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The lithium-sulfur (Li-S) battery has received a lot of attention because it is characterized

by high theoretical energy density (2,600 Wh/kg) and low cost. Though many works

on the “shuttle effect” of polysulfide have been investigated, lithium metal anode is a

more challenging problem, which leads to a short life, low coulombic efficiency, and

safety issues related to dendrites. As a result, the amelioration of lithium metal anode

is an important means to improve the performance of lithium sulfur battery. In this paper,

improvement methods on lithiummetal anode for lithium sulfur batteries, including adding

electrolyte additives, using solid, and/or gel polymer electrolyte, modifying separators,

applying a protective coating, and providing host materials for lithium deposition,

are mainly reviewed. In addition, some challenging problems, and further promising

directions are also pointed out for future research and development of lithium metal for

Li-S batteries.
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INTRODUCTION

As a kind of lithium metal secondary battery, lithium-sulfur battery is very likely to be another
energy storage device for its high theoretical energy density (2,600 Wh kg−1) and specific capacity
(1,675 mAh g−1) (Lu et al., 2013; Tao T. et al., 2017; Li J. H. et al., 2019). Meanwhile, using
sulfur as cathodic material makes it cheaper and more environmentally friendly (Yin et al., 2013).
However, the shuttle effect and uneven deposition of lithium limit the practical application of
lithium-sulfur batteries (Li et al., 2014; Manthiram et al., 2014). Other problems such as poor
electrical conductivity and severe volume change of sulfur also limit the performance of batteries
to a certain extent (Evers and Nazar, 2013). At present, the improvement of lithium sulfur battery
mainly focuses on the cathode, while much less research has been done on lithium metal anodes.

In Li-S batteries, the metallic lithium is oxidized to produce lithium ion firstly. Unfortunately,
the stripping of lithium is uneven commonly, which affects the uniform deposition of lithium in
the next step. The uneven and porous lithium deposition layer leads to a large change in its volume,
fracturing the fragile solid electrolyte interface (SEI) and then consuming the inner fresh lithium to
form a new SEI after reacting with the electrolyte. Polysulfides formed during the charging process
transfer to the Li metal anode via the electrolyte, react with lithium irreversibly. At the same time,
the uneven deposition of lithium leads to the enrichment of lithium ions in the tip region, and
aggravating the growth of lithium dendrites. When the dendrite grows to a certain extent, the
electrical contact with the substrate will be broken to produce the unreactive “dead” lithium, which
increases the internal resistance and attenuates the capacity of the battery. To make matters worse,
dendrites can even pierce through separator, posing a safety hazard. These challenges lead to the
drawbacks of Li-S batteries.
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So, the improvement of lithium metal anode could be
classified into two aspects: protecting active lithium from side
reactions and guiding uniform deposition of lithium. Since
gain/loss of one electron especially that in 2s orbit should be
very fast, the solutions to Li metal are not fully addressed, and
there are few reviews on Li metal anode (Cheng et al., 2017; Yan
et al., 2019). As a result, here we summarized some promising
methods: (1) Adding additives to the electrolyte. (2) Using solid
electrolytes or gel polymer electrolytes (Marom et al., 2011).
(3) Modifying the separators. (4) Coating protective layers on
the surface of lithium directly. (5) Providing host materials for
lithium deposition. We summarized the above five directions
in the recent 5 years; challenges and further directions are also
pointed out.

ADDING ADDITIVES TO THE
ELECTROLYTE

Organic liquid electrolyte, especially ether-based electrolyte, is
commonly used in lithium-sulfur batteries for its high ionic
conductivity, good interface contact with electrodes, and less
side reaction with lithium. However, issues originating from the
dissolution of intermediate polysulfides make it necessary to add
suitable additives to protect the lithium metal anode. So far, the
additives include nitrates, iodides, sulfur-containing compounds,
and various organic compounds, and their functions are listed
in Table S1.

It is well-known that LiNO3 has the ability to protect the
lithium metal anode effectively by participating in forming
a robust SEI layer in situ on the metal surface (Liang
et al., 2011). The composition of SEI was investigated by
Operando X-ray absorption spectroscopy (XAS); results showed
that during the initial discharge process, LiNO3 reacted with
polysulfides to form Li2SO4, Li2SO3, and LiNO2, which
composed a stable SEI on the surface of anode to hamper
the side reactions between polysulfides and lithium (Zhang
et al., 2018). Other types of nitrates such as La(NO3)3
and KNO3 were also studied in particular. Both the cation
and nitrate can participate in improving the stability of
SEI on anode (Figure 1A) (Liu S. et al., 2016), and a Li-
S full battery using 1M LiTFSI (DME:DOL = 1:1 v:v)
electrolyte added with 0.1M KNO3 exhibited an average
discharging capacity of 687 mAh/g within 100 cycles, which
was higher than the one with 0.1M LiNO3 (average 637
mAh/g) (Jia et al., 2016).

Iodide, such as LiI and InI3, had also acquired outstanding
breakthrough (Eo et al., 2009; Liu et al., 2017). Quantum
chemistry calculations showed that the I· radicals reacted
with DME to form comb-branched polyether in solution
(Figure 1B), which suppress the dissolution of polysulfides and
then protect the Li metal anode simultaneously (Wu et al.,
2015a). Poly(sulfur-random-triallylamine) (PST) (Figure 1C) (Li
G. et al., 2017), SOCl2 (Li S. et al., 2019), 1,1,2,2-tetrafluoroethyl-
2,2,3,3-tetrafluoropropyl ether (TTE) (Qian et al., 2018), and
magnesium oxide nanoparticles (Ponraj et al., 2016) were also
proven to be effectual.

In order to reduce the polysulfides in electrolyte during the
cycling of Li-S battery, additives such as dithiothreitol (DTT),
which can slice the S–S bond to accelerate the conversion from
polysulfides to Li2S2/LiS2 (Liu M. et al., 2019), biphenyl-4,4′-
dithiol (BPD) (Wu H. L. et al., 2017) and carbon disulfide (CS2)
(Gu et al., 2016), which could react with polysulfides to reduce
the chance of contact with the anode, were developed.

USING OTHER TYPES OF ELECTROLYTE

Ionic liquid electrolyte is an electrolyte composed entirely of
anion and cation, which determines its high safety, excellent
stability, and strong solubility to lithium salt (Ghandi, 2014).
Moreover, the weak solvation of ionic liquids can reduce
the solubility of polysulfides. However, ionic liquids usually
have high viscosity, which leads to low ionic conductivity.
Adding an appropriate amount of solvents such as DME
and DOL to achieve a balance between ionic conductivity
and solubility of polysulfides is a suitable choice (Yang
et al., 2017). For example, the room temperature ionic
conductivity of N-methoxyethyl-N-methylpyrrolidinium bis
(trifluoromethanesulfonyl)-imide (P1,2O1TFSI) with 30 wt.%
TEGDME as the diluent was increased to 4.303mS cm−1, the
Li-S full battery using the electrolyte showed an initial discharge
capacity of 1,264 and 911.4 mAh g−1 was retained after 50 cycles
(Wu et al., 2015b).

Solid electrolyte is also an important direction to improve
lithium metal anode by blocking the polysulfides physically.
Generally, it can be classified into inorganic solid electrolyte
and polymer solid electrolyte. Inorganic solid electrolytes
are mainly composed of sulfides, oxides, and phosphates.
Examples of sulfides are Li6PS5Cl (Figure S1A), Li3PS4, and
Li10GeP2S12 (Yamada et al., 2015; Han et al., 2016; Yao
et al., 2017). Oxides include Li3.3La0.56TiO3, Li7La3Zr2O12,
and Li14ZnGe4O16 (Zheng et al., 2014; Yu et al., 2015).
Li1.3Al0.3Ge1.7(PO4)3, Li1.3Al0.3Ti1.7(PO4)3, and Li2P5O6N5

(Monchak et al., 2016; Meesala et al., 2017) are typical
representatives of phosphates. Polymer solid electrolytes are
based on polymer matrix such as PEO, PMMA, PVDF, and PAN
without liquid phase. It is characterized by chemical stability,
mechanical persistence (durability), and flexibility. However, the
low room temperature ionic conductivity plagues the direct
application of them (Lin et al., 2016a), and methods such as
doping (Monchak et al., 2016), blending, and cross-linking are
applied to improve the performance of solid electrolyte. Among
them, adding fillers may be the most effective route. Fillers such
as LiN3 (Eshetu et al., 2017), Li7La3Zr2O12 (LLZO) (Figure S1B)
(Tao X. et al., 2017), MoS2 (Xu et al., 2017), food grade starch
(Lin Y. et al., 2016), and halloysite (Lin et al., 2017) were proven
to be effectual. Besides, constructing multilayer solid electrolyte
by coupling a dense layer that provides supporting function and
hosts for electrolytes with a thin layer to block the polysulfides
and inhibit the growth of dendrites (Figure S1C) (Fu et al., 2017)
was another promising solution.

As an intermediate of liquid electrolyte and all-solid
electrolyte, the gel-polymer electrolyte (GPE) therefore has
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FIGURE 1 | (A) Schematic of passivation layer composition when adding La(NO3)3 additive (Liu S. et al., 2016) Copyright 2016 American Chemical Society.

(B) Quantum chemistry calculations: formation steps of comb-branched polyether protective film (Wu et al., 2015a). Copyright 2015 John Wiley and Sons.

(C) Schematic illustration of the SEI layer composition (Li G. et al., 2017). Copyright 2017 Springer Nature.

relatively high ionic conductivity and the ability to inhibit
polysulfide shuttle (Figure S1D) (Choi et al., 2017). But this GPE
is not perfect since its mechanical properties are poor and the
ionic conductivity still has room for improvement. The main
improvement methods are adding nano-fillers, compounding
with plasticizers, and so on (Figure S1E) (Cheng et al., 2018).
Specific examples of nano-fillers include ZnO, MgO, Al2O3,
polyethylene, and polystyrene (Kim, 2017; Wu N. et al., 2017;
Tripathi and Kumar, 2018).

MODIFICATION ON SEPARATORS

Coating functional layers that can block polysulfides and
modify lithium metal anode on the surface of common
separator is also an important way, the actions of which are
summarized in Table S2. A layer of porous carbon material
on the surface of the separator not only can immobilize
polysulfides but also can be used as an upper current collector
to improve the utilization rate of active materials. Hence,
various carbon materials are used to modified the separator,

such as mesoporous carbon (Balach et al., 2015), porous
graphene (Zhai et al., 2017), super-P (Zhu et al., 2016),
microporous carbon nanofiber (Figure S2A) (Chung et al.,
2015), and acetylene black (Figure S2B) (Yang et al., 2019). A
multifunctional separator integrated with one or more layers
is also a popular improvement direction. Utilizing the synergy
effect of carbon and BN on the two sides of a membrane,
the performance of the Li-S battery using 1M LiTFSI in
DIOX and DME electrolyte (v:v = 1:1) had been significantly
improved; there was still 702 mAh g−1 specific capacity at
a rate of 4C (Figure S2C) (Kim et al., 2017). On the same
principle, a modified separator with compounds of Ketjen
Black and MnO coated on Celgard 2400 membrane was
developed (Qian et al., 2016).

MXenes are a kind of ultrathin two-dimensional materials
that have very high conductivity and surface homogeneity
(Figure S2D) (Anasori et al., 2017). By coating Ti3C2TX

(T is -O, -OH, or -F) on commercial Celgard 2400 separator, a
superior composite membrane can be obtained (Figure S2E). At
a rate of 0.5C, the capacity of the Li-S battery after 500 cycles was
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FIGURE 2 | (A) Schematic of the preparation process of a layered Li-rGO composite film (Lin et al., 2016b). Copyright 2016 Springer Nature. (B) Composite Li anode

based on electrospun polyimide PI coated with a layer of lithiophilic ZnO (Liu Z. C. et al., 2019). (C) Preparation of a 3D porous copper (Yang et al., 2015). (D) The

surface of Li anode modified with copper mesh exhibits uniform Li deposition (Li Q. et al., 2017). Copyright 2017 John Wiley and Sons.

550 mAh g−1, and the capacity attenuation per cycle was only
0.063% in an electrolyte of 1M LiTFSI in DME and DOL (v:v =
1:1) (Song et al., 2016).

COATING ON THE SURFACE OF LITHIUM

Applying a protective layer directly on the surface of the Li
anode is also a facile and effective means. The main method is
coating some protective layers such as carbon-based materials,
polymer, alloy, and ceramic layer, whose actions are summarized
in Table S3.

Without question, the protective layer should have sufficient
lithium ionic conductivity, chemical inertness, and superior
stability. Various carbon materials such as carbon nanofiber

(CNF) (Figure S3A) (Zhang A. Y. et al., 2016), nitrogen-doped
few-layer graphene (N-FLG) sheets (Figures S3B, S4A) (Kang

et al., 2016), artificial graphite particles (Sun et al., 2016), multi-
walled carbon nanotube (Deng et al., 2019), and ladderlike

carbon nanoarrays (Figure S4B) (Liu L. et al., 2018) were used to

homogenize the current density and promote the even deposition
of lithium.

Various polymers also provide a wide range of options
for surface modification because of the unique characters
(Liu Z. C. et al., 2019). For example, Li-S battery using a

lithium metal anode modified with a soft, viscous polymer
layer showed excellent cycling stability (Figure S3C), with 737
mAh g−1 specific capacity after 300 cycles at 0.2C when using
an electrolyte of 0.6M LiTFSI in DOL/DME (v:v, 1/1) with
0.4M LiNO3 as an additive (Zheng et al., 2016). This novel
protective layer owned characteristic of slow flow, so it can
homogenize the flow of lithium ions and then inhibit dendrite
growth (Figure S4C); another advantage is that the process for
modifying a polymer protective layer is relatively simple. A 4-
µm-thick β-PVDF coating on lithium metal anode made the
coulombic efficiency of Cu-Li cells remain 98% in 200 cycles
at 1 mA/cm2 when using an electrolyte of 1M LiTFSI in DOL
and DME (v:v = 1:1) with 3 wt.% LiNO3 additive (Figure S4D)
(Luo et al., 2018).

PROVIDING HOST MATERIALS FOR
LITHIUM DEPOSITION

Layered or three-dimensional frame structure compound has
been considered as an effective route to avoid the issues such
as the uneven lithium deposition, severe volume change, and
safety risks. The frame structure materials include carbon-based
materials, polymer materials, metallic materials, and so on, and
their actions are summarized in Table S4.
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Reduced graphene oxide (Figure 2A and Figure S5A) (Lin
et al., 2016b) and three-dimensional non-stacked framework
graphene (Figure S5B) (Zhang R. et al., 2016) are good
illustrations of carbon-based materials. Adding lithiophilic
component such as ZnO could further improve the lithiophilicity
and reduce the lithium nucleation overpotential (Figure S5C)
(Liang et al., 2016).

Highly cross-linked polymeric substrates have abundant pore
channels where the Li+ can transport rapidly. By electrospinning
technique, a polyimide (PI) mesh with a lithiophilic ZnO shell
was obtained (Figure 2B), thenmoltenmetal lithiumwas infused
into the matrix to prepare a composite Li anode (Figure S5D)
(Liu Y. et al., 2016). Copper is well-suited as an anode current
collector for its high conductivity and stability at low potential.
Hence, numerous studies were focused on 3D Cu; notable
examples of it are 3D Cu/Li (Figure 2C and Figure S5F) (Yang
et al., 2015) and copper mesh /Li composite anode (Figure 2D
and Figure S5E) (Li Q. et al., 2017).

In addition, lithium alloy is also a simple and scalable way
to improve the Li-S battery. For example, a Li-Mg (mass ratio:
18.6:81.4) alloy anode was developed. The Mg matrix provided
host for the lithium to acquire an even deposition. Also, Mg
element participated in the formation of a robust SEI (Kong
et al., 2019). Other types of lithium alloys such as Li/Sn (Qiu
et al., 2019) and Li/Al (Zhong et al., 2018) had also been proven
effective though more studies are still needed.

SUMMARY

Due to various methods, the performance of lithium-sulfur
battery has been greatly improved. However, batteries tested
in the experiment are all coin cells, the relatively low current
density and the excess amount of lithium underestimate
the problems of lithium metal anode to some extent. It
is necessary to test the electrochemical performance under
the conditions of high current density (>3.0 mA/cm2) (Yan
et al., 2019) and matching the amount of lithium with
the cathodic active materials, so as to meet the needs of
practical application.

In addition, problems in lithium-sulfur batteries are
various and correlated. Meanwhile, superior comprehensive
performance rather than single performance improvement

is more urgently needed. Considering that the gel polymer
electrolyte has good compatibility with the electrodes, which is
favorable for the uniform deposition and stripping of lithium
physically. At the same time, the migration of polysulfides can
also be suppressed to some extent. More importantly, the gel
polymer electrolyte is simple in manufacturing process and low
in cost, which is advantageous for mass production. Therefore,
we believe that gel electrolyte, which improved by adding fillers,
blending, cross-linking and so on, is a very promising direction.

Lastly, the use of more advanced technology to study the
mechanism of lithium metal anodes in lithium-sulfur batteries
is also of great help in guiding the improvement strategies. All in
all, the understanding and researches on the lithium metal anode
in lithium-sulfur batteries are still less, and in order to solve the
practical application of lithium-sulfur batteries, more work needs
to be done.
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