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Energy crises and environmental pollution are two serious threats to modern society. To

overcome these problems, graphitic carbon nitride (g-C3N4) nanosheets were fabricated

and functionalized with SnO2 nanoparticles to produce H2 from water splitting and

degrade 2-chlorophenol under visible light irradiation. The fabricated samples showed

enhanced photocatalytic activities for both H2 evolution and pollutant degradation as

compared to bare g-C3N4 and SnO2. These enhanced photoactivities are attributed

to the fast charge separation as the excited electrons transfer from g-C3N4 to the

conduction band of SnO2. This enhanced charge separation has been confirmed

by the photoluminescence spectra, steady state surface photovoltage spectroscopic

measurement, and formed hydroxyl radicals. It is believed that this work will provide

a feasible route to synthesize photocatalysts for improved energy production and

environmental purification.
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INTRODUCTION

Exhaustion of hydrocarbon fuels and addition of toxic and hazardous materials from agricultural,
medicinal, dyes, and cosmetic industries to the environment have resulted in increased pressure on
the scientific community to address these problems adequately. A number of methods have been
chalked out such as cracking of hydrocarbons and thermal splitting of water at elevated temperature
to get H2 (future fuel). However, these methods require highly costly and controlled operational
environment and huge labor under normal conditions. On the other hand, different pollutants
removal technologies such as adsorption, coagulation, and electrochemical methods have their own
shortcomings and did not receive much popularity in the purification of the environment (Zhao
et al., 2015; Gautam et al., 2016; Li et al., 2016; Ali et al., 2018b; Wang et al., 2018; Ali S. et al., 2019).
Therefore, modern techniques are urgently required to address energy and environmental issues
properly with the least operational cost and time.

Photocatalysis has opened a brilliant chapter to realize the energy crises and environmental
issues. The photocatalysts have shown their remarkable influence in the production of H2 from
water, production of hydrocarbon fuels from CO2, and removal of pollutants from air and
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wastewater with minimum cost and least working labor (Singh
et al., 2017; Li et al., 2018a,b; Qu et al., 2018; Ullah et al.,
2019; Xu et al., 2019a). Although different photocatalysts such
as TiO2, ZnO, and ZrO2 have been widely utilized, there
are some typical problems such as activeness only under
ultraviolet (UV) light and fast recombination of photogenerated
charges (Raizada et al., 2017; Qi et al., 2018a,b, 2020a). Since
visible light contributes a major portion to electromagnetic
radiations, therefore, photocatalysts active under visible light
are more effective and efficient. Graphitic carbon nitride, g-
C3N4, is a promising polymeric photocatalyst with a band gap
of 2.7 eV. Its conduction band (CB) and valence band (VB)
have characteristic abilities to reduce water and oxidize organic
pollutants, respectively (Qi et al., 2019a,b). Its metal-free nature
is of particular importance as its release to the environment
does not produce harmful threats to the aquatic animals and
plants (Nie et al., 2018; Ran et al., 2018; Fu et al., 2019; Liu
M. et al., 2019). However, low surface area and poor excited
charge separation capability of this photocatalyst is still a marked
question on its utilization for fuel production and organic
oxidation (Dong et al., 2019; Liu Y. et al., 2019; Zhu et al., 2019c;
Qi et al., 2020b). Therefore, these problems need to be tackled in
future generation of semiconductor photocatalysis.

SnO2 is an excellent UV responsive metal oxide photocatalyst
with a band gap of 3.5 eV. Its excellent stability and tunable
optical properties make it a suitable candidate for photocatalysis,
solar cells, and gas sensors. More interestingly, its CB is
situated at a suitable position below the CB of g-C3N4 and
thermodynamically acts as a sink to accept the excited electrons
from g-C3N4 during photocatalysis (Jana and Mondal, 2014; Xu
et al., 2018a; Qi et al., 2019c,d). Therefore, its heterojunctional
combination with g-C3N4 will significantly improve excited
charge separation for enhanced photocatalysis.

In this work, we coupled SnO2 nanoparticles with g-C3N4 to
form different ratio composites and applied for the photocatalytic
production of H2 and 2-chlorophenol (2-CP) degradation under
visible light, keeping in view to excite only g-C3N4 and use
SnO2 as excited charge acceptor. The optimized composite
(6SnO2/g-C3N4) showed much improved photoactivities for H2

production and pollutant degradation compared to bare SnO2

and g-C3N4. These activities are solely attributed to the better
charge separation in the composites.

EXPERIMENTAL PART

Preparation of g-C3N4
Polymeric g-C3N4 was prepared from dicyandiamide. A given
amount of dicyandiamide was taken in crucible and heated at
550◦C in a muffle furnace for 4 h at the rate of 2◦C/min. After
the completion of the heating duration, the cooled sample was
grinded into fine powder and used for further study.

Preparation of SnO2 Nanoparticles
Chloride salt of Sn(IV) was dissolved in water, and the solution
was made basic with the help of NaOH solution under vigorous
stirring. During addition of NaOH, the solution initially became
milky and then became clear with the addition of more NaOH.

Finally, when the pH reached about 12, the solution was taken in
an autoclave and heated at 220◦C for 10 h in oven. The obtained
white powder was purified three times with distilled water, dried
in the oven overnight, and then calcined at 450◦C for 1 h at the
rate of 5◦C/min.

Preparation of SnO2/g-C3N4 Composites
Composites containing different mass percent of SnO2 and
g-C3N4 (SnO2/g-C3N4) were prepared by taking appropriate
amounts of SnO2 and g-C3N4 in water–methanol mixture
containing 1ml of concentrated HNO3. Each mixture was
vigorously stirred under heating at 80◦C till the whole solvent
was evaporated. After that, each mixture was dried in the
oven overnight and then calcined at 450◦C for 1 h. The as
prepared composites were represented by XSnO2/g-C3N4 where
“X” shows the percent amount (2, 4, 6, and 8%) of SnO2 in the
given composite.

Characterization Techniques
The prepared samples were passed through different
characterization techniques to confirm the formation of
heterojunctional composites. The X-ray diffraction (XRD)
technique was used to determine the crystalline structure of the
samples with the help of Bruker D8 Advance diffractometer
using CuKα radiation. The oxidation states of the constituent
elements of the composites were examined by means of X-ray
photoelectron spectroscopy (XPS) employing X-ray from
mono-Al source with the help of a Kratos-Axis Ultra DLD
apparatus. The obtained binding energies were calibrated with
the binding energy of adventitious C-atom which is 284.55 eV.
The microscopic structure was further revealed with the help of
transmission electron microscope (TEM) and high-resolution
TEM (HRTEM) operating at 200 kV. The optical properties
were confirmed with the help of UV diffuse reflectance
spectra, by taking BaSO4 as a reference, measured with a
Shimadzu UV-2550 spectrophotometer. The photoluminescence
(PL) spectrum of each sample was realized with the help of
spectrofluorophotometer (Perkin-Elmer LS55) at a 390-nm
excitation wavelength. The steady state surface photovoltage
spectroscopic (SS-SPS) measurement of each sample was carried
in a controlled atmosphere employing a homemade equipment
possessing a lock-in amplifier (SR830) synchronized with a light
chopper (SR540). Each sample was first thoroughly grinded and
then kept between two indium tin oxide (ITO) glass electrodes
in an atmosphere-controlled sealed container. Radiations from a
500-W Xe lamp (CHF XQ500W, Global Xe lamp power) were
passed through a double-prism monochromator (SBP300) to get
a monochromatic light.

Evaluation of Photoactivity for Water
Splitting
Water splitting photocatalysis was carried out with the help of
an online H2 production unit (Perfectlight, Beijing, Lab Solar
III). About 0.1 g photocatalyst was taken in a glass-made reaction
cell, and 100-ml aqueous solution of methanol (20% V/V) was
added. The apparatus was first deaerated with the help of a
vacuum pump to remove any traces of O2 and CO2 dissolved
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FIGURE 1 | X-ray diffraction (XRD) pattern (A) and diffuse reflectance spectroscopy (DRS) (B) of g-C3N4, SnO2, and XSnO2/g-C3N4. Transmission electron

microscope (TEM) image (C) and high-resolution TEM (HRTEM) images (D) of 6SnO2/g-C3N4.

in aqueous solution. The mixture was irradiated under visible
light (wavelength > 420 nm) coming from a 300-W Xe lamp
under vigorous stirring. The produced gases were analyzed after
each hour with the help of a gas chromatograph (7,900, TCD,
molecular sieve 5 Å, N2 carrier, Tec comp.).

Evaluation of Photoactivity for Pollutant
Degradation
The photoactivities were further studied by selecting 2-CP as
a pollutant. About 0.2 g of powder sample was mixed with
50ml of aqueous solution (25 mg/L) of 2-CP and exposed to
a 150-W (GYZ220) Xe lamp under visible light (wavelength >

420 nm). Before being exposed to light, each sample was first
kept in complete dark for 30min to attain adsorption–desorption
equilibrium. The concentration of the pollutant was checked after
each hour with the help of a Shimadzu UV-2550 spectrometer.

Evaluation of Hydroxyl Radicals (·OH)
About 0.05 g powder sample was mixed with 50ml of aqueous
solution of coumarin (0.001M) and exposed to a 150-W
(GYZ220) Xe lamp under visible light (wavelength > 420 nm).
Before exposure to light, each sample was first kept in complete
dark for 30min to attain adsorption–desorption equilibrium.
After each hour, the amount of formed 7-hydroxycoumarin was

checked at 390-/460-nm excitation/emission wavelengths with
the help of a spectrofluorophotometer (Perkin-Elmer LS55).

RESULT AND DISCUSSION

Structural Characterization
The crystal structure study of the pure g-C3N4 shows two
characteristic diffraction peaks at 13.04 and 27.31◦ as shown in
Figure 1A. The former peak is due to the interplanner stacking of
the aromatic rings in conjugation while the later peak is related to
the interlayer structural units (Liu et al., 2017; Guan et al., 2018;
Xu et al., 2018b, 2019b). Similarly, pure SnO2 shows diffraction
peaks at 26.2, 33.8, 37.3, 51.2, 57.2, 61.1, 63.81, 64.77, 71.38,
and 78.27◦, which can be, respectively, indexed to (110), (101),
(200), (220), (002), (310), (112), (301), (202), and (321) planes of
tetragonal SnO2 nanoparticles (Mahjouri et al., 2020; Shokrzadeh
et al., 2020). Interestingly, all the composite samples show the
two characteristic peaks of g-C3N4 at 13.04 and 27.31◦ and SnO2

peaks at 33.8, 37.3, and 51.2◦. However, the diffraction peak at
13.04◦ has been decreased progressively as the amount of SnO2 is
increased, indicating that SnO2 nanoparticles are well packed in
the nanosheets of g-C3N4.

The UV-vis diffused reflectance spectra of the samples are
shown in Figure 1B. As can be seen, g-C3N4 and SnO2,
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FIGURE 2 | X-ray photoelectron spectra of C1s (A), N1s (B), Sn 3d (C), and O1s (D) of g-C3N4 and SnO2.

respectively, show optical thresholds at 475 and 360 nm,
corresponding to band gaps of 2.61 and 3.45 eV, respectively.
Although the composite samples show the same optical
thresholds at 475 and 360 nm, their light absorption has been
slightly decreased as SnO2 is a wide-band-gap semiconductor
and its coupling with g-C3N4 slightly decreases light absorption
(Zhang et al., 2018; Zada et al., 2019a; Zhu et al., 2019a,b).

The TEM image of composite shows uniform distribution of
small SnO2 nanoparticles of about 10-nm size on the surface of
g-C3N4 as shown in Figure 1C. The HRTEM image shows the
lattice fringes of 0.33-nm interplanar distance corresponding to
the (110) plane of SnO2 (Figure 1D). This shows that both g-
C3N4 and SnO2 are in close contact with each other to intensify
the charge separation for better photoactivities.

The oxidation states of different elements in the samples
were determined using XPS measurements, and the results are
shown in Figure 2. The obtained binding energies were calibrated
with the binding energy of the adventitious carbon atom with
a binding energy value of 284.55 eV. It is obvious that C1s in
pure g-C3N4 shows two XPS peaks at binding energies of 284.7
and 288.2 eV (Figure 2A). These peaks are attributed to the sp2

hybridized C-atoms, respectively, bonded with N-atom of the
aromatic ring and NH2 group linking different aromatic rings.
Similarly, the XPS binding energies of N1s in pure g-C3N4 are
composed of two parts at 398.4 and 400.6 eV and are, respectively,
contributed by sec. and ter. N-atoms (Figure 2B) (Raziq et al.,

2016; Li Q. et al., 2019). The XPS peaks of Sn in pure SnO2

are deconvoluted into two parts at 486.82 and 495.26 eV, which
are, respectively, contributed by Sn3d5/2 and Sn3d3/2 and show
that Sn is present in +4 oxidation state in the nanocomposite
(Figure 2C) (Li H. et al., 2019). When g-C3N4 nanosheets are
coupled with SnO2 nanoparticles, the C1s and N1s peaks are
slightly shifted toward the low-energy side while those of Sn
are shifted toward the high-energy side. The binding energies
of O1s in Figure 2D are contributed at 529.6 and 531.1 eV,
which are, respectively, contributed by the lattice O-atom and
adsorbed oxygen molecules. The redistribution of charge density
in both components of the nanocomposite indicates that both g-
C3N4 and SnO2 are present in close contact with each other for
improved charge separation.

Photocatalytic Activity
The photoactivities of composites were first evaluated by splitting
water under visible light (wavelength > 420 nm) in the presence
of methyl alcohol. As shown in the Figure 3A, the H2 production
activity of pure SnO2 is negligible under visible light irradiation.
However, pure g-C3N4 produces about 10 µmol of H2 in
1 h under the stipulated conditions. Interestingly, these H2

photoactivities are significantly enhanced when both g-C3N4

and SnO2 are coupled to form heterojunctional composites.
Further, photoactivities are increased along with the increase in
the amount of SnO2 nanoparticles and the highest activities are
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FIGURE 3 | Photoactivities for H2 evolution (A), 2-CP degradation (B) of pure g-C3N4, and XSnO2/g-C3N4 and stability test of 6SnO2/g-C3N4 (C).

contributed by 6SnO2/g-C3N4 sample, which are 132 µmol/h.
However, further increase in the amount of SnO2 decreases
H2 production as SnO2 is a wide-band-gap semiconductor and
it covers most surface of the g-C3N4 to prevent absorption
of visible-light photons. These enhanced H2 activities are
solely attributed to the improved charge separation in the
composites by transferring excited electrons from g-C3N4 to
SnO2 for the reduction of water. We further extended the
photoactivities by measuring the degradation of 2-CP under
visible-light (wavelength > 420 nm) irradiation. Again, the
degradation performance of pure SnO2 is very low due to
its high-band-gap nature. The composite materials showed
much improved photoactivities, and the optimized 6SnO2/g-
C3N4 sample showed 42% degradation activities under the
given conditions as shown in Figure 3B. We also carried out
the stability test of the optimized sample for five consecutive
cycles, each cycle composed of a 5-h run. It is obvious from
Figure 3C that there is no detectable decrease in the H2

production activities, indicating that the optimized sample is
very stable.

Charge Separation
The improved photoactivities of the composites compared to
pure g-C3N4 are attributed to the extended charge separation.
In order to determine it, we carried out PL spectra, keeping
excitation λ at 390 nm. It is clear from Figure 4A that g-C3N4

gives intense peak at 470 nm, indicating poor charge separation.
However, the intensities of the composites are progressively
decreased as the amount of SnO2 nanoparticles is increased, and
the optimized sample shows relatively low PL peak, indicating
excellent charge separation in it (Zhang et al., 2015; Ali et al.,
2016; Lu et al., 2018; Ali N. et al., 2019; Ali S. et al., 2019). The
relatively low intensities of PL peaks indicate enhanced charge
separation and are responsible for improved photoactivities.

We further extended the charge separation experiments
by measuring the atmosphere-controlled steady state surface
photovoltage spectra (SS-SPS), and the results are shown in
Figure 4B. As evident, g-C3N4 shows very low SPS intensity.
However, the SPS peak intensities are much improved when
both g-C3N4 and SnO2 are coupled and the optimized 6SnO2/g-
C3N4 sample shows the highest peak intensity. Since high is the
intensity of the SPS peak, high is the charge separation (Zada
et al., 2018, 2019a,b); therefore, we can say that the composites
impart enhanced charge separation and contributing to the
improved photoactivities.

We also measured the hydroxyl radical (·OH) activities
of the fabricated samples by doing coumarin fluorescent
experiments under visible-light irradiation. Since ·OH is the
major contributor to charge separation during photocatalysis and
react with coumarin to form 7-hydroxycoumarin; therefore, the
higher the intensity of coumarin fluorescent peak, the higher
is the charge separation. As can be seen from Figure 4C, pure
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FIGURE 4 | Photoluminescence spectra (A), SS-SPS (B), and coumarin fluorescent spectra (C) of pure g-C3N4 and XSnO2/g-C3N4.

FIGURE 5 | Schematic representation of charge separation, H2 production,

and pollutant degradation by 6SnO2/g-C3N4.

g-C3N4 gives very low peak, which shows its inherited low charge
separation. However, the ·OH radical activities are considerably
improved when both g-C3N4 and SnO2 are coupled, indicating

improved charge separation and hence extended photoactivities
(Ali et al., 2018a; Yasmeen et al., 2019a).

DISCUSSION

The improved charge separation in the prepared composite
results in the enhanced H2 production and 2-CP degradation.
This enhanced charge separation has been schematically shown
in Figure 5. The band gap of g-C3N4 is about 2.7 eV and
absorbs visible-light photons (Raziq et al., 2015, 2017). Its CB
present at −1.3 eV is most suitable for H2 production and
superoxide generation which require reduction potential of 0.00
and −0.33 eV, respectively. Its VB is present at 1.4 eV (Yasmeen
et al., 2019b). On the other side, the band gap of SnO2 is 3.5 eV,
and its CB is present below the CB of g-C3N4 (Zada et al.,
2016). Under visible-light irradiation, only g-C3N4 is excited, and
electrons jumped to its CB, leaving positive holes in the VB. Since
the excited electrons have a very short lifetime; therefore, they
jumped to the CB of SnO2 to achieve some stability for a while.
Here these electrons reduce water into H2 while the holes in VB
of g-C3N4 are solely left to carryout oxidation of alcohol. In case
of 2-CP degradation, these positive holes either directly oxidize
pollutants or undergo the formation ofmore reactive species such
as hydroxyl-free radicals, which then finally degrade the target
pollutant into simple CO2 and water (Zada et al., 2018).
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CONCLUSION

In order to overcome energy crises and environmental pollution,
here, we synthesized g-C3N4 nanosheets and coupled them
with SnO2 nanoparticles. The optimized composite of 6SnO2/g-
C3N4 produced about 132 µmol of H2 from water in 1 h and
degraded 42% 2-CP pollutant under visible-light irradiation as
compared to the photoactivities of bare g-C3N4 and SnO2.
These enhanced photoactivities are attributed to the better
charge separation as the excited electrons thermodynamically
transfer from g-C3N4 to SnO2 as has been confirmed from
photoluminescence spectra, steady state surface photovoltage
spectroscopic measurement, and formed hydroxyl radicals. It
is believed that this work would provide a feasible route to
synthesize photocatalysts for improved energy production and
environmental purification.
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