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Unsaturated polyester resins are widely used for the preparation of composite materials

and fulfill the majority of practical requirements for industrial and domestic applications

at low cost. These resins consist of a highly viscous polyester oligomer and a reactive

diluent, which allows its process ability and its crosslinking. The viscosity of the initial

polyester and the reactive diluent mixture is critical for practical applications. So far, these

viscosities were determined by trial and error which implies a time-consuming succession

of manipulations, to achieve the targeted viscosities. In this work, we developed a

strategy for predicting the viscosities of unsaturated polyesters formulation based on

neural networks. In a first step 15 unsaturated polyesters have been synthesized through

high-temperature polycondensation using usual monomers. Experimental Hansen

solubility parameters (HSP) were determined from solubility experiment with HSPiP

software and glass transition temperatures (Tg) were measured by Differential Scanning

Calorimetry (DSC). Quantitative Structure—Property Relationship (QSPR) coupled to

multiple linear regressions have been used to get a prediction of Hansen solubility

parameters δd, δp, and δh from structural composition. A second QSPR regression has

been done on glass transition temperature (prediction vs. experimental coefficient of

determination R² = 0.93) of these unsaturated polyesters. These unsaturated polyesters

were next diluted in several solvents with different natures (ethers, esters, alcohol,

aromatics for example) at different concentrations. Viscosities at room temperature

of these polyesters in solution were finally measured in order to create a database

of 220 entries with 7 descriptors (polyester molecular weight, Tg, dispersity index –D,
polyester-solvent HSP RED, molar volume of the solvent, δh of the solvent, concentration

of polyester in solvent). The QSPR method for predicting the viscosity from these

6 descriptors proved to be ineffective (R² = 0.56) as viscosities exhibit non-linear

phenomena. A Neural Network with an optimized number of 12 hidden neurons has

been trained with 179 entries to predict the viscosity. A correlation between experimental

and predicted viscosities based on 41 testing instances gave a correlation coefficient R²

of 0.88 and a predicted vs. measured slope of 0.98. Thanks to Neural Networks, new

developments with eco-friendly reactive diluents can be accelerated.
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INTRODUCTION

Today composite materials find many applications in the fields
of transport, construction as well as in sports and leisure (Biron,
2013). The unsaturated polyester resins used for the preparation
of these composite materials have several advantages, mainly
a favorable price ratio with respect to the mechanical and
thermal properties (Mishra et al., 2003), good durability and
a relatively good resistance to corrosion (Dagher et al., 2004),
a low maintenance cost as well as good electrical, phonic and
thermal insulation properties. It also lightens the structures
compared to conventional metallic materials allowing to obtain
better energy performances (Song et al., 2009). The investment
cost related to machining composite materials by hand lay-up is
also low (Biron, 2013).

The unsaturated polyesters are synthesized by high
temperature polycondensation of diols with saturated and
unsaturated diacids. The most used unsaturated monomers are
maleic anhydride or fumaric acid. The water produced by the
esterification reaction is eliminated by condensation in a Dean-
Stark during the reaction. The number average molecular weight
of the obtained polyesters are ∼1,000 g.mol−1 (Fink, 2013).
Depending on the monomers used in the polycondensation,
the properties of polyester resins differ. For applications where
the resin must be resistant to hydrolysis, monomers such as
neopentyl glycol and isophthalic acid are particularly suitable.
The use of diethylene glycol or dipropylene glycol makes possible
to obtain flexible resins (Zaske and Goodman, 1998; Fink,
2013). Thus, there is a multitude of possible chemical structures
depending on the intended application.

In order to be manipulated at room temperature and to be
crosslinked, the polyesters are diluted in polymerizable solvents.
The most commonly reactive diluent is styrene because it
effectively reduces the viscosity of the unsaturated polyester
in solution and efficiently copolymerizes with the fumarate
units (Lewis and Mayo, 1948; Cousinet et al., 2015). However,
styrene has been classified by the US Department of Health
and Human Services as “reasonably anticipated to be a human
carcinogen.” It is a very volatile monomer that has also been
classified as a hazardous air pollutant by the US Environmental
Protection Agency (Cousinet et al., 2015). In Europe, styrene
has been classified as “reproductive toxicity category 2” by the
European Chemicals Agency (ECHA). Methacrylate monomers
are commonly used to replace styrene (Fink, 2013). However,
monomers such as methyl, ethyl or butyl methacrylates have
strong odors. This is a disadvantage for open mold applications.
In addition, their reactivity ratio with fumarate units does
not allow good crosslinking (Bengough et al., 1967). Many
publications deal with the search for alternative reactive diluents,
sometimes bio-sourced, in order to be able to eliminate styrene
and to provide resins with less volatile and less toxic organic
compounds (Sadler et al., 2012; Cousinet et al., 2014, 2015; Li
et al., 2014; Dai et al., 2017; Panic et al., 2017; Yadav et al., 2018).

To develop a new resin, it is now necessary to multiply time-
consuming manipulations. Firstly a polyester with a defined
structure is synthesized, then diluted in a reactive solvent and
finally crosslinked. The properties of the resin such as its viscosity

at room temperature and its mechanical properties need to
be measured for assessing its performance. Performing all of
these steps take several days for a single try. The multitude
of possible chemical structures as well as the diversification of
available reactive diluents considerably extends the time required
for the development of a new resin. The viscosity of polyester
resins at room temperature is an important parameter to be
respected in a specification. Indeed, the resin must be in a
certain range of viscosity depending on its mode of application
(Fink, 2013). Developing property prediction tools that use only
theoretical values without manipulation is therefore a strategic
issue, particularly in the industrial sector.

Neural networks are machine learning tools for connecting
non-linear data with one or more target properties (Gasteiger
and Zupan, 1993; Svozil et al., 1997). This type of algorithm
has been used effectively in many scientific fields, especially in
environmental or chemical applications (Behler, 2011; Torrecilla
et al., 2013; Wei et al., 2016). Several studies have already been
published on the prediction of polymer properties using neural
networks, such as the glass transition temperature (Joyce et al.,
1995; Mattioni and Jurs, 2002; Chen et al., 2008; Liu and Cao,
2009), intrinsic viscosity (Gharagheizi, 2007a) or lower critical
solution temperature (Gharagheizi F., 2007b).

In this work, a neural network was set up in order to
predict the viscosity of unsaturated polyester resins from
simple descriptors. Once a polyester is synthesized, its number
average molecular weight and its glass transition temperature
are measured. The experimental Hansen solubility parameters
(HSP) (Hansen, 2002) of the polyester are then obtained
by solubilization of the polymer in 40 solvents followed by
processing results on the HSPiP software (Abbott, 2013). Then,
the polyester is solubilized by varying its concentration in
solvents of different natures among those previously used. A
database of 220 entries of polymer-solvent combination was set
up including for the polyesters, their number average molecular
weight, their glass transition temperatures and their Hansen
parameters, for the solvents their molar volumes, their δh and the
concentration of the polyester in solution. The resulting viscosity
of the polyester in solution was measured with a rheometer for
each entry. The neural network was subsequently optimized and
trained with this database.

To be able to predict unsaturated polyester viscosity
exclusively based on theoretical values without manipulation,
the glass transition temperature as well as Hansen parameters
of unsaturated polyesters have been correlated according to
the theoretical chemical structure of the polyesters. Prediction
methods have already been described in the literature for the
glass transition temperature (Katritzky et al., 1996; Bicerano,
2002; Camacho-Zuñiga and Ruiz-Treviño, 2003; Krevelen and
Nijenhuis, 2009) as well as the Hansen solubility parameters
of polymers (Stefanis and Panayiotou, 2008; Krevelen and
Nijenhuis, 2009). However, these methods generally relate to
high average molecular weight polymers and are not necessarily
adapted to unsaturated polyesters. In this work, a Quantitative
Structure—Property Relationship (QSPR) method was applied
to propose a simple method for determining the glass transition
temperature and Hansen solubility parameters for unsaturated
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polyesters. The experimental values used in the neural network
can be replaced in the future by the predicted values obtained
by QSPR.

Data capitalization and processing has become a strategic
topic for predicting phenomena (Dong et al., 1996; Zhang et al.,
1998; Marengo et al., 2004). Being able to predict the viscosity of
polyester resins to see if they fulfill specifications and minimize
the number of tests is undoubtedly of high added value for
thermoset resins industrial companies. Today, the establishment
of a machine learning system has become more accessible,
so its use in chemical companies will certainly grow in the
coming years.

MATERIALS AND METHODS

Reagents
Propylene glycol (PG), dipropylene glycol (DPG), neopentyl
glycol (NPG), cyclohexanedimethanol also known as 1,4-
bis(hydroxymethyl)cyclohexane (CHDM), 2-ethylhexanol (EH),
benzyl alcohol (AB), maleic anhydride (AM), itaconic acid (IT),
fumaric acid (AF), phthalic anhydride (PA), adipic acid (AA)
were provided by the Mäder group. They were used as received
without further purification.

All solvents used for the determination of Hansen parameters
are laboratory grade and were used as received without
further purification.

Synthesis of the Prepolymer
The prepolymer was synthesized by the melt polycondensation
between diols and diacids. The components were mixed in a
1 L four-necked round-bottom flask connected with a stirrer, a
temperature probe connected to the heater, a Dean–Stark, and
a N2 gas inlet. No catalyst was used in this work. The reaction
was carried out at a temperature of 200◦C under a nitrogen
atmosphere. The reaction was carried out until the acid value
reached 30. The acid value (AV) is defined as the number of
milligrams of KOH needed to neutralize 1 g of resin and was
measured according to ASTMD465-01. Around 1 g of resins was
titrated with a KOH solution in isopropanol (0.1 M).

Prepolymer Characterization
The size exclusion chromatography (SEC) used was a Shimadzu
Prominence fitted with a Refractive Index (RI) detector (RID-
20A) and an UV detector (SPD-20A). The columns (KF-802
and KF-803L from Shodex) were eluted with tetrahydrofuran
(THF) at a flow rate of 1 mL/min at 30◦C. The samples were
previously prepared by dissolving 10mg of sample in 1mL THF.
The solution was then filtered through a PTFE filter with a
pore diameter of 0.45µm. A volume of 20 µL was injected
into the size exclusion chromatography to carry out the analysis.
The SEC has been calibrated with poly(styrene) standards. The
number average molecular weights were determined from the
UV detector absorbance.

The glass transition temperature (Tg) of the prepolymers was
measured by differential scanning calorimetry, DSC, using a Q20
TA Instruments in hermetic aluminum capsules with a scan rate
of 10◦C/min from −80◦C to 150◦C under N2 (50 mL/min). The

second heating run was used to determine the Tg with the TA
Instruments software.

Hansen Solubility Parameter
Experimental Determination
The solubility of the polymers was assessed by dissolving
100mg in 1mL of solvent at room temperature. Solubility
was assessed after 24 h of agitation using a Vortex-Genie 2
from Scientific Industries. The 40 solvents tested were acetic
acid, acetone, acetonitrile, aniline, benzonitrile, benzyl alcohol,
γ-butyrolactone, m-cresol, cyclohexane, cyclohexanone, o-
dichlorobenzene, diethylene glycol, dimethyl formamide,
1,4-dioxane, ethanol, ethyl acetate, ethylene glycol, ethylene
glycol monomethyl ether, formamide, formic acid, furan, hexane,
isobutyl alcohol, methanol, methyl ethyl ketone, N-methyl
formamide, methyl methacrylate, N-methyl-2-pyrrolidone,
methylene dichloride, morpholine, nitrobenzene, 1-pentanol,
1-propanol, propionitrile, propylene carbonate, propylene glycol
monomethyl ether, styrene, tetrahydrofuran, toluene, water
(Delgove et al., 2017). The Hansen solubility parameters δd, δp, δh
and the solubility sphere radius R0 of the unsaturated polyesters
were obtained using the HSPiP software. A sphere centered on
the HSP of the polyester and radius R0 constitutes the sphere
of solubility of the polyester. Solvents whose HSP are inside the
sphere allow the solubilization of the polyester. The polyester is
insoluble in solvents having HSP outside the sphere.

Unsaturated Polyester—Solvent
Compatibility Determination
Once the HSP of the polyesters were obtained, the compatibility
of each polyester in solvents of different natures was quantified.
Firstly, the distance Ra in a three-dimensional space between
the Hansen parameters of the polyester (P) and the Hansen
parameters of the solvent (S) was calculated using the Equation
(1) (Krevelen and Nijenhuis, 2009).

R2a = 4.0× (δdP − δdS)
2
+

(

δpP − δpS
)2

+ (δhP − δhS)
2 (1)

The Relative Energy Difference (RED) was then calculated
by performing the ratio of Ra to R0 (Equation 2)
corresponding to the solubility radius of the unsaturated
polyester (Krevelen and Nijenhuis, 2009).

RED =
Ra
R0

(2)

Thus, the RED gives a simple numerical value for
characterizing the compatibility of a polymer in a solvent.
According to Hansen’s theory, two compounds are very
compatible if their RED approaches 0 because their Hansen
solubility parameters are very close. If their RED is equal to
1, it means that the polyester is at the limit of solubility in
the solvent and therefore almost incompatible. A RED >1
means that the polyester is not soluble in the solvent tested
(Krevelen and Nijenhuis, 2009).
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Creation of the Polyester Resin Database
In order to develop the database, the unsaturated polyesters
synthesized were diluted in various solvents among those used
in Part 2.3 and at different concentrations. Apparent viscosities
were measured at 23◦C as a function of shear rate over the range
1–100 s−1 using the viscometry function of a controlled stress
and strain rheometer (Anton Paar MCR 301). A parallel plate
geometry has been used with a diameter plate of 25mm (PP25)
and a gap of 1 mm.

The database contains 220 entries including for each of
them the number average molecular weight of the polyester
Mn (obtained by SEC), its index polydispersity Ð, and its glass
transition temperature Tg (obtained by DSC), the RED polymer-
solvent compatibility (obtained via HSPiP), the molar volume of
the solvent Mvol(obtained via HSPiP), the concentration of the
polyester in the solution and the measured viscosity at 23◦C of
the polyester in solution. This database is provided in Table S1.

QSPR Modeling With Multiple Linear
Regression (MLR)
Quantitative Structure—Property Relationship (QSPR)
modelizations were carried out by multiple linear regression.
Different descriptors xi are correlated with one or more
responses. The linear relation linking the descriptors to this
response is given in Equation 3.

y = a0 + a1x1 + a2x2 + . . . + aixi + e (3)

The values ai are the regression coefficients. The purpose
of multiple linear regression is to determine the value
of these coefficients by the least squares method. These
modelizations were realized with the software Cosmoquick
version 1.7 (COSMOlogic, Leverkusen, Germany)
(Loschen and Klamt, 2012).

Artificial Neural Network
Neural networks are a type of machine learning tool which
link several input data with output data by non-linear relations
(Gasteiger and Zupan, 1993; Svozil et al., 1997). They present a
real advantage over conventional linearmathematical approaches
(Díaz-Rodríguez et al., 2014; Cancilla et al., 2016). The use of
neural networks allows to find physico-chemical models already
described in the literature or even to discover original models
(Behler, 2011; Díaz-Rodríguez et al., 2015).

A neural network is divided into several layers, each composed
of neurons and interconnected by synapses (Díaz-Rodríguez
et al., 2014). The first layer, called the input layer, introduces
into the neural network the values of the different descriptors
influencing the target property at the output of the neural
network. In this study, several physicochemical data describing
both the polyesters as well as the solvents properties were used in
this input layer.

The second part of the neural network is the hidden learning
layer. It contains neurons that allow non-linear calculations to
obtain the relationship between input and output data (Gasteiger
and Zupan, 1993; Cancilla et al., 2014a,b). Each learning neuron

performs a linear combination of input data multiplied by the
weight of the synapses associated with that data. An additional
constant, called bias, is added to this linear combination in order
to add an extra degree of freedom to the neural network to better
match input and output data. A function that can be linear or
not transforms the value obtained in order to obtain the output
signal of the neuron. The most common non-linear functions
are the hyberbolic tangent or the sigmoid. A multitude of other
activations functions exist and research are still on-going on the
development of new functions (Xu et al., 2015). This output value
is then introduced as an input value for the next layer of neurons.

The number of neurons in the hidden layer must be optimized
in order to have the best learning and to get the best prediction
accuracy. A low number of learning neurons will tend to limit
the learning ability of complex problems by the neural network
whereas an excessive number of neurons can lead to an over-
fit of prediction and an increase in the gap compared to the
experimental target values. Although different rules emerge to
fix the number of hidden neurons based on the number of
input and output data, it is also possible to test the evolution
of the prediction error with respect to the experimental one by
changing the number of learning neurons (Sheela and Deepa,
2013). In the initial state, values of the synapses weights are fixed
randomly. The training protocol is based on an algorithm seeking
to reduce the difference between the experimental target values
compared to the values predicted by successive iterations that
modify the weight of the synapses. There are different types of
training algorithms, each of which is more suitable for a kind
of applications (Torrecilla et al., 2008). A neural network can
continue the iterations until the predicted values fit perfectly with
the training data. However, this can cause over-fit due to the
consideration of non-general trends such as experimental errors
or noise. Verification of the reliability of the neural network can
be performed with a set of data that have not been used for
the modification of synaptic weights during training (Cancilla
et al., 2014a). When the error between experimental values and
predicted values begins to increase, it means that the training
phase has undergone too many iterations.

Neural designer desktop version 2.9.5 (Artelnics, Salamanca,
Spain) has been employed for the neural network design and
its optimization.

RESULTS AND DISCUSSION

Unsaturated Polyesters Synthesis
Fifteen unsaturated polyesters have been synthesized from the
monomers conventionally used in industry. The stoichiometric
ratio between the reagents called r corresponds to the initial
molar amount of carboxylic acid groups on the initial molar
amount of alcohol groups provided by the diacids and glycols
of the polycondensation reaction. These different structures are
listed in Table 1. They were characterized initially by DSC and
SEC in order to obtain the glass transition temperature Tg , the
number average molecular weightMn and the dispersity indexÐ.

During the reaction, the maleate units are isomerized into
fumarate units. However, the isomerization rate depends mainly
on the monomer composition of the resin (Curtis et al., 1964).
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TABLE 1 | Structures of the unsaturated polyesters synthesized.

Polyester Monomer 1 (mol%) Monomer 2 (mol%) Monomer 3 (mol%) Monomer 4 (mol%) Monomer 5 (mol%) r Tg(
◦C) Mn (g/mol) –D

1 PG 80% DPG 20% AM 67% AP 27% AA 6% 0.97a 3.9 1,880 3.90

2 NPG 70% PG 30% – AF 100% / 0.93 9.1 2,678 2.23

3 NPG 70% PG 30% – AM 60% AP 40% 0.90 16.3 1,560 2.13

4 NPG 70% PG 30% – AM 50% AP 50% 0.90 24.4 1,652 2.51

5 NPG 70% PG 30% – AM 70% AP 30% 0.90 11.7 1,640 1.90

6 NPG 70% PG 30% – AM 60% AP 40% 0.91 16.0 1,780 1.87

7 NPG 50% PG 50% – AM 60% AP 40% 0.96 20.1 2,530 2.90

8 NPG 70% PG 30% – IT 60% AP 40% 0.98 12.1 1,205 2.64

9 PG 100% – – AM 60% AP 40% 0.90 22.0 1,610 3.69

10 PG 100% – – AM 60% AP 40% 0.91 23.6 1,760 1.5

11 NPG 70% PG 30% EH 5% AM 60% AP 40% 0.94 2.4 1,220 2.09

12 NPG 70% PG 30% – AM 60% AP 40% 0.96 21.2 1,960 2.59

13 CHDM 70% PG 30% – AF 60% AP 40% 0.92 22.6 2,420 1.84

14 DPG 100% – – AF 60% AP 40% 0.92 −6.5 1,409 2.47

15 DPG 50% NPG 50% – AF 60% AP 40% 0.91 1 1,330 2.20

16 NPG 70% PG 30% – AM 60% AP 40% 0.75 −2.5 950 1.84

17 NPG 70% PG 30% – AM 60% AP 40% 0.93 20.9 2,090 2.70

18 CHDM 100% – – AF 60% AP 40% 0.92 29.4 1,995 2.21

19 NPG 70% PG 30% AB 5% AM 60% AP 40% 0.94 11.2 1,410 2.23

20 NPG 30% CHDM 70% / AF 60% AP 40% 0.92 23.5 1,760 2.16

21 NPG 70% PG 30% / AF 60% AA 40% 0.9 −20.7 1,350 2.38

aFinal acid number = 50 mgKOH/g (instead of 30 mgKOH/g).

Diols with secondary alcohols such as propylene glycol promote
isomerization in contrast to diols having only primary alcohols.
The presence of phthalic anhydride also promotes isomerization.
Maleate units (Z-double bond) do not have the same properties
as fumarate units (E-double bond) (Ebewele, 2000; Krevelen and
Nijenhuis, 2009). In order to minimize the presence of maleates
in the reaction, fumaric acid has been used in syntheses with
primary diols or without phthalic anhydride.

The glass transition temperature Tg of the polyesters depends
on the structure of the monomers used during the synthesis
as well as the final average molecular weight obtained. The
introduction of monomers comprising ether bridges such as
dipropylene glycol or diethylene glycol allows the flexibilization
of the polyester chains and therefore the lowering of the glass
transition temperature of the polyesters (Young and Lovell,
1996; Zaske and Goodman, 1998; Ebewele, 2000). In order to
be able to compare the impact of these monomers on the
glass transition temperature, the acid monomer composition
as well as the targeted degree of polymerization was fixed for
polyesters described in polyesters 3, 14, and 15. The polyester
4 composed solely of dipropylene glycol has a Tg of −6.5◦C
whereas the polyester 15 comprising 50% of neopentyl glycol and
50% of dipropylene glycol has a Tg of 1

◦C. A polyester without
ethers monomers such as the one described in polyester 3 has
a higher Tg of 16.3◦C. The use of aromatic monomers such
as orthophthalic anhydride also modulate the glass transition
temperature of the unsaturated polyesters (Zaske and Goodman,
1998; Ebewele, 2000). The degree of polymerization as well as the
glycol composition of the polyesters described in polyester 4-6

are similar while the ratio of maleic anhydride to orthophthalic
anhydride has been varied. The increase in the ratio in favor
of orthophthalic anhydride within the polyester induces an
increase in the glass transition temperature. On the contrary,
the introduction of long aliphatic chain within the polyester
has a plasticizing action and thus induces a decrease in the
glass transition temperature (Young and Lovell, 1996; Zaske
and Goodman, 1998; Ebewele, 2000). When the orthophthalic
anhydride is replaced by adipic acid, which has an aliphatic chain,
the glass transition temperature drastically decreases (polyester
21: Tg =−20.7◦C vs. polyester 3: Tg = 16.3◦C). In the same way,
the incorporation of a mono-functional aliphatic alcohol such as
2-ethylhexanol has a plasticizing action and a decrease in the glass
transition temperature is observed (polyester 11: Tg = 2.4◦C vs.
polyester 3: Tg = 16.3◦C).

The use of branched monomers such as neopentyl glycol or
propylene glycol induces a steric hindrance and thus restricts
the polymer chain rotation (Young and Lovell, 1996; Ebewele,
2000). Neopentyl glycol also has a symmetry with its two
CH3 groups in comparison to propylene glycol which has
only one CH3 group. Despite a larger steric hindrance, this
symmetry induces a drop in the glass transition temperature
(Mark, 2007). Moreover, neopentyl glycol has an additional
CH2 group relative to propylene glycol which makes the
polyester more flexible. The polyester 9 composed solely of
propylene glycol for the glycol portion has a glass transition
temperature of 22.0◦C. When 70 mol% of propylene glycol
is replaced by neopentyl glycol (polyester 3), the glass
transition temperature decreases to 16.3◦C. The introduction
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TABLE 2 | Hansen solubility parameter of the synthesized unsaturated polyesters.

Polyester δd δp δh δ R0

1 16.6 14.2 3.9 22.1 13.1

2 19.0 9.2 8.5 21.0 6.0

3 17.8 13.4 4.4 22.7 12.7

4 18.7 14.6 5.1 24.3 13.6

5 17.8 13.5 4.4 22.7 12.7

6 18.8 12.8 5.8 23.5 12.1

7 18.8 13.7 5.4 23.9 12.9

8 17.7 13.5 4.4 22.7 12.7

9 17.5 13.7 4.5 22.7 12.5

10 18.0 13.2 5.9 23.1 11.6

11 17.5 13.8 4.4 22.6 12.6

12 18.7 14.6 5.1 24.2 13.5

13 19.4 7.0 7.8 22.1 8.6

14 17.3 13.6 4.0 22.4 12.9

15 17.7 13.5 4.4 22.7 12.7

16 17.2 11.7 6.9 21.9 11.5

17 18.1 13.2 5.1 23.0 12.3

18 19.1 6.7 7.4 21.5 6.6

19 17.4 13.8 4.4 22.6 12.6

20 17.9 8.0 8.5 21.4 8.7

21 18.7 13.4 5.1 23.6 12.6

Average 18.1 12.4 5.5 22.7 11.6

Standard deviation 0.7 2.4 1.4 0.9 2.14

of cycloaliphatic monomers such as cyclohexanedimethanol,
for example, stiffens the polyester chains (Turner et al.,
2001). The replacement of propylene glycol of polyester 3

by cyclohexanedimethanol involves an increase in the glass
transition temperature (20 Tg = 23.5◦C vs. 3 Tg = 16.3
◦C). The polyester 18 containing only cyclohexanedimethanol
has a glass transition temperature of 29.4◦C. The influence
of the number average molecular weight of the polyester was
also studied. The monomer composition of the polyesters
3, 16, 17 was kept constant while varying the molecular
weight. Obviously, the glass transition temperature increases
as the average molecular weight of the polymer increases
(Ebewele, 2000; Mark, 2007).

Hansen Solubility Parameter
Experimental Determination
In order to predict the solution viscosity of a polyester,
it is important to know its compatibility with different
types of solvent (Flory, 1942; Hillyer and Leonard, 1973;
Young and Lovell, 1996). Indeed, a polyester containing a
large number of polar groups adopt a different behavior
in an apolar solvent (i.e., xylene) or in a polar solvent
(i.e., water or ethanol). The Hansen solubility parameters
(Krevelen and Nijenhuis, 2009) were therefore measured
in order to be able to compare them with the solubility
parameters of the various solvents subsequently tested for
the prediction of viscosities. The measured parameters are
listed in Table 2.

The δd of the 21 unsaturated polyesters synthesized, does
not seem to be influenced by the variation of the monomers
used. The standard deviation is low compared to the average
of measured δd. Polyesters 13 and 18 have the highest
δd (19.4 and 19.1 MPa1/2). Both of these polyesters have
cyclohexanedimethanol units within their chains. The polyester
13 has 70mol% of cyclohexanedimethanol relative to total glycols
while polyester 18 is composed of 100% cyclohexanedimethanol.
These cycloaliphatic units have a high density of carbon relative
to other glycols which induces the high value of δd. The
number average molecular weight of polyesters has an influence
on δd. The higher the number average molecular weight, the
more δd increases. This can be explained by the fact that
an increase in the number of average units in the polyester
gives rise to a lesser importance of the functions allowing the
hydrogen bonds (alcohols or terminal acids) with respect to the
aliphatic functions.

The different δp measured have an average of 12.4 MPa1/2

with a standard deviation of 2.4 MPa1/2. There is therefore a
greater variation compared to the δd of the different polyesters.
Polyesters 1, 4, 12 have the highest δp values with respective
values of 14.2, 14.6, 14.6 MPa1/2. They also have the greatest
number of functional groups CH and quaternary C compared to
other polyesters. These two types of groups induce asymmetries
as well as an increase of the rigidity of the polyesters. These
functional groups prevent the packing of the polyester chains
by the irregularities they create within the polyester chain
(Ebewele, 2000).

Polyesters 2, 13, 18, and 20 have the lowest δp. Firstly polyester
2 has a structure composed only of maleate/fumarate units
for the acid part. This singularity increases the regularity of
the polyester chain with respect to a maleate/aromatic mixture.
This regularity brings the polyester chains closer together. It is
also composed mainly of neopentyl glycol which does not have
asymmetric carbons. The polyesters 13, 18, and 20 have a high
content of cyclohexanedimethanol at the origin of the low δp.
The cyclohexanedimethanol do not have asymmetry centers and
are therefore more regular than typical propylene glycol units
(Turner et al., 2001).

The variation of δh is more important. It has indeed a
significant standard deviation (1.4) with respect to its average
of 5.5 for the 21 unsaturated polyesters. Polyesters 2, 13, 18,
and 20 which have structures without asymmetric functions also
have the highest values of δh. However, these four resins also
have the lowest R0 of all the polyesters. They have the spheres of
the smallest solubilities and are therefore soluble in less solvents
than other polyesters (Krevelen and Nijenhuis, 2009). A small
solubility radius indicates that the polyester prefers to create
inter-molecular bonds instead of bonding with the solvent in
which it is in solution. In order to be able to create inter-
molecular bonds, however, the polyester must be regular and
free of asymmetric functions so that the chains are close to one
another (Young and Lovell, 1996; Ebewele, 2000; Delgove et al.,
2017). This proximity allows the establishment of inter-molecular
links. On the contrary, if the polyesters have many asymmetric
functions, the polyester chains will not be able to get closer.
Solventmolecules can thusmore easily establish interactions with
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the polymer chains. The cyclohexanedimethanol unit does not
have asymmetric functions. In polyester 13, 18, and 20 chains,
it allows the packing of the chains and thus the lowering of the
radius of the solubility sphere. Polyesters which possess a large
number of asymmetric functions, such as in propylene glycol
or dipropylene glycol, have their solubility ranges increased.
Indeed, polyester 1, composed of 80% propylene glycol and 20%
dipropylene glycol, has a solubility radius of 13.1, which is above
the average.

Unsaturated Polyesters Properties
Prediction by QSPR Method
Manipulations to get Hansen solubility parameters of polyesters
are repetitive and time-consuming. Each polyester should be
diluted in 40 solvents for 24 h and the solubilization results
should be interpreted for each solvent. Similarly, measurement
of the glass transition temperature requires a DSC and may
take more than 1 h for each polymer. It is therefore very
useful to develop an easy method to predict these properties
in order to save time. To provide a method without the
need for extensive analyzes for determination of the glass
transition temperature and Hansen parameters of unsaturated
polyesters, it was chosen to rely on the initial experimental
molar quantities of the monomers introduced into the reactor
to calculate the QSPR input descriptors. In order to obtain
the final conversion of the synthesized polyesters, the final
acid number was recorded for each synthesis. To keep reliable
predictions, this method of determination must therefore be
limited to unsaturated polyesters with similar monomers and
synthetic conditions to the study. Moreover, an additive method
already used in literature methods has been chosen (Stefanis
and Panayiotou, 2008; Krevelen and Nijenhuis, 2009) and
each theoretical structure of polyesters as a function of simple
functional groups were decomposed (-CH2-, -CH3, -COO-,
-CH2 =CH2-, -orthophtalic-, etc. ...). In order to obtain the
number of theoretical functional groups of a polyester, the
Carothers equation on the average degree of polymerization of
a step polymerization, nature and the quantity of the monomers
introduced into the polycondensation reactor were coupled. In
a first step, the stoichiometric ratio between the reagents called
r was calculated between the initial molar amount of carboxylic
acid groups on the initial molar amount of alcohol groups
provided by the diacids and glycols of the polycondensation
reaction. The conversion of the reaction called p was calculated
by the ratio of the molar amount of carboxylic acids per gram
of resin during the reaction to the initial molar amount per
gram of resin. This conversion is followed by the acid number
of the polycondensation reaction. The final conversion thus
corresponds to the remaining amount of carboxylic acids per
gram of resin over the initial amount per gram of resin. The
average degree of polymerization is obtained thanks to the
Carothers Equation (4).

DPntheo =
1+ r

1+ r − 2rp
(4)

Once the average degree of polymerization is obtained, the
polyester chain was divided into three distinct parts, the two
terminal diols from one end to the other of the chain, the
repeating units (diols+ diacids) and finally a diacid unit binding
one of the terminal diols with the first diol repeating unit. To
simplify the calculation, the ester functions were integrated in
the diacid patterns. The formula to calculate the number of
theoretical functional groups is given by Equation (5).

FGtheo = (
∑n

i=1
2.0× FGendgroup−glycoli ×%molglycoli)

+ (
∑n

i=1

(DPntheo − 3.0)

2
× FGrepetition unit−glycoli ×%molglycoli)

+

(

∑m

j=1

(DPntheo − 3.0)

2
×FGrepetition unit−diacidj ×%moldiacidj

)

+

(

∑m

j
FGlink−diacidj ×%moldiacidj

)

+ 2.0

×
(

100.0−%molmonoalcool
)

× FGOH (5)

The value %molglycoli corresponds to the molar part represented
by one of the glycols on all the glycols used in the reaction.
The value %moldiacidi is the equivalent for the diacid part of the
synthesis. As an example for the number of functional groups
in the diols, the propylene glycol comprises a –CH3 group, a -
CH2- group and a -CH- group. The -OH end-of-chain groups
must also be added. If the polycondensation reaction comprises
monofunctional alcohols, these must be added to the terminal
glycols in proportion to their molar ratios with respect to the
total molar quantity of the glycols of the reaction. The addition
of mono-alcohols also has an impact on the amount of alcohol
functional groups at the end of the chain. As regards the diacids,
itaconic acid comprises for example two -COO- groups, a -
CH=CH2 group and a -CH2- group. The list of functional groups
according to the different theoretical structures of the synthesized
unsaturated polyesters is given in Table S2.

Hansen Solubility Parameter Prediction by

QSPR Method
As for the determination of the glass transition temperature, a
QSPR method was also applied for the prediction of the δd, δp,
and δh components of the Hansen solubility parameters. The
values of the coefficients of the functional groups obtained by the
QSPR method are listed in Table 3.

The coefficients obtained for the δh prediction of unsaturated
polyesters confirm the hypotheses depicted in section
Unsaturated polyesters properties prediction by QSPR method.
Indeed, each -CH- and -C- group within the polyester chain,
respectively, decreases the δh of −52.9 and −80.5. These groups
decrease the linearity of the polyester chains and inhibit the
creation of hydrogen bonds between the chains. On the other
hand, the other groups such as -CH3, -cyclohexane-, -OH, and -
O- are the groups which bring themost regularity to the polyester
chains and thus increase the creation of polyester bonds.

Unlike the Stephanis-panayiotou or Hoftyzer-Van Krevelen
methods, the QSPR method effectively predicts whether a
polyester can be soluble in a wide range of solvents or not
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TABLE 3 | Coefficients of the linear regression for HSP prediction.

Functional Group δd δp δh Ra

-CH3 12.8 −22.4 26.5 −21.5

-CH2- 0.4 −0.25 0.7 −0.2

-CH- −26.0 44.56 −52.9 42.8

-C- −39.2 67.4 −80.5 64.9

-Cyclohexane- 37.7 −67.4 77.4 −64.36

-CH=CH- 0.4 −0.83 1.2 −1.1

-CH=CH2 0.2 −0.79 0.95 −1.1

-O- 12.8 −21.7 25.1 −20.8

-COO- 6 −10.4 11.8 −10.0

-OH 21.8 −34.8 43.2 −32.9

-Ortho- 1.5 −1.0 3.2 −1.0

via the determination of R0. This possibility of prediction is
critical in the industrial world in order to save handling time
and to be able to quickly develop new resins. Indeed, it will be
possible to know in advance the solubility or otherwise of an
unsaturated polyester in a new solvent whose Hansen parameters
are known. The influence of each functional group on the
solubility radius of the unsaturated polyesters is obtained by
means of the coefficients of the multiple linear equation. The
groups -CH- and -C- have positive coefficients, respectively, of
42.8 and 64.9. They therefore have a positive influence on the
solubility radius and allow solubilization of the polyesters inmore
solvents. As stated in section Unsaturated Polyesters Properties
Prediction by QSPRMethod, these groups introduce rigidity and
asymmetries into the polyester chain. This prevents the polyester
chains from associating and favors the polymer-solvent bonds.
On the contrary, the -cyclohexane-, -CH2-, and -CH3- type units
favor the association of the chains by their regularity. The groups
-O-, -COO-, and -OH are groups allowing the hydrogen bonds.
When the polyester is solubilized in a solvent which does not
have the capacity to form hydrogen bonds, the polyester will
therefore tend to form these hydrogen bonds interchain way and
thus promote the association and non-solubilization.

Two techniques described in the literature on the prediction of
Hansen solubility parameters of polymers, namely theHoftyzer—
Van Krevelen (Krevelen and Nijenhuis, 2009) and Stefanis—
Panayiotou (Stefanis and Panayiotou, 2008) methods, allow to
obtain the coefficient of each functional group to use them next
in a multilinear equation. The division of the structure of the
synthesized polyesters into simple functional groups has been
resumed to perform the parameters calculation for the three
methods. The comparison of the mean absolute error (MAE)
and correlation coefficient R² of the calculation compared to the
experimental values of these three methods is made in Table 4.

The MAE of the three prediction methods for δd are almost
equivalent. The QSPR method adapted to unsaturated polyesters
therefore has a limited interest on this parameter. However,
correlation coefficient for δdis much better for the QSPRmethod.
On the other hand, the QSPR method has a much lower absolute
error on the δp parameter than the two other methods described
in the literature as well as a better correlation coefficient than

TABLE 4 | Comparison of the MAE and correlation coefficient R² for the three

methods of HSP prediction.

δd δp δh

Methods MAE R2 MAE R2 MAE R2

Hoftyzer—Van Krevelen 0.7 0.08 10.2 0.00 5.5 0.49

Stephanis—Panayiotou 0.7 0.00 1.9 0.74 1.1 0.89

QSPR method (This work) 0.5 0.55 0.3 0.96 0.4 0.85

TABLE 5 | Evolution of the correlation coefficient (R²) depending of the descriptors

used for Tg modeling.

Descriptor(s) used R2 prediction vs. experimental

-Ortho- 0.37

-Ortho-, -CH3 0.56

-Ortho-, -CH3, -O- 0.67

-Ortho-, -CH3-, -O-, -CH- 0.72

-Ortho-, -CH3-, -O-, -CH-, -CH2- 0.74

-Ortho-, -CH3-, -O-, -CH-, -CH2-, -C- 0.93

the methods found in literature. Mean absolute error for δh is
the lowest with QSPR method but Stephanis-Panayiotou method
has a slightly better R² for δh prediction than the QSPR method.
Globally, the QSPR method is more accurate with unsaturated
polyester HSP prediction. The prediction method Hoftyzer-
Van krevelen is particularly suitable for high molecular weight
polymers of different natures which is not the case for oligomeric
unsaturated polyesters. The Stephanis-Panayiotou method is also
more reliable for this kind of polymers. Our QSPRmethod which
has been developed specifically on unsaturated polyester proved
to be more reliable than the two other models for prediction of
the Hansen solubility parameters of the same polymers.

Glass Transition Temperature Prediction by

QSPR Method
Methods of predicting the glass transition temperature already
exist in the literature (Katritzky et al., 1996; Bicerano, 2002;
Krevelen and Nijenhuis, 2009). However, in the same way as
for the prediction of Hansen parameters, these are optimal for
high molecular weight polymers. Thus, a QSPR method applied
to unsaturated polyesters may also be particularly suitable to
predict Tg . In order to correlate the impact of each functional
group on the glass transition temperature of the polyesters, a
multiple linear regression is set up again in order to obtain the
best coefficient of correlation R². The evolution of the correlation
coefficient as a function of the functional groups introduced into
the equation is described in Table 5.

With the six descriptors which are the -Ortho-, -CH3-, -O-, -
CH-, -CH2-, and -C- groups, the prediction of the glass transition
temperature of the synthesized unsaturated polyesters is effective
(Figure 1) and practical.

The mean absolute error is 2.7◦C. The list of coefficients
of each descriptor with respect to the regression equation is
given in Table 6.
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FIGURE 1 | Tg prediction accuracy vs. experimental via QSPR method.

TABLE 6 | Coefficients of the linear regression for Tg prediction.

Descriptor(s) Coefficient

Intercept −5.44

-CH2- −4.60

-CH3 −4.03

-CH- 11.54

-C- 18.79

-O- −7.92

-Ortho- 6.91

In addition to provide a linear equation allowing the
extrapolation of the glass transition temperature of unsaturated
polyesters with structures which are different from those already
tested, these coefficients validate the concepts stated in part 3.1.
The group -CH2- having a coefficient of −4.60, the aliphatic
chains such as adipic acid or 2-ethylhexanol do indeed have a
plasticizer effect within the polyester chains. It is the same for the
ether groups with, for example, dipropylene glycol or diethylene
glycol. The introduction of -CH3 groups within the polyester
also has a negative effect on the glass transition temperature
of the polyester (coefficient at −4.03) by the introduction of
free volume between the chains. The groups -CH- and -C- by
their steric hindrance have a mobility much smaller than a -
CH2- group or a -CH3 group. In the polyester chain, they
induce additional rigidity which results in an increase in the
glass transition temperature. The same principle also applies
when aromatic groups are introducedwithin the polyester chains.
Until now, this prediction model is suitable for unsaturated
polyesters with alcohol endings as well as aromatic groups
based on orthophthalic anhydride. In fact, polyesters with acid
terminations do not have the same hydrogen bonding capacity as
the alcohol chain-ends. This difference must certainly play a role
in establishing the glass transition temperature of polyesters. On
the other hand, the impact on the glass transition temperature
of the type of introduced aromatic acid, namely ortho-, iso-,
tere-phthalate, within the polyester is significant because of the
difference in steric hindrance. This prediction model does not

FIGURE 2 | Prediction accuracy of UP viscosity in solution according to the

QSPR method.

take into account these constraints. These should be studied in
a future work.

Unsaturated Polyester (UP) Viscosity
Prediction by QSPR Method
A QSPR method was also applied to see if it was effective
in predicting the viscosity of the unsaturated polyester resins
in the database. The input data correspond to the number
average molecular weight of the polyesterMn (obtained by SEC),
its dispersity index Ð (obtained by SEC), its glass transition
temperature Tg (obtained by DSC), the RED polymer-solvent
compatibility (obtained via HSPiP), the molar volume of the
solvent Mvol (obtained via HSPiP), the concentration of the
polyester in the solution. The target property of the QSPR
method is the measured viscosity of each entry in the database.
The coefficients of the multiple linear equation obtained from
the 80% of the database were used to predict the viscosities of
the remaining 20% of the database. The comparison between
predicted and experimental viscosities is shown in Figure 2.

The prediction accuracy of the solution viscosity of polyesters
by QSPR is low. The coefficient of correlation R² obtained by
QSPR is 0.56. Themean absolute error (MAE) is 0.22 Pa.s−1. This
inefficiency of the prediction is explained by the limitation of the
QSPRmodel to linear phenomena. However, the descriptors used
maybe have a non-linear influence. Neural networks are therefore
of great interest in this type of application and were tried in the
next step.

Setup of the Neural Network
Inputs Selection
In order to set up a neural network allowing the future
prediction of unsaturated polyesters viscosities in solution,
several descriptors have been chosen as factors having potentially
an impact on the viscosity. Seven descriptors were chosen,
namely the number average molecular weight Mn (polystyrene
equivalent) of the polyester (Ebewele, 2000; Mark, 2007), its
dispersity index Ð (Lundberg et al., 1960; Cross, 1969), its
glass transition temperature Tg (Young and Lovell, 1996;
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TABLE 7 | Linear correlation coefficient R² of each descriptor one by one on

unsaturated polyester viscosity in solution.

Descriptor R2

Concentration 0.495

Tg 0.383

Mn 0.328

Mvol 0.289

δH 0.097

–D 0.049

RED 0.037

Ebewele, 2000; Mark, 2007), the polyester-solvent compatibility
denoted RED (Flory, 1942; Hillyer and Leonard, 1973; Krevelen
and Nijenhuis, 2009), the molar volume of the solvent Mvol

(Louwerse et al., 2017), the δh of the solvent (Krevelen and
Nijenhuis, 2009) and the concentration of the polyester in the
resin (Hillyer and Leonard, 1973; Louwerse et al., 2017). This
choice was based on the existing literature describing the physical
chemistry of polymers. However, it is important to check that
these factors really have an impact and that they allow the neural
network to build a reliable model based on these factors. In a first
step, the impact of each descriptor is tested by calculating the
linear correlation coefficients of each descriptor one by one on
the measured viscosities (Table 7).

In order to test the quality of each descriptors in the neural
network, 80% of the database was used for the training of the
neural network and the remaining 20% to test the impact of
the number of descriptors used on the normalized squared error
obtained between the predicted viscosity and the experimental
viscosity. Firstly, the neural network is trained only with the
descriptor with the most important linear correlation coefficient
R² (Table 7). The normalized squared error (NSE) following the
training is calculated on both the training and test values. Then
the second descriptor with the most important R² was added to
the first one to see if it reduces the NSE. The third descriptor was
then added to see again if the NSE still improve. This procedure
was repeated until the integration of all the descriptors of the
database. This test proved that there were no useless descriptors
or no over-fitting during the test phase of the neural network. The
results of these trainings are shown in Figure 3.

The evolution of the NSE according to the descriptors added
for the training of the neural network makes it possible to see that
there are two descriptors which do not improve the performances
of the neural network. These two descriptors are the number
average molecular weight Mn (descriptor 3) and the dispersity
index Ð (descriptor 6). In order to check the performance of
the neural network without these two descriptors, a new test was
launched only with the remaining five descriptors (Figure 4).

Without the number average molecular weight Mn and the
dispersity index Ð, the decrease in NSE is much more regular.
In addition, the neural network goes from 7 descriptors in input
to only 5 while keeping identical performances. The reduction
of the descriptors number is beneficial for the neural network
since this may avoid over-fitting phenomena when there are too
many descriptors. In addition, from a practical point of view, the

FIGURE 3 | Evolution of the normalized squared error depending of

descriptors used for training.

FIGURE 4 | Evolution of the normalized squared error depending of

descriptors (without Mn and –D) used for training.

limitation of the number of descriptors required allows to set up
and enrich an important database by reducing the number of
information required for each manipulation.

Optimization of the Number of Neurons
The number of neurons in the hidden learning layer is an
important parameter to optimize (Díaz-Rodríguez et al., 2014).
Indeed, if there are too few neurons in relation to the complexity
of the problem, there is a risk of under-fitting due to a lack of
parameters. On the other hand, if there are too many neurons
hidden in the learning layer, there is a risk of over-fitting during
the prediction phase of the target property. In order to have a
correct number of learning neurons, the database was randomly
divided again with 80% of the inputs intended for learning and
20% for the test. Then the neural network was trained and then
tested with a growing number of learning neurons. Three training
and selection tests per number of neurons were performed to
obtain the lowest normalized squared errors. The results are
shown in Figure 5.

Between 0 and 3 learning neurons, under-fitting problems
occur because the errors found are the highest in the range of the
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FIGURE 5 | Evolution of the normalized squared error depending of the

number of neurons.

number of neurons tested. As the number of neurons increases,
the errors decrease until they become stable. Similar tests have
been conducted up to 40 hidden learning neurons without errors
in the learning or testing phases indicating the occurrence of
an over-fitting phenomenon. However, the multiplication of the
number of neurons also implies the increase of the number of
calculations and therefore a greater need for computation needs.
As part of this work, the number of neurons was set at 12.

Training of the Neural Network
The neural network was trained with 80% randomly selected
from the database created. The neural network is composed
of 5 inputs, namely the glass transition temperature Tg of the
polyester, the RED (polymer-solvent compatibility), the δh of
the solvent, its molar volume Mvol and the concentration of the
polyester in the solvent. The hidden learning layer has 12 neurons
and consequently 85 synapses. The neural network used in this
study is illustrated in Figure 6.

The activations functions used are the hyperbolic tangents.
The training algorithm chosen is the quasi-Newton method
(Setiono and Hui, 1995) with a normalized squared error.
This algorithm is based on Newton’s method but does not
require the computation of the second derivative to find the
local minimum of the error. Instead, the quasi-newton method
computes an approximation of the inverse Hessianmatrix at each
iteration of the algorithm, by only using gradient information. A
regularization coefficient of 0.01 was applied in order to have a
better generalization of the model.

Influence of Each Descriptor on Viscosity
Once the neural network is trained, it is possible to isolate
the influence of each descriptor on the viscosity by fixing the
others by their average. This provides valuable information
for understanding the phenomena influencing unsaturated
polyester viscosity in concentrated solution. The results are
shown in Figure 7.

The evolution of the viscosity as a function of the polyester
concentration in the solution is represented by Figure 7A.
This model obtained via the neural network corresponds to

FIGURE 6 | Neural network used for unsaturated polyester resin viscosity

prediction Input data are introduced through yellow neurons, the 12 learning

neurons are represented in blue. One neuron in a second layer sum up linearly

the outputs of the first layer. The orange neuron is the viscosity output neuron.

the models conventionally described in the literature (Yang,
1996). Indeed, taking into account other fixed descriptors, the
viscosity of the polyester in solution slowly changes to 58.5%
by weight of the polyester and the slope increases substantially
thereafter. This phenomenon is due to the overrun of the critical
concentration of the polyester in a solvent (Takahashi et al.,
1985). At a concentration below the critical concentration, the
number of chain entanglements of polymers is low with respect
to concentration. While this number of entanglements increases
drastically above the maximum critical concentration which
causes the increase in the viscosity slope after 58.5% by weight
of polyester in the solution.

The influence of polymer-solvent compatibility (RED)
on viscosity is shown in Figure 7B. The viscosity of the
polyester decreases progressively when the RED goes from 0.2
to 0.7 and then increases again from 0.7 to 1. This evolution
of the viscosity can be explained from the point of view of the
hydrodynamic volume occupied by the polymer in solution.
When it is a dilute solution of polymer, the more it will be
compatible with its solvent, the higher its hydrodynamic volume
will be. Indeed, the number of polymer-solvent interactions
being de facto high, the polymer chains will be relaxed. The
entanglements of chains in the solution will therefore be
maximized and the viscosity of the polymer in solution will
increase. On the contrary, if the solvent is very poor compatible
with the polymer, it will minimize these interactions with
the solvent. It will shrink in the form of a globule, reduce its
hydrodynamic volume, generate less entombment and thus
reduce the viscosity in solution (Hillyer and Leonard, 1973).
It is this phenomenon which explains the decrease of the
viscosity for the RED from 0.2 to 0.7. However, in the case of
unsaturated polyester resins, the polymer concentrations are
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FIGURE 7 | Influence of each descriptor used in the neural network on the unsaturated polyester viscosity in solution [(A) influence of concentration; (B) influence of

RED; (C) influence of δh; (D) influence of Tg; (E) influence of Mvol ].

high. When the solvent become incompatible, the globule-like
polymer chains will agglomerate to further minimize interactions
with the solvent. This agglomerate of globule therefore has a
larger hydrodynamic volume than the isolated globule, which
implies a slight increase in viscosity from 0.7 in RED up to 1.
This phenomenon has already been described in the literature
(Burrell, 1973; Hillyer and Leonard, 1973) but the use of a neural
network allows to find this result thanks to the processing of the
data obtained.

Regarding the influence of δh on the polyester viscosity
in solution represented in Figure 7C, the viscosity decreases
between 4.1 and 7.0 MPa1/2 and then increases significantly
between 7.0 and 13.7MPa1/2. This phenomenon has already been
described in the literature by Nelson who has taken over the
classification of solvents from Pimentel and McClellan (Burrell,
1973). The solvents are classified in four categories namely: (a)
proton donors (chloroform for example), (b) proton acceptors
(ketones, esters, ethers, aromatic hydrocarbons for example),

(c) proton donors and acceptors (alcohols, carboxylic acids,
water for example), and (d) absence of hydrogen bonds (such
as aliphatic hydrocarbons). The solvents used in the database
of polyesters in solution with δh values between 4.1 and 7.0
MPa1/2 are in category (b) some non-exhaustive examplesof
which are styrene (δh = 4.1 MPa1/2), cyclohexanone (δh = 5.1
MPa1/2), methyl methacrylate (δh = 5.4 MPa1/2), acetone (δh =
7.0 MPa1/2). Since the polyesters are acceptors and donors of
hydrogen bonds (terminal alcohol functions and ester functions),
the proton acceptor solvents allow the hydrogen bonds between
the polyester chains to be broken. The slight decrease in the
viscosity between 4.1 and 7.0MPa1/2 is due to the greater capacity
of solvents such as ketones, esters or ethers (δh = 5.0–7.0MPa1/2)
to accept hydrogen bonds with respect to typical solvents such as
aromatic hydrocarbons (δh = 4.0–5.0 MPa1/2). On the contrary,
the solvents possessing the higher δh belong to category (c) and
are both acceptors and proton donors (acetic acid δh = 13.5
MPa1/2, benzyl alcohol δh = 13.7 MPa1/2). Before they can break
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the established hydrogen bonds between the polyester chains, the
solvents with high δh must first break their own hydrogen bonds.
This phenomenon leads for the polyester a longer and harder
dissolution in these kind of solvents. In addition, there is also
formation of a denser network of hydrogen bonds between the
polyester chains and the solvent molecules. This network is at
the origin of the drastic increase in viscosity for solvents with δh
between 7 and 14 MPa1/2.

The glass transition temperature of the polyester also
influences the viscosity of the unsaturated polyester in solution
(Figure 7D). Indeed, the higher the glass transition temperature
(constant molecular weight), the higher the viscosity. The glass
transition temperature is directly related to the rigidity of the
chain. Thus, when the polyester chains are in solution at high
concentration, the energy required for the mobility of the rigid
chains will be greater compared to flexible chains. Rigid chains
will therefore have a higher viscosity with respect to these flexible
chains (Berry and Fox, 1968).

Regarding the influence of the molar volume of the solvent
(Figure 7E), the viscosity increases as the molar volume of
the solvent increases (Flory, 1942; Louwerse et al., 2017). This
evolution can be explained by the entropy of mixing (solvent +
polymer) (Equation 6).

1Smix = −R× (xlnx+ (1− x) ln (1− x)) (6)

The value x is the molar fraction of the polymer and R is the
ideal gas constant. Solvents with small molar volumes give a
greater entropy of mixture per liter of solvent. They are therefore
better solvents.

Prediction of Unsaturated Polyester
Viscosity in Solution With Neural Network
In order to compare the prediction efficiency of the neural
network with the QSPR method, the neural network was trained
with the same 80% of the database used for the QSPR method.
The remaining 20% of the database was tested to compare
the predicted viscosity with the experimental viscosity. The
prediction accuracy of the trained neural network is represented
in Figure 8.

A correlation coefficient R² = 0.88 was obtained thanks
to the trained neural network. The mean absolute error is
0.115 Pa.s−1. The prediction efficiency is much higher with the
neural network compared to the QSPR method. This method is
therefore particularly suitable for this type of application.

K-Fold Cross-Validation
K-Fold cross-validation is a method of validating the neural
network to determine predictability. Indeed, all entries in the
database are used to check the model. The database is divided
into K fractions. In this work, the database was divided into 5
fractions (K = 5). The neural network was initially trained with
4 fractions of the database. The fifth fraction, which was not used
for training, was used for the neural network prediction test.
This operation was repeated 5 times with a different K fraction
each time for the test phase. The averages of the correlation

FIGURE 8 | Prediction accuracy of UP viscosity in solution according to the

trained Neural Network.

TABLE 8 | Results of the K-fold cross validation (K = 5) method for the viscosities

prediction.

Viscosities range (Pa.s−1) R2 MAE (Pa.s−1)

0.003–1.889 0.85 0.116

coefficients R² and the mean average error (MAE) obtained are
given in Table 8.

The R² and MAE values obtained by the K-fold cross
validation method allow the validation of the neural network
stability as well as its ability to effectively predict the viscosity of
unsaturated polyester resins. The current database includes 220
entries divided between 179 entries for training and 41 entries
for testing the trained neural network. The latter has already
shown to be very effective compared to aQSPRmodel. It might be
interesting to extend this comparison by expanding the database.
To do this, other polyester resins can be synthesized to teach
the neural network new structures and new solvents can also
be added.

CONCLUSION

The viscosity of unsaturated polyester resins is a very important
criterion in the industrial field. Indeed, a viscosity out of
specifications can interfere with the handling of the resin and
make it impossible to process. This viscosity depends on the
chemical structure of the polyester, the nature of the solvent and
the concentration of the polyester in solution. The great diversity
of existing diols and diacids as well as the current growth of
the number of reactive diluents therefore implies a variation of
the viscosity which is extremely difficult to predict simply by
mathematical or physical laws.

Firstly, in order to avoid experimental input descriptors and to
be able to predict the viscosity of polyester resins from theoretical
and easily accessible values, a QSPR method has been applied
to predict Hansen parameters as well as temperature of glass
transition of unsaturated polyesters. This method has proved
to be particularly effective compared to other existing methods
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in the literature because these described methods are based on
high molecular weight polymers. However, the QSPR method
has proved ineffective for predicting the viscosity of unsaturated
polyesters in solution. A classical linear prediction method does
not allow non-linear phenomena to be taken into account. It is
therefore wise to use machine learning tools.

In this work, a neural network has been set up to verify the
ability of such a machine learning process to predict the viscosity
of these resins from 21 unsaturated polyesters and 220 mixtures
with solvents. This network composed of five descriptors and
12 learning neurons allowed the successful prediction of the
viscosity of 41 test resins with an R² correlation coefficient of 0.88
and an MAE of 0.116 Pa.s−1. These results are very promising
given the amount of data available to date. The regular update
of the database with the manipulations carried out over time will
undoubtedly allow the improvement of the prediction.
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