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Editorial on the Research Topic

Key Electrochemical Energy Reactions Catalyzed by Nanomaterials

The application for (photo)electrochemical technologies is set to expand rapidly in the recent
several decades as demand grows in the environment protection, clean energy storage, and
supply. Several unique characteristics of functionalized nanostructured materials or transition
metal-nitrogen-carbon complex make them ideal catalyst candidates for combining high energy
and power at the material level. These advantages include: (i) increased photo/electrochemically
active surface areas for charge transfer, (ii) reduction of photo/electronic and ionic transport
resistance at smaller diffusion length scales, and (iii) the ability to incorporate high-energymaterials
into a nanostructured framework capable of sustaining high powers (Lee et al., 2011; Seh et al., 2017;
Sagar et al., 2018).

Recent advancement of nanostructured materials or transition metal-nitrogen-carbon complex
has improved (photo)electrochemical performance significantly, especially in term of catalysis,
including but not limited to oxygen reduction reaction (ORR), oxygen evolution reaction (OER),
hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide
reduction reaction (CRR). Among them, the noble metal-based catalysts exhibit attractive catalytic
performance, but their rare nature hinders large-scale application. In recent years, a large variety of
non-noble-metal or non-metal-based alternative catalysts using abundant and low-cost 3d metals
(e.g., Fe, Co) has been studied with increasing activity and stability (Yan et al., 2019).

As future applications, besides considering the low cost, a major challenge will be to reduce and
bridge the performance gap by combining high specific surface active sites, high photo/electronic
conductivity and good mechanical and chemical stability. In this Research Topic, we present a
highlighted collection of original research articles that show how transition metal-nitrogen-carbon
complex and nanomaterials such as 2D transition metal nanofilms, hollow metal microspheres,
and graphene offer opportunities to develop potentially novel material structures that can reach
these goals.

Recently, it has been indicated that developing cheap, highly efficient, and stable bifunctional
electrocatalysts for both hydrogen and oxygen evolution reactions (HER and OER) has garnered
a great interest with studies showing their encouraging large-scale application of water splitting
technology. Zhang et al. reported novel CoS2 nanoparticles supported on nitrogen-doped graphene
(CoS2@N-GN) by a one-step hydrothermal method; the resultant hybrid exhibited remarkable
overall electrocatalytic activity toward OER and HER in the alkaline electrolyte with enhanced
long-term stability. Moreover, attributed to the high intrinsic activity of CoS2 nanocrystals, efficient
electron transfer provided by N-doped graphene and the synergetic coupling interaction between
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two components, the CoS2@N-GN enabled the assembled
water splitting device with low cell voltage, high efficiency,
and prolonged operational life, which would provide insight
into the rational design of transition metal chalcogenides for
highly efficient and durable hydrogen and oxygen-involved
electrocatalysis. On the other hand, implanting noble metal onto
transition metal-nanofilms as one of the significant strategies
has been shown to greatly control and increase the catalytic
activity toward the ORR performance. More specifically, Pd-
based electrocatalysts show excellent stability in alkaline solution
owing to a less corrosive environment, while Co-decorated
catalysts have the advantages of their low cost and promising
applications in oxygen electrode (Cheng et al., 2017a,b). As a
demonstration, Pd nanoparticles implanted onto Co nanofilms
(Pdx/Co-nanofilms/C) were synthesized on an immiscible ionic
liquid (IL)/water interface by An et al. Due to a marked
distortion of crystal lattice and surface roughness showing their
larger catalytic areas, the Pdx/Co-nanofilms/C catalysts exhibited
enhanced ORR catalytic activity in both acid and alkaline media.
In conjunction, the designed catalysts exhibited superior stability
in alkaline media after using a proper heat-treatment method.
Besides, with the advantages of alkaline fuel cells increasingly
prominent due to the emergence, development and application
of anion exchange membranes, ORR is also an important part
of the alkaline fuel cell (Lefevre et al., 2009; Wang et al., 2012;
Shen et al., 2018). Among the non-precious metal catalysts, the
transition metal-nitrogen-carbon complex (M-N-C) as the most
attractive candidate, has achieved landmark achievements and
might be commercially employed in fuel cells in the near future
(Artyushkova et al., 2015; Kim et al., 2017; Li et al., 2017). Thus,
Gu et al. showed a nitrogen-rich ligand PIPhen as a precursor
that was reacted with Fe2+ to form the coordination polymer on
the carbon powder (Fe-PIPhen/C). The prepared Fe-PIPhen/C
catalyst possessed high ORR activity, only slightly lower than that
of the Pt/C catalyst. Without employing the pyrolysis process, the
Fe-PIPhen/C catalyst has advantages in low cost and controllable
structures, being promising alternatives to the Pt/C catalyst in the
fuel cell ORR process.

Although nanostructured materials with a variety of useful
functionalities are widely applied in electrocatalysis and energy
storage (Guo et al., 2017), some environmental-friendly magnetic
materials as important photocatalysts are also potential for a wide
range of practical applications (Ma et al., 2018), such as hematite
(α-Fe2O3). Since self-assembled hematite with highly specific
hollow nano/micro-structures and unique properties have
emerged as being of great interest to material scientists, porous
self-assembled α-Fe2O3 hollow microspheres were successfully
synthesized by Yin et al. via a simple and feasible IL-assisted
solvothermal method. In this work, the IL [C4Mim]BF4 was used

not only as solvents, but also as templates for the formation
of porous hollow spheres with improved properties (Endres
et al., 2003; Cooper et al., 2004; Liu et al., 2006). Attributed
to the self-assembled structure and higher surface area, the
as-synthesized α-Fe2O3 hollow spheres exhibited excellent
photocatalytic activity in Rhodamine B (RhB) photodegradation.
Additionally, the main formation mechanism of the porous
hollow structures has been proved to be a nucleation–aggregation
evacuation; and the as-prepared photocatalysts can be recycled
easily due to the ferromagnetic properties. As knowing that
the high recombination rates of photogenerated electron-holes
inhibit the catalytic activity of semiconductor photocatalyst, Wu
et al. introduced a simple hydrothermal method to synthesize
the heterojunctions of flower-like g-C3N4/BiOBr composites as
photocatalysts. BiOBr-g-C3N4 (4:1) showed the most excellent
properties of photocatalytic degradation bisphenol (BPA) under
the visible light due to its narrower bandgap than that of pure
BiOBr. Moreover, the separation of photogenerated carriers can
be facilitated by the heterostructure between BiOBr and g-C3N4.

We believe that the Key Electrochemical Energy Reactions
Catalyzed by Nanomaterials Research Topic exemplifies
various nanomaterials research development in the application
of (photo)electrocatalysis and provides research strategies
on how to improve these catalytic performances. The
(photo)electrocatalysis plays a central role in the environment,
clean energy conversion, enabling sustainable processes for
future technologies (Seh et al., 2017). Thus, the Research
Topic aims to know the research frontier of Energy
Reactions Catalysts, with faster and more efficient methods
to capture this understanding from these more advanced
researches, which can further guide the community to seek for
high-performance catalysts.
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