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Au-catalyzed propargyl ester reactions have been investigated by a comprehensive
density functional theory (DFT) study. Our calculations explain the experimental observed
chemoselectivity of Au-catalyzed propargyl ester reactions very well by considering all
possible pathways both in the absence and presence of 1,2,3-triazole (TA). The “X-factor”
of TA is disclosed to have triple effects on this reaction. First of all, it can stabilize and
prevent rapid decomposition of the Au catalyst. Secondly, the existence of TA promotes
the nucleophilic attack and alters the chemoselectivity of this reaction. Moreover, TA acts
as a “relay” to promote the proton transfer.
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INTRODUCTION

Homogeneous gold catalysis has been proven a powerful tool with its extensive applications in
modern organic synthesis over the past decades (Hashmi and Hutchings, 2006; Gorin and Toste,
2007; Hashmi, 2007, 2010, 2014; Corma et al., 2011; Rudolph and Hashmi, 2012; Obradors and
Echavarren, 2014a,b; Hopkinson et al., 2016). Of particular importance is the selective activation
of alkynes, allenes, and alkenes by homogeneous gold catalysis to produce chemically interesting
intermediates (Hashmi, 2003; Jiménez-Núñez and Echavarren, 2008; Abu Sohel and Liu, 2009;
Krause and Winter, 2011; Ohno, 2013; Zhang, 2014; Dorel and Echavarren, 2015). It is currently
accepted that the cationic gold(I) acts as a soft π-Lewis acid and the carbon-carbon multiple
bond is activated via a complex of the alkynes/allenes/alkenes-coordinated Au+ (Hashmi, 2003;
Fürstner and Davies, 2007). The active catalysts employed in the activation of alkynes are generally
in the form of [L-Au]+ (Fürstner and Davies, 2007; Hashmi, 2007; Shapiro and Toste, 2008).
Various experiments have demonstrated that the ligands play a crucial role in the reactivity of
the cationic gold catalysis (Gorin et al., 2008; Wang et al., 2012a; Ding et al., 2016; Ebule et al.,
2016). Among the gold catalysts reported, the phosphine ligands (PR3) have taken a prominent
place. However, it surfers from the rapid decomposition, resulting in poor reactivity (Chen et al.,
2010; Wang et al., 2012b). Recent developments in the N-heterocyclic carbene (NHC) derivatives
have significantly expanded the scope of ligands by improving thermal and substrate stability in
addition to good reactivity (de Frémont et al., 2005; Marion et al., 2006; Diez-Gonzalez and Nolan,
2008; Diez-Gonzalez et al., 2009; Ramón et al., 2010).

Interestingly, Shi et al. developed 1,2,3-triazole (TA)-bound gold complexes as an effective
catalysts (denoted as TA-Au) toward the alkynes activation (Chen et al., 2008; Liu et al., 2008;
Sengupta et al., 2008; Duan et al., 2009a,b; Yan et al., 2010). This class of Au-catalysts exhibited
better performance along withmuch lower overall costs in catalyzing the transformations of various
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alkynes, in comparison with the expensive NHC-Au catalysts
(Duan et al., 2009a; Chen et al., 2010;Wang et al., 2010, 2011a,b,c;
Hosseyni et al., 2015). More fascinating is the TA-Au catalysts
even led to unique chemoselectivity. For instance, it was found
that the propargyl ester underwent Rautenstrauch rearrangement
to produce cyclopentenones with use of a conventional gold
catalyst PPh3AuOTf (Scheme 1A; Shi et al., 2005), but was
hydrated to form α-acetoxy ketone with use of a TA-Au catalyst
(Scheme 1B; Wang et al., 2012b). The underlying mechanism of
such unique effects of TA in gold catalysis remains unknown
as an “X-factor” (Chen et al., 2010), and deserves further in-
depth exploration. Herein, we present our theoretical work on the
mechanism of the aforementioned Au-catalyzed transformations
of propargyl ester in the absence/presence of TA, aiming to the
unique role of TA.

COMPUTATIONAL DETAILS

All calculations were carried out with the Gaussian 09 program
(Frisch et al., 2013). The geometries of all the species were fully
optimized by using the M06 functional (Zhao and Truhlar, 2008)
with the ultrafine integration grid. The 6-31G(d,p) (Ditchfield
et al., 1971; Hehre et al., 1972; Hariharan and Pople, 1973,
1974) basis set was employed for C, H, O, N, P, and the
Stuttgart/Dresden small-core RECP (relativistic effective core
potential) plus valence double-basis set (SDD) (Andrae et al.,
1990) was applied for Au. This combination of functional
and basis sets has been frequently used in the mechanistic
investigations on Au-catalyzed organic transformations (Shu
et al., 2015; Shen et al., 2017a,b). Frequency calculations at the
same level were performed to confirm each stationary point
to be either a local minimum or a transition state (TS). All
transition states were verified by using the intrinsic reaction
coordinate (IRC) (Gonzalez and Schlegel, 1990) calculations.
Gibbs free energies were obtained with frequency calculations on
the optimized structures in acetone at standard condition, given
in unit of kcal/mol. The solvent effects of acetone (ε = 20.493)
were taken in account by using the SMD-flavor (Marenich et al.,
2009) of self-consistent reaction field (SCRF) theory. The atomic

SCHEME 1 | Au-catalyzed propargyl ester reactions reported by (A) Toste and (B) Shi groups.

charges were analyzed by natural bond orbital (NBO) theory
(Foster and Weinhold, 1980; Carpenter and Weinhold, 1988;
Reed et al., 1988). All 3D structures were generated by the
CYLview (Legault, 2009).

It should be mentioned that theoretical modeling of reactions
in wet chemistry requires not only the use of the SCRF-
based solvent-effect model but also the explicit involvement
of several H2O molecules as close environment. For example,
the explicit involvement of a water trimer cluster led to better
results in the theoretical simulation of organometallic reactions
(Kovács et al., 2005; Shi et al., 2007). Accordingly, we took
similarly a water trimer cluster model to simulate the hydration
reactions (Figures S1, S2). To save computational costs, the
bulky triphenylphosphine (PPh3) ligand used in experiments was
simplified as trimethylphosphine (PMe3) and such simplification
was been validated by our current results (Scheme S1) and by
previous theoretical work on Au-catalyzed reactions (Shi et al.,
2007; Faza and López, 2013; Jin et al., 2016).

RESULTS AND DISCUSSION

Under wet condition, Au-catalyzed reactions of propargyl ester
can undergo two types of skeleton rearrangement, i.e., 1,2-
acyloxy migration and 3,3-rearrangement (Path A and D in
Scheme 2), and hydration (Path B, E, and G in Scheme 2). To
understand the detailed reaction mechanisms at the molecular
level, we considered all possible channels for the current model,
as shown in Scheme 2 and Scheme S2.

Before starting to investigate the detailed reaction
mechanisms, we first focused on the complexes of the
alkyne-coordinated [AuPMe3]+ as it is well-accepted that
Au-catalyzed activation of alkynes begins with the coordination
of the cationic [AuPMe3]+, to the substrate. Two types of
complexes (Aanti−PMe3 and Asyn−PMe3) were found under
nearly equilibrium state, slightly favoring the Aanti−PMe3 over
Asyn−PMe3 (0.0 vs. 0.4 kcal/mol, Figure 1). Thus, we took
Aanti−PMe3 as the reference, with respect to which the relative
free energies were given throughout the whole work, unless
otherwise noted.
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SCHEME 2 | Schematic possible pathways for the Au-catalyzed propargyl ester reactions.

Chemoselectivity of Au-Catalyzed
Propargyl Ester Reactions in the Absence
of TA
In the absence of TA, acetonitrile, although it is an excellent
ligand, can be easily substituted by the alkynes to form the alkyne-
coordinated [AuPMe3]+ for further reactivities. The substrate
exchange process is endergonic by 2.0 kcal/mol (Figure 2).

The Rautenstrauch rearrangement, namely the formation of
cyclopentenone 2a, is initialized with a 1,2-acyloxy migration as
illustrated in Scheme 2 (Path A) and the corresponding energy
profile is shown in Figure 2. A nucleophilic attack of the lone
pair on the carboxyl oxygen to the C2 site in Aanti−PMe3 via a 5-
exo-dig cyclization, leading to the formation of a five-membered
vinyl-gold intermediate B. This transformation only requires an
activation free energy of 7.7 kcal/mol and is thermodynamically
neutral process (exergonic by only 0.9 kcal/mol). C1 and C2

atoms in the five-membered vinyl-gold intermediate B change
to sp2 hybridization, rendering that the formal positive charge
partially distributes on C4 atom (0.97e, Figure S3). The lone pair
on the acetate group can also attack the C1 site in Aanti−PMe3,

FIGURE 1 | Optimized geometries for two types (anti and syn) of
alkyne-coordinated [AuPMe3 ]

+ (bond distance in Å, dihedral angel in degree.
Gibbs free energy and enthalpy (in parenthesis) are given in kcal/mol). NBO
charges are given for selected atoms in italic.

leading to a 3,3-rearrangement via a 6-endo-dig cyclization (Path
D in Scheme 2). However, our calculations indicate that the 6-
endo-dig cyclization process is kinetically unfavorable and its
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FIGURE 2 | Relative Gibbs free energy and enthalpy (in parenthesis) (kcal/mol) profiles for Au-catalyzed Rautenstrauch rearrangement (black line), hydration reactions
(indirect hydration in red line and direct hydration in pink line), and 6-endo-dig cyclization (blue line) of propargyl ester initiated by Aanti−PMe3.

apparent activation free energy is 7.3 kcal/mol higher than that
for the 5-exo-dig cyclization (Figure 2). Thus, the subsequent
3,3-rearrangement and hydration reactions (Path D and E in
Scheme 2) are not considered in current work. This significantly
higher activation barrier (15.0 kcal/mol) via the 6-endo-dig
cyclization, in comparison with that (7.7 kcal/mol) for the 5-exo-
dig cyclization, is in line with its nucleophilic nature as the NBO
charge analysis indicates that C2 (−0.03e) bears less charges than
C1 (−0.28e) (Figure 1).

Note that C3–O1 bond in intermediate B is significantly
weaker than that of normal C–O single bond (1.43 Å) and
other C–O bonds in intermediate B (1.46 for C2–O2, 1.28 for
C4–O1, and 1.28 Å for C4–O2, Figure S3), as demonstrated
by its elongated bond length of 1.50 Å. Hence, the 1,2-acyloxy
migration can easily take place via a cleavage of the C3–O1 bond,
resulting to the isomerization into the vinyl gold-carbenoid C

with a free energy release of 0.7 kcal/mol. The activation free
energy is calculated to be 5.4 kcal/mol. Cyclization of C followed
by the elimination of gold catalysts gives the cyclopentadiene E
and final hydrolysis furnishes the desired cyclopentenone 2a. The
whole process proceeds smoothly with a low apparent activation
free energy of 9.7 kcal/mol, and is highly exothermic with a free
energy release of 53.9 kcal/mol, as shown in Figure 2.

The hydration reactions can be initiated by nucleophilic attack
of water cluster at either carbocationC4 via the favored 5-exo-dig
cyclization (Path B in Scheme 2) or directly to C2 in Aanti−PMe3

(Path G in Scheme 2). Due to the nature of its nucleophilic
attack, the water cluster is more inclined to attack the positively

charged C4 (0.97e) (denoted as indirect hydration) instead of
the negative charged C2 (−0.03e) (denoted as direct hydration).
The calculated free energy barriers are 7.7 and 10.8 kcal/mol,
respectively (Figure 2). Further proton transfer and elimination
of gold catalyst for both processes lead to the same ketone. In
comparison to the Rautenstrauch rearrangement, the hydration
reactions are clearly both kinetically and thermodynamically
unfavorable, as shown in Figure 2. Thus, according to our
calculations, Au catalyst selectively produces cyclopentenones
in the absence of TA. In this sense, our calculations provide a
theoretical support for experimental observations and insights
into the chemoselectivity of Au-catalyzed propargyl ester
reactions in the absence of TA.

Chemoselectivity of Au-Catalyzed
Propargyl Ester Reactions in the Presence
of TA
Experiments have demonstrated that TA provides unique
chemoselectivity in addition to improved thermal and substrate
stability (Chen et al., 2010; Wang et al., 2010, 2011a,b,c,
2012c). According to our calculations, TA can indeed stabilize
the Au catalysts by coordinating with the cationic Au in
[AuPMe3]+ with a stabilization free energy of 19.0 kcal/mol
(Scheme S1). However, the longer Au–N bond (2.13 Å vs. 2.10 Å,
Figure S4) in comparison to that in the anionic TA coordinated
Au complex implies that the neutral TA can dissociate and
release the coordination site for substrate activation. Under

Frontiers in Chemistry | www.frontiersin.org 4 September 2019 | Volume 7 | Article 609

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Sun et al. Chemoselectivity in Gold(I)-Catalyzed Propargyl Ester Transformation

the experimental conditions, the substrate exchange process
is calculated to be endergonic by 6.3 kcal/mol, leading to
the alkyne-coordinated [AuPMe3]+ (Scheme S1). Subsequent
Rautenstrauch rearrangement (Path A in Scheme 2) and 3,3-
rearrangement (Path D in Scheme 2) are the same as that
catalyzed by the [AuPMe3]+ in the absence of TA. Herein, we
will focus on the hydration pathways (Path C, F, H and I in
Scheme 2) of TA-Au-catalyzed propargyl ester reactions. Path F
is excluded due to the high activation free energy for the 6-endo-
dig cyclization as mentioned above, and the hydration pathway
initialized by a direct attack of TA to C2 (Path I) is also ruled out
because of its high activation free energy of 12.3 kcal/mol.

As an electron-richmoiety, TA can be used not only as a ligand
to the cationic Au but also as a good hydrogen bond acceptor.
It can readily form a hydrogen-bond complex TA-(H2O)3 with
water cluster although this process is endergonic by 3.2 kcal/mol.
A significantly increased dipole in TA-(H2O)3 cluster [7.0 vs.
1.7 Debye in (H2O)3, Figure S4] may offer a facile route for the
nucleophilic attack with the assistant of TA.

Similar as those in the absence of TA, the hydration reactions
can be initiated by the nucleophilic attack of TA-(H2O)3 cluster
at either the carbocation C4 via the favored 5-exo-dig cyclization
(Path C in Scheme 2) or directly to C2 in Aanti−PMe3 (Path H in
Scheme 2). Path C is found to be the most favorable pathway for
the TA-Au-catalyzed hydration reactions. Herein, we only focus
on the process of Path C in detail. To clarify the wholemechanism
and the role of TA, we divided the hydration into three processes:
TA-assisted nucleophilic addition of water, proton transfer, and
the formation of α-acetoxy ketone, as shown in Scheme 3.

Process 1: TA-Assisted Nucleophilic
Addition of Water
As discussed above, the water cluster is more inclined to attack
the positively charged C4 (0.97e) instead of the negative charged
C2 (−0.03e) due to the nature of nucleophilic attack. For the TA-
(H2O)3 cluster, the same will occur. A complex B-3W-TA can be

located on the potential energy surface with a stabilization energy
of 0.9 kcal/mol, as shown in Figure 3. It is interesting to note
that the TA-(H2O)3 cluster itself is unstable with respect to the
separated TA and (H2O)3 by 3.2 kcal/mol. However, the complex
B-3W-TA is more stable than B-3W in the absence of TA by
5.1 kcal/mol. This is mainly due to the enhanced electrostatic
interaction caused by TA, as indicated by the increased charge
transfer (0.13e) (Figure S3) between TA-(H2O)3 and the five-
membered vinyl-gold intermediate Bmoiety. On the other hand,
the shortened distance between Ow1 and C4 (2.37 in B-3W-

TA vs. 2.50 Å in B-3W) also prove this (Figure S3). As a
consequence, TA-assisted water addition requires a small free
energy barrier of 3.0 kcal/mol, which is 4.7 kcal/mol lower than
that in the absence of TA, leading to the intermediate C-3W-TA.
In all, with the assistance of TA, it is more efficient for the water
addition in this nucleophilic attack process.

Process 2: Proton Transfer to the Terminal
Carbon
After the formation of intermediate C-3W-TA, it would be likely
to undergo the protodeauration via proton-transfer, initialized
by proton transfer to the terminal carbon (C1). A two-step
pathway is located for this process as shown in Figure 4. A nearly
barrierless (0.3 kcal/mol) double proton-transfer firstly takes
place starting from C-3W-TA. That is, the proton Hw2 from the
nucleophilic attackingOw1 transfers toOw2 and simultaneously
the proton Hw3 on Ow2 transfers to N1 atom of TA, resulting
to the intermediate D-3W-TA (Figure S5). This process is
exergonic by 5.0 kcal/mol, which is in line with the fact that TA is
a good hydrogen bond acceptor. The second step is the proton
transfer from HN on the TA to the terminal carbon C1. Note
that this proton transfer step needs to overcome a barrier of 5.4
kcal/mol to form the intermediate E-3W-TA with a free energy
release of 17.4 kcal/mol. Based on our computational results, we
can draw conclusions that TA can stabilize the proton and act as
a “relay” to accept and donate a proton. Similar mechanism has

SCHEME 3 | Path C for the TA-Au-catalyzed hydration of propargyl ester.
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FIGURE 3 | Relative Gibbs free energy and enthalpy (in parenthesis) (kcal/mol) profiles for the nucleophilic addition of water in the absence/presence of TA
(dashed/solid line).

FIGURE 4 | Relative Gibbs free energy and enthalpy (in parenthesis) (kcal/mol) profiles for Au-catalyzed Rautenstrauch rearrangement (black line), indirect hydrations
(no-TA-assisted case in red line and TA-assisted case in blue line), TA-assisted direct hydration (purple line), and TA attack direct hydration (pink line) of propargyl ester
initiated by Aanti−PMe3.

been generally found and accepted in protic-solvent-catalyzed
organic and biochemical reactions (Fakhraian and Panbeh Riseh,
2005; Kim et al., 2006).

Process 3: Formation of α-Acetoxy Ketone
Similar to the 1,2-acyloxy migration, we found that the C4–O2
in intermediate E-3W-TA is significantly weaker than that of
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normal C–O single bond (1.43 Å) and other C–O bonds in E-

3W-TA (1.38 for C4–O1, 1.43 for C3–O1, and 1.31 Å for C2–
O2, Figure S5), as demonstrated by its elongated bond length
of 1.49 Å. Hence, cleavage of the C4–O2 bond can easily take
place, with a free energy barrier of 7.3 kcal/mol, leading to an
isomerization into the intermediate F-3W-TA. The subsequent
protodeauration followed by the release of TA-(H2O)2 cluster
gives the desired α-acetoxy ketone 2a. This process requires an
activation energy of 8.7 kcal/mol, accompanying by a free energy
release of 21.5 kcal/mol, as displayed in Figure 4.

It is worth to note that the above mentioned reactions
may also have the similar possibility to occur in Asyn−PMe3 as
these two types of complexes (Aanti−PMe3 and Asyn−PMe3) were
found under nearly equilibrium state. From our computational
results (Figure S6 for all pathways initiated by Asyn−PMe3 in
the absence/presence of TA), the anti-types of various paths are
found to be more favorable.

According to our calculations, we can draw a conclusion that
the chemoselectivity of entitled TA-Au catalyzed propargyl ester
reactions would rely on the first two steps in each pathway. As
shown in Figures 2, 4, the lowest free energy barrier for the
first step is associated with the anti-type of 5-exo-dig cyclization
in Path A, B, and C. That is, the intramolecular 5-exo-dig
cyclization benefit from the nature of nucleophilic attack, is
more favorable for the Rautenstrauch rearrangement (Path A)
and hydration reactions (Path B and C). Subsequently, the
existence of TA further promotes the nucleophilic attack and
makes Path C the most favorable pathway in comparison with
the Rautenstrauch rearrangement (Path A) and water-assisted
hydration reaction (Path B). Therefore, the desired α-acetoxy
ketone was obtained in the experiment with the assistance of
TA. In summary, TA not only stabilizes the Au catalysts, but
also alters the chemoselectivity of Au catalyzed propargyl ester
reactions, and simultaneously acts as a “relay” to promote the
proton transfer.

CONCLUSIONS

The whole Au-catalyzed propargyl ester reactions have been
investigated by a comprehensive DFT study. We considered
all possible mechanisms, such as 3,3-rearrangement, 1,2-
acyloxy migration and various hydration reactions, in the
absence/presence of TA. Our computational results not only
account for the experimental observations, but also clarify the
role of TA. Our findings are summarized as follows.

1) Due to the nature of nucleophilic attack, 5-exo-dig cyclization
is the most favorable to start the reactions in comparison to
the 6-endo-dig and direct hydration.

2) The Rautenstrauch rearrangement (Path A) is found to be
both kinetically and thermodynamically favorable in the
absence of TA. Whereas, TA-assisted hydration is the most
favorable pathway (Path C) in the presence of TA. These
fit well with the experimental observed chemoselectivity of
Au-catalyzed propargyl ester reactions.

3) TA does not act as a special “X-factor.” It has triple effects
on this reaction. First of all, TA can stabilize and prevent
rapid decomposition of the Au catalysts. Secondly, the
existence of TA promotes the nucleophilic attack and alters
the chemoselectivity of this reaction. Moreover, TA acts as a
“relay” to promote the proton transfer.

Our calculation results not only shed light on the role of TA,
but also highlight the possible way for the experimental design
of more efficient catalysts with desired chemoselectivity.
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