACS−4.5.3 software package (Sugita and Okamoto, 1999;
Nadler andHansmann, 2008).We choose OPLS force field TIP4P
water molecules, consistent with previous computational studies
of hIAPP (Qi et al., 2014; Mo et al., 2016; Bai et al., 2019).
hIAPP molecules are kept from the water box at least for 1.0 nm.
There are 48 replicas for each system in the REMD simulations,
at different temperatures exponentially distributed from 306
to 409K. Every 1,000 integration steps, two adjacent replicas
attempt to exchange with an average acceptance ratios of ∼15%
for each system. The integration time step is 2 fs. Each replica
was simulated for 360 ns, and thus the accumulative simulation
time period for each system was 17.28 µs. For MD simulations,
we perform two individual 300 ns simulations for each of the
three systems: hIAPP-protofibril and hIAPP-protofibril + C60

and hIAPP-protofibril+ C60(OH)8.

Analysis Methods
The tools implemented in GROMACS software package and
our in-house developed codes were both used to analyze the
trajectories. For REMD simulations, we chose the last 160 ns
simulation data for analysis as the first 200 ns data of each
replica may have bias of the initial structures. Daura method was
used for cluster analysis with a Cα-root-mean-square deviation
(Cα-RMSD) cutoff of 0.35 nm (Daura et al., 1999). We analyzed
the REMD trajectories by calculating the secondary structure
propensities by the DSSP program, number of hydrogen bonds
(H-bonds), percentage of β-strand length, free energy landscape
(or potential of mean force), hIAPP–nanoparticles binding
probabilities, and hIAPP–nanoparticles contact surface area
(CSA), pairwise residue contact probabilities of both main chain-
main chain (MC-MC) contact and side chain-side chain (SC-SC)
contact. For MD simulations, H-bond number within hIAPP
protofibril and between hIAPP and nanoparticles, secondary

structure probabilities of hIAPP and the hIAPP–nanoparticle
binding probability were calculated. The VMD (Humphrey et al.,
1996) and Pymol (Schrodinger, 2015) programs were used for
graphical structure analysis and trajectory visualization.

RESULTS

For each system at 310K, we examined the data convergence
within two different time intervals (200–280 and 280–360 ns)
before analyzing the REMD simulation data by comparing four
parameters as followed. These parameters include the probability
density functions (PDF) of the radius of gyration (Rg) and the
hydrogen bond (H-bond), the probabilities of coil, β-sheet and
helix structure of each amino acid residue. As it can be seen in
Figures S2–S5, the simulation data from the two independent
time periods coincide very well in terms of all these parameters,
demonstrating that the last 160 ns REMD simulations nicely
converged. Unless specified, all the REMD simulation results
presented below are based on the last 160 ns (t = 200–360 ns)
simulation data generated at 310 K.

C60 and C60(OH)8 Inhibit the Formation of
β-sheet, Especially the Long β-sheet, of
hIAPP Dimer
We first examined the percentages of different types of secondary
structure formed by hIAPP dimer in each REMD system and the
results were listed in Table 1. For the isolated hIAPP dimer, the
probabilities of coil and β-sheet are 40.5 and 10.6%, respectively.
The secondary structure propensities are in good agreement with
previous circular dichroism (CD) studies (Kayed et al., 1999;
Goldsbury et al., 2000) and with our recent REMD simulation
results using AMBER99SB-ILDN force field (Lao et al., 2019).
In comparison of the secondary structure content of isolated
hIAPP dimer, the β-sheet contents of hIAPP dimer with C60

or C60(OH)8 are reduced from 10.6% (hIAPP-dimer system) to
1.8% (hIAPP-dimer + C60 system) or 4.2% (hIAPP-dimer +

C60(OH)8 system) and the probability of coil increases from
40.5 to 46.7% or 48.2%. The influences of C60/C60(OH)8 on
the probabilities of helix, turn, bend, and β-bridge structures
are minor. The dominant secondary structure (β-sheet and
coil) propensities of each residue of hIAPP dimer in the three
systems are presented in Figures 1A,B. Figure 1A shows that
residues in Q10–L16, S20–S29, and T30–T36 regions have the
highest probabilities (7.0–22.7%) to form β-sheets. The three
regions are reported to be the amyloidogenic regions in many
experimental studies (Jaikaran et al., 2001; Nielsen et al., 2009;
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FIGURE 1 | Influence of C60 and C60(OH)8 on the secondary structures of hIAPP dimer. Probabilities of β-sheet (A) and coil (B) as a function of amino acid residue.

(C) The probability distribution of β-sheet length.

Bedrood et al., 2012; Zhang et al., 2013; Weirich et al., 2016).
With the addition of C60, those β-sheet rich regions all display
a reduced β-sheet probability (0.01–4.9%) (the dark cyan bars
in Figure 1A). In hIAPP-dimer + C60(OH)8 system, except for
polar residues N21, N22, S28, and S29, other residues including
hydrophobic residues F23–L27 located in the primary amyloid
core region (S20–S29) (Goldsbury et al., 2000; Brender et al.,
2008; Dupuis et al., 2011) exhibit a dramatically decreased
β-sheet probability (the orange bars in Figure 1A). The coil
propensity of all these residues increases modestly in the presence
of C60 or C60(OH)8. As shown in Figure 1C, nanoparticles
also affect the probability distribution of β-sheet length. Upon
addition of C60 and C60(OH)8, the probabilities of long β-
sheets almost disappear. The probabilities of short β-sheets also
decrease dramatically in the presence of C60, while their change
becomes less prominent in hIAPP dimer + C60(OH)8 system.
Taken together, these data demonstrate that C60 and C60(OH)8
substantially suppress hIAPP β-sheet formation, especially in the
amyloidogenic core region, S20–S29.

Both C60 and C60(OH)8 Significantly Inhibit
the Formation of β-hairpin Amyloid
Precursor of hIAPP and Induce the
Formation of Coil-Rich Conformations
We first performed a RMSD-based cluster analysis for
each REMD system at 310K using a Cα-root-mean-square
deviation (Cα-RMSD) cutoff of 0.35 nm to investigate the
three-dimensional (3D) conformations of hIAPP dimer in
the three systems. The conformations of hIAPP dimer in the
three systems were separated into 85, 73, and 68 clusters,
respectively. Figure 2 showed the centers of the top six most
populated clusters, which represent 42.5, 44.0, and 61.5% of all
conformations, respectively, for the three systems. As shown
in Figure 2A, hIAPP dimer transiently adopts a three-stranded
antiparallel β-sheet structure with a β-hairpin, which was
considered to be hIAPP amyloidogenic precursor (Dupuis
et al., 2009, 2011; Qiao et al., 2013). In hIAPP dimer + C60

system, this β-hairpin structure disappears and both intra- and
inter-chain β-sheet content dramatically reduced, leading to
collapsed disordered coil-rich conformations (Figure 2B). In
hIAPP dimer + C60(OH)8 systems, inter-chain β-sheets are
significantly reduced while a few intra-chain β-sheets (including
short β-hairpins) still exist.

To have an overall view of the effects of C60 and C60(OH)8
on the whole space of conformations of hIAPP dimer, we plotted
the two-dimensional (2D) free energy landscape as a function
of H-bond number and Rg. It can be seen from Figure 2D that
there are three minimum-energy basins of the free energy surface
of isolated hIAPP dimer, located at (H-bond number, Rg) values
of (40.0, 1.52 nm), (40.0, 1.23 nm), and (38.0, 1.14 nm). The first
basin with the largest Rg values corresponds to the three-stranded
antiparallel β-sheet structure with a β-hairpin as mentioned
earlier. In the presence of C60 (Figure 2E), hIAPP dimer has
only one narrow and deep basin located at (30.0, 1.28 nm),
corresponding to collapsed disordered dimers. It is noteworthy
that the basin located at (40.0, 1.52 nm) disappears, indicating
that the β-hairpin amyloid precursor of hIAPP is completely
suppresses in presence of C60. With C60(OH)8 (Figure 2F), the
free energy landscape becomes shallower than that of the isolated
hIAPP dimer and has a basin centered at (28.0, 1.35 nm). The
decreased number of H-bond and the increased range of Rg
imply a collapsed and loosely packed coil-rich hIAPP dimer.

Both C60 and C60(OH)8 Weaken the Inter-
and Intra-peptide Interactions of hIAPP
Dimer
To explore the effects of C60 and C60(OH)8 on the hIAPP
interactions, we plotted the pairwise residue inter-peptide and
intra-peptide MC–MC (Figures 3A–C) and SC–SC (Figure S6)
contact probabilities of hIAPP dimer in the three systems.
The maps of contact probability in these three systems
display distinct interaction patterns, suggesting that both inter-
peptide and intra-peptide interactions are remarkably altered
by C60 and C60(OH)8. As shown in Figure 3A, without
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FIGURE 2 | Analysis of 3D conformational properties and 2D free energy landscape of hIAPP dimer with and without C60/C60(OH)8. Representative conformations of

the first six most-populated clusters for hIAPP dimer in hIAPP-dimer (A), hIAPP-dimer + C60 (B), and hIAPP-dimer + C60(OH)8 (C) systems. The corresponding

population of each cluster is given below the snapshots. Free energy landscape (in kcal/mol) of hIAPP dimer as a function of the total number of H-bonds and Rg for

three systems (D–F). The numbers in the PMF correspond to the cluster index. The green balls refer to the Cα atoms of the N-terminal residue K1.

FIGURE 3 | Analysis of the effects of C60/C60(OH)8 on the hIAPP interactions. Inter- and intra-peptide MC-MC contact probability maps for hIAPP dimer in the three

different systems, hIAPP-dimer (A), hIAPP-dimer + C60 (B), and hIAPP-dimer + C60(OH)8 (C). PDF of protein–protein (D) and protein–nanoparticle (E) contact

surface area (CSA). PDF of inter-chain (F) and intra-chain (G) H-bond number.
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nanoparticles, residues V17–L27 and C7–V17 present the
dominant probabilities of inter-chain contact. The highest
probabilities of intra-chain MC–MC contact show strong anti-
diagonal contacts between A8–L16 and A25–G33, suggesting
the appearance of the amyloid precursor β-hairpin structure
that many studies previously reported (Jiang et al., 2009; Xu
et al., 2009; Qi et al., 2014; Zhao et al., 2015; Qiao et al.,
2016). In the presence of C60, the β-hairpin pattern disappears
and both the inter- and intra-chain contact probabilities are
observably reduced (Figure 3B). With C60(OH)8 molecules,
the inter-chain contact probabilities greatly decrease, and the
amyloid precursor β-hairpin structure pattern disappears. Other
short β-hairpin structures, such as that formed between S28–
N31 and S19–N22, were also observed (Figure 3C). The results
above demonstrate that C60 can markedly block both intra- and
inter-peptide interactions critical for hIAPP aggregation, while
C60(OH)8 dramatically alters intra-peptide interaction patterns
and weakens inter-peptide interactions.

We also analyzed the contact surface area (CSA) probability
between the two hIAPP monomers. without nanoparticles, the
average inter-chain CSA value is 9.0 nm2. In the presence
of C60/C60(OH)8 (Figure 3D), the average inter-chain CSA
reduces to 5.3/4.9 nm2 while the CSA between hIAPP and
nanoparticles is large (Figure 3E), indicating a strong binding
between nanoparticles and hIAPP. We also find that hIAPP
has a larger contact surface area with C60 than C60(OH)8,
resulting in amore prominent inhibitory effect of C60. We further
calculated the probability density function (PDF) of H-bond
number formed within hIAPP dimer in the three systems. As
shown in Figures 3F,G, in the presence of C60 or C60(OH)8, the
numbers of inter-chain H-bonds are dramatically decreased as
a result of the interactions between hIAPP and nanoparticles.
These data suggest that the hIAPP-C60/C60(OH)8 interaction is
stronger than hIAPP-hIAPP interaction, thus weaken hIAPP-
hIAPP interactions and prevent hIAPP aggregation. Our
result is consistent with recent studies showing that whether
nanoparticles can inhibit or prevent peptide aggregation depends
on the competition between peptide-peptide and peptide-
nanoparticle interactions (Gladytz et al., 2016; Ke et al., 2019).

C60 Preferentially Binds to Hydrophobic
and Aromatic Residues, While C60(OH)8
Has a Relatively High Probability to Bind to
Hydrophilic and Aromatic Residues
To identify the most favorable binding sites of nanoparticles,
we calculated the contact probabilities of C60/C60(OH)8 with
each amino acid residue of hIAPP. Figures 4A,B shows that C60

nanoparticles have a relatively high probability to bind with the
hydrophobic residues L12, L16, V17, L27, V32, and aromatic
residues F15, F23, and Y37, reflecting that both hydrophobic
and aromatic interactions play an important role in inhibiting
hIAPP dimerization. It is well-known that π-π stacking of
aromatic residues is crucial to the amyloid fibril formation
(Azriel and Gazit, 2001; Gazit, 2002; Porat et al., 2004). It can
be seen from Figures 4A,B that C60 and C60(OH)8 both have
high propensities to interact with F15, F23, and Y37, which

FIGURE 4 | Binding probabilities of C60/C60(OH)8 with hIAPP dimer. Binding

probabilities of C60/C60(OH)8 with all the atoms (A) and the side chain atoms

(B) of each residue in hIAPP-dimer + C60 and hIAPP-dimer +

C60(OH)8 systems.

are the only three aromatic residues and proposed to be of
great importance in hIAPP aggregation (Padrick and Miranker,
2001; Marek et al., 2007). We also find that C60(OH)8 has a
relatively high probability to bind with hydrophilic residues H18,
N21, N31, and N35. The hydroxylation of C60 makes it more
hydrophilic than pristine C60, which weakens its interactions
with hydrophobic amino acids and enhances its interactions with
hydrophilic amino acids. Therefore, C60 and C60(OH)8 display
different binding sites on hIAPP.

Interestingly, we find that, the positively charged residues
R11 in hIAPP dimer have relatively high binding probabilities
with the hydrophobic C60. Thus, we calculated the minimum
distance distribution between the atom NE of the side chain of
R11 and the geometry center of each ring of C60. The distance
distribution curve in Figure 5A shows that there exists a sharp
peak centered at 0.40 nm, indicating strong cation-π interactions
between R11 and C60 (Figure 5B). We can see from Figure 4 that
C60 has a high contact probability with hydrophobic residue L12,
this strong hydrophobic interaction might induce the cation-π
interaction between R11 and C60.

Another interesting phenomenon is that C60 has stronger
hydrophobicity than C60(OH)8, but C60(OH)8 exhibits much
higher binding probability with the side chains of aromatic
residues F15, H18, F23, and Y37 than C60 (Figure 4B).
Meanwhile we noticed that C60(OH)8 displays high interacting
probabilities with their neighboring residues N14, N21, and N35.
To understand this observation at atomic level, we computed
the minimum distance distribution between N14/N21/N35 and
C60/C60(OH)8. The distance distribution curve in Figure 5C
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FIGURE 5 | Binding mechanism of C60/C60(OH)8 on hIAPP dimer. (A) PDF of the minimum distance between NE atom of R11 and the geometry center of the C60

ring; (B) a representative snapshot showing the cation-π interaction between the atom NE in residue R11 and the ring of C60; (C) probability distribution of the

minimum distance between N14/N21/N35 and C60/C60(OH)8. (D) A representative snapshot showing the collective hydrophilic and aromatic-stacking interactions

between C60(OH)8 and hIAPP. (E) Total number of H-bonds between C60(OH)8 and each residue of hIAPP. (F) Number of H-bonds between C60(OH)8 and the side

chain of each hIAPP residue.

shows that the distance between C60(OH)8 and residue
N14/N21/N35 is much shorter than that between C60 and
N14/N21/N35. This result is probably attributed to the H-
bond formation between the hydroxyl group of C60(OH)8
and Asn. Thus, we calculated the H-bond number between
C60(OH)8 and each residue of hIAPP and found that residues
N14, N21, and N35 all have high propensities to form H-
bonds with C60(OH)8 (Figures 5E,F). These results suggest that
the relatively high binding probability of C60(OH)8 with the
aromatic residues F15, F23, and Y37 results from the cooperative
contribution of aromatic interactions between F15, F23, Y37,
and C60(OH)8, and hydrogen bonding interactions between their
nearest neighboring residues N14, N21, N35, and C60(OH)8
(Figure 5D). We also find four consecutive hydrophilic residues
S19, S20 N21, and N22 in the amyloid core region and four
consecutive hydrophilic residues S28, S29, T30, and N31 in the
C-terminal region that have high propensities to form H-bonds
with C60(OH)8. It indicates that hydrogen bonding interaction
between C60(OH)8 and hydrophilic residues of hIAPP also plays
a role in inhibiting hIAPP aggregation.

Both C60 and C60(OH)8 Weaken the
Protein–Protein Interactions and Disrupt
the hIAPP Protofibril
We further performed MD simulations to probe into the effects
of C60/C60(OH)8 on preformed hIAPP protofibrils. As shown
in Figures 6A,B, compared to the β-sheet content in hIAPP-
protofibril system (44.66%), β-sheet probabilities are reduced
in both the hIAPP-protofibril + C60 (38.67%) and hIAPP-
protofibril + C60(OH)8 (39.16%) systems, especially for the
N- and C-terminal residues of the β-sheet regions (β1 and
β2). It should be pointed out that the β-sheet disruption by

C60/C60(OH)8 is less pronounced than β-sheet inhibition (β-
sheet probability: 10.6% in hIAPP-dimer system, 1.8% in hIAPP-
dimer + C60 system and 4.2% in hIAPP-dimer + C60(OH)8
system). The snapshots in Figure 6C shows that all the C60 and
C60(OH)8 molecules bind to the surface of hIAPP protofibril.
It can be seen in Figure 6F that the favorite binding sites of
C60 and C60(OH)8 are the three aromatic amino acids, F15,
F23, and Y37, revealing that the π-π staking may play a crucial
role in the protein–nanoparticles interactions. F15 and F23 are
located, respectively, in the C-terminal region of the β1 and
the turn region of the protofibril, and Y37 is near the turn
region in space. In addition, other residues with high binding
probabilities are mostly located in the regions of the turn and the
C-terminal of β1. These results demonstrate that both C60 and
C60(OH)8 prefer to bind to the turn and the C-terminal of β1. The
strong protein—C60/C60(OH)8 interactions significantly weaken
and remodel the protein–protein interactions (Figures 6D,E,
Figures S7A–F, S8). It is noted that C60(OH)8 displays a less
prominent protofibril disruptive effect than C60, indicating
the H-bonds (Figure 6G) formed between hydroxyl groups of
C60(OH)8 and hIAPP might have limited disruptive effects on
the protein–protein interactions. Taken together, both C60 and
C60(OH)8 weaken the protein–protein interactions and disrupt
the secondary structures.

DISCUSSION

In this study, we performed both REMD and MD simulations
to study the effects of pristine and hydroxylated C60 on hIAPP
aggregation. All-atom REMD simulations of hIAPP dimers
reveal that C60 and C60(OH)8 can significantly suppress β-sheet
formation of hIAPP.We found that, isolated hIAPP dimers adopt
mostly disordered coil with a small proportion of short β-sheets.
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FIGURE 6 | Influences of C60 and C60(OH)8 on the hIAPP protofibril. The average probability of each type of secondary structure (A), the β-sheet probability of each

amino acid of hIAPP (B), the snapshots of hIAPP protofibril at t = 300 ns (C), the PDF of the inter-chain contact number (abbreviated as #) (D) and the inter-chain

H-bond number (E) for hIAPP-fibril, hIAPP-fibril + C60, and hIAPP-fibril + C60(OH)8 systems, contact number between C60/C60(OH)8 and each amino acid of hIAPP

(F), the number of H-bond formed between C60(OH)8 and the main-chain (MC) and side-chain (SC) atoms of each amino acid (G). The β1, β2, and turn regions are

highlighted by rectangles in (C) and by yellow arrows and light blue line in (F,G).

Interestingly, the previously proposed β-hairpin amyloidogenic
precursor (Dupuis et al., 2009), contained in a three-stranded
antiparallel β-sheet structure is also transiently populated. In the
presence of C60 or C60(OH)8, the three-stranded antiparallel β-
sheet structure with a β-hairpin completely disappears, resulting
in disordered coil states. Protein-nanoparticle and protein-
protein interaction analysis shows that C60 and C60(OH)8 both
have strong binding with hIAPP and disrupt the peptide-
peptide interactions responsible for hIAPP aggregation. These
results indicate that both C60 and C60(OH)8 could slow
down or hinder the aggregation of hIAPP. Further analyses
reveal that the inhibition of hIAPP aggregation by C60 and

C60(OH)8 is through different mechanism: hydrophobic and
aromatic-stacking interactions for C60, and collective hydrogen
bonding and aromatic-stacking interactions for C60(OH)8. MD
simulations indicate that both C60 and C60(OH)8 are more likely
to bind to the turn and the C-terminal of β1 via hydrophobic
interactions, weaken the protein–protein interactions and
disrupt the β-sheet of hIAPP protofibril. The obtained results are
helpful for understanding the possible inhibitory mechanism of
C60 and C60(OH)8 on hIAPP aggregation and provided valuable
reference for the screening of potent amyloid inhibitors.

The β-sheet inhibition effect of C60/C60(OH)8 on amyloid
proteins is sequence dependent. For example, this study together
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with our previous work shows that C60 can observably inhibit
the β-sheet formation of Aβ16−22 (Xie et al., 2014) and hIAPP,
while a recent MD study by Sun et al. reported that pristine C60

displays weak inhibitory impact on the aggregation of NACore
of α-synuclein (Sun et al., 2019). Similarly, our REMD study
demonstrates that C60 exhibits stronger inhibition capacity on
hIAPP aggregation than C60(OH)8, whereas the work by Sun
et al. shows that C60 has weaker inhibition ability on the
aggregation of NACore of α-synuclein than C60(OH)8. It is
noted that C60 and C60(OH)8 have poor water solubility, which
limits their applications. This limitation can be overcome by
increasing their extent of hydroxylation or their hydrophilicity
through chemical modifications. Recently, it has been reported
that graphene quantum dots and gold nanoparticles display
excellent inhibition capacity against amyloidosis of hIAPP (Kim
et al., 2018; Javed et al., 2019). Our results together with previous
studies (Cabaleiro-Lago et al., 2012; Xie et al., 2014; Bednarikova
et al., 2016; Nedumpully-Govindan et al., 2016; Kim et al., 2018)
provide a better understanding of the inhibitory mechanism of
nanomaterials targeting protein aggregation.
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