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One of the obstacles to the wider practical use of the multisensor systems for gas
and liquid analysis—electronic noses and tongues, is the limited temporal validity of the
multivariate calibration models. Frequent recalibration of multisensor systems is often
excessively costly and time consuming due to the large number of necessary reference
sample and their limited availability. There are several circumstances that can invalidate
multivariate calibration model. The most common problem in the case of sensor systems
is temporarily drift or gradual change of sensor characteristics occurring during sensor
exploitation. Another common situation is a change in the composition of the analyzed
samples that also alters sensor response due to the matrix effects. Finally, a necessity to
replace sensors in the array or to transfer calibration model from one sensor set or one
type of sensors to the other can arise. As an alternative to the recalibration of the sensor
system using full set of calibration samples, drift correction and calibration update has
been proposed. The main approaches can be summarized as follows:
- Drift correction that consists in modeling sensor temporarily drift or drift direction using
a series of measurements and then using it for correcting new data.

- Calibration standardization that aims to correct new measured data by eliminating
new variation. For this purpose, a relationship between two experimental conditions
is established using a reduced set of samples measured at both conditions
(standardization subset).

- Calibration update that consists in incorporation of new sources of variance in the
calibration model by recalculating it using initial calibration samples and reduced set of
samples measured at new conditions. The latter can be either standard or unknown
samples.

This paper presents an overview of different methods reported for the drift correction
and calibration update of the electronic noses and tongue and discussion of the practical
aspects of their implementation.

Keywords: calibration update, calibration transfer, drift correction, electronic nose, electronic tongue

INTRODUCTION

The electronic noses and electronic tongues are multisensor systems based on arrays of
cross-sensitive or partially selective chemical sensors and data processing tools. They have
been shown to be promising analytical instruments for a wide range of applications including
environmental, food and clinical analysis among others (Schaller et al., 1998; Winquist et al., 2002;
Legin et al., 2003).
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Chemical sensors as any analytical instruments require regular
calibration to account for the changes in their response and
ensure their proper functioning. Alterations in the instrumental
response may result from the changes of the environmental
conditions, composition of the measured samples or device
characteristics. The latter is of particular relevance for the
chemical sensors that are prone to gradual change of their
characteristics or temporarily drift occurring during their
exploitation. While regular re-calibration using standards is
an established procedure for the individual sensors, as e.g.,
calibration of pH glass electrode using a series of buffer
solutions, it becomes problematic in the case of multisensor
systems. Both electronic noses and tongues include partially
specific sensors that produce non-selective signals in the
multicomponent media, such as almost all real world samples.
Therefore, they rely on multivariate calibration models for
interpreting their responses and relating them to concentration
or property of interest. Multivariate calibration requires large
number of standard samples, some of which could be of
limited availability. Consequently, frequent recalibration of
sensor arrays is prohibitively costly both with respect to the
necessary time, availability of standard samples and labor.
Alternatively, calibration transfer or update requiring small
number of standard samples or no standard samples at all can be
implemented.

Impracticability of re-calibration also applies to other
analytical techniques that produce non-specific signals in
multicomponent samples, the most common example of these
being near infrared (NIR) spectroscopy. As NIR spectroscopy
is widely applied to the industrial monitoring, significant efforts
have been directed to the development of the calibration transfer
and update techniques for the NIR spectroscopic instruments
(Feudale et al., 2002). However, fewer works addressed this
issue for the chemical sensor arrays. In the field of gas sensor
arrays main efforts have been directed to the drift filtering and
compensation (Marco and Gutierrez-Galvez, 2012; Deshmukh
et al., 2015; Liang et al., 2018) while very few papers dealt with
calibration update for the electronic tongue systems.

It should be noted that several measures have been
recommended to prolong validity of the calibration models.
These include optimization of the sensor manufacturing
procedures and tighter sensor quality control, which improve
stability of the sensing layer, and development of the measuring
procedures, including sensor cleaning and conditioning
for sensing surface regeneration, and controlled measuring
conditions, which improve repeatability of the sensor signal
(Korotcenkov and Cho, 2011). Notwithstanding importance of
these factors for the proper functioning of the sensors, in practice
they are not sufficient to completely avoid recalibration.

This paper will focus exclusively on the calculation based
techniques of the drift reduction and calibration update and will
present an overview of different methods reported for the drift
compensation, calibration update and transfer for the electronic
noses and tongues and discussion of the practical aspects of these
methods’ implementation. Described methods are summarized
in the Table 1.

FACTORS INVALIDATING CALIBRATION
MODELS

There are several circumstances that can invalidate multivariate
calibration model comprising changes in the sensor
characteristics due to the drift or sensor replacement, changes
of the environmental conditions or composition of measured
samples. The most common problem in the case of sensor
systems is temporarily drift or gradual change of sensor
characteristics occurring during its exploitation. Causes of the
drift vary depending on the employed transducer and sensing
material with each type of sensor having its particular Achilles’
heel.

Conductometric metal oxide gas sensors (MOX) are the most
commonly applied in the electronic nose systems due to their low
cost and sensitivity to a wide range of gases (Meixner and Lampe,
1996). Sensing layer of MOX sensors is n-type semiconducting
metal oxides, of which tin dioxide is the most common. Sensing
mechanism of MOX sensors is based on catalytic oxidation of
analyte gases on the sensing layer consisting of contiguous small
metal oxide grains. Oxygen absorption by the grains creates
depletion layer on their surface, increasing their resistance and,
consequently, resistance of the entire sensing layer. MOX sensors
respond to the volatiles capable of absorbing and undergoing red-
ox reaction on the sensor surface. Stability of the sensor response
is thus conditioned by the two main effects: changes of the
morphology of the sensing layer and its poisoning (Korotcenkov
and Cho, 2011). Structural changes may include changes of
the size and geometry of the metal oxide grains leading to
the alterations in their conductivity and catalytic properties.
Cracking of the metal oxide film after large number of operation
cycles (Sharma et al., 2001) and phase separation between metal
oxide and additives when they are used are other factors affecting
sensor stability (Wang et al., 2007). Finally exposure to the
compounds capable to irreversibly bind to metal oxides results
in the inhibition of the catalytic activity or poisoning (Meixner
and Lampe, 1996; Pijolat et al., 1999). Nitrogen, phosphorus
and sulfur containing compounds are typical examples of such
inhibitors.

Another group of sensing materials commonly employed
in the electronic noses are conducting polymers, such as
polypyrrole (PPy), polyaniline (PANI), polythiophene (PTh)
and their derivatives (Bai and Shi, 2007; Bernabei et al.,
2016). Wide adoption of intrinsically conducting polymers in
gas sensing is due to their high sensitivity, good mechanical
properties allowing for easy sensor device manufacturing and
low operation temperature. Conducting polymers also prone to
temporal changes of both baseline and sensitivity (Schaller et al.,
2000; Kondratowicz et al., 2001; Kemp et al., 2006). Irreversible
changes of response are typically attributed to de-doping and
consequent decrease of conductivity of the polymer, which can
be provoked by the nucleophilic attack on the carbon back
backbone by some volatile compounds (Kondratowicz et al.,
2001; Kemp et al., 2006) or oxidation (Schaller et al., 2000).
Similar process i.e., partial conversion of the polymer from
electrically conducting into non-conducting state have been
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TABLE 1 | Summary of calibration transfer and drift reduction methods.

Method Sensor technology Task Model N transfer

samples

References

COMPONENT CORRECTION

PCA MOX gas sensors
Voltammetric metal liquid
sensors

Classification,
recognition
Recognition

Artursson et al., 2000;
Holmin et al., 2001

ICA QMB, MOX and polymeric gas
sensors

Recognition PCA Di Natale et al., 2002;
Kermit and Tomic, 2003

CPCA Polymeric gas sensors Classification,
recognition

Ziyatdinov et al., 2010

CCA and PLS MOX gas sensors Classification Gutierrez-Osuna, 2000

OSC Polymeric gas sensors Classification k-NN Padilla et al., 2010

DRIFT MODELING

DWT MOX gas sensors Recognition PCA Zuppa et al., 2007

ARMA MOX gas sensors Sensor response Zhang and Peng, 2016

Kalman filter MOX gas sensors Drift prediction Zhang and Peng, 2016

Chaotic time series MOX gas sensors Drift prediction Zhang et al., 2013

SIGNAL STANDARDIZATION–CALIBRATION TRANSFER BETWEEN INSTRUMENTS

SWS Potentiometric liquid sensors Quantification PLS 10 Khaydukova et al., 2017b

DS + PLS QMB gas sensors Recognition PCA 72 Tomic et al., 2002

DS + Robust
regression

MOX gas sensors Classification ANN 27 Deshmukh et al., 2014

DS + MLR Polymer gas sensors
MOX gas sensors
Potentiometric and voltammetric
liquid sensors
Potentiometric liquid sensors

Classification
Quantification
Quantification
Quantification

DFA
SVR
PLS
PLS

8
5
3
10

Balaban et al., 2000;
Fonollosa et al., 2016;
Khaydukova et al., 2017a,b

DS + ANN QMB and polymer gas sensors Recognition PCA 138 Shaham et al., 2005

PDS + MLR MOX gas sensors Quantification SVR PLS 5
5

Fernandez et al., 2016;
Fonollosa et al., 2016

WPDS + SEMI +
robust regression

MOX gas sensors Classification and
quantification

6 Yan and Zhang, 2015

DS + RWLS MOX gas sensors Quantification BPNN 5 Zhang et al., 2011

Tikhonov regularization Potentiometric liquid sensors Quantification PLS 10 Khaydukova et al., 2017b

SIGNAL STANDARDIZATION–CALIBRATION UPDATE

SWS Potentiometric liquid sensors Classification and
quantification

LDA, LR,
PLS-DA,
PLS

3
10

Sales et al., 1999; Panchuk
et al., 2016

DS + MLR Potentiometric liquid sensors Classification and
quantification

LDA, LR,
PLS-DA,
PLS

3 Panchuk et al., 2016

DS + PLS Potentiometric liquid sensors Quantification PLS 4–7 Rudnitskaya et al., 2017

DS + ANN Potentiometric liquid sensors Quantification PLS 4–7 Rudnitskaya et al., 2017

PDS + PLS Potentiometric liquid sensors Quantification PLS 3–10 Sales et al., 1999, 2000

MODEL EXPANSION–CALIBRATION TRANSFER

TCTL
TCTL + SEMI

MOX gas sensors Classification and
quantification

LR, RR 6 Yan and Zhang, 2016a

MODEL EXPANSION–CALIBRATION UPDATE

Weighting Potentiometric liquid sensors Quantification PLS 4–7 Rudnitskaya et al., 2017

Tikhonov regularization Potentiometric liquid sensors Quantification RR 4–7 Rudnitskaya et al., 2017

Joint-Y PLS Potentiometric liquid sensors Quantification PLS 4–7 Rudnitskaya et al., 2017;
Cruz et al., 2018

TCTL
TCTL + SEMI

MOX gas sensors Classification and
quantification

LR, RR 10 Yan and Zhang, 2016a

DAELM-S MOX gas sensors Classification 20–30 Zhang and Zhang, 2015

(Continued)
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TABLE 1 | Continued

Method Sensor technology Task Model N transfer

samples

References

SAELM-T MOX gas sensors Classification 40–50 Zhang and Zhang, 2015

DCAE MOX gas sensors Classification 10 Yan and Zhang, 2016b

ADAPTIVE MODEL EXPANSION

SOM MOX gas sensors
Simulated data with drift

Classification
Classification

SOM
SOM

Di Natale et al., 1995;
Marco et al., 1998

mSOM Polymeric gas sensors Classification mSOM
+ LVQ

Distante et al., 2002; Zuppa
et al., 2004

A2 INET MOX gas sensors and simulate
data

Classification k-NN de Castro and von Zuben,
2002; Martinelli et al., 2013,
2014

Unsupervised selection QMB gas sensors Classification LDA Magna et al., 2018

Semi-boost, COREG MOX gas sensors Classification BPNN De Vito et al., 2012

System identification MOX gas sensors Classification Box-
Jenkins
model +
recursive
LS

150 Holmberg et al., 1996, 1997

Classifier ensembles MOX gas sensors Classification SVM Vergara et al., 2012

GLOBAL CALIBRATION

Fuzzy inference system MOX gas sensors Quantification PLS Šundić et al., 2002

MOX gas sensors Classification PLS-DA
+ k-NN

Solórzano et al., 2018

identified as a source of irreproducibility of potentiometric
chemical sensors employing conducting polymers as a solid inner
contact (Lindfors and Ivaska, 2004; De Marco et al., 2008, 2009;
He et al., 2015). Polymer conversion in this case is caused by the
protonation/deprotonation and red-ox reactions occurring in the
water layer forming between sensitive membrane and inner solid
contact (De Marco et al., 2008).

Two main types of sensors employed in the electronic tongues
are potentiometric and voltammetric. Voltammetry is based
on the measurements of current generated by reduction and
oxidation of species on the electrode surface. Fouling of the
electrode surface by the reaction products leads to its inhibition
and frequent renewal of the electrode surface is requires to
maintain its active state (Štulík, 1992). Mechanical, thermal
and electrochemical pre-treatment procedures were shown to be
effective for the restauration of the electrode surface properties
(Holmin et al., 2004; Olsson et al., 2006). Thorough polishing
of the metal electrodes is effective for restoration of electrode
surface and drift removal (Cavanillas et al., 2015). When
mechanical polishing is not feasible, i.e., in the case of thin
film sensors, flow-through set-ups, etc., mathematical methods
to account for the drift are necessary (Holmin et al., 2001).

Fouling is less critical for the potentiometric chemical sensors
that function in the zero-current measuring set-up, however, it
may still occur upon sensor exposure to certain substances. For
example, poisoning of the solid sensors through formation of
insoluble compounds on their surface or absorption of lipophilic
compounds by the polymeric membranes have been reported
(Vlasov and Bychkov, 1987; Lisak et al., 2016). Potentiometric

sensors with polymeric membranes, mainly plasticized polyvinyl
chloride (PVC), typically display rapid drift of their signal
during first days of their use, which is attributed to the
equilibration processes between water and membrane phases.
Further, gradual leaching of the active compounds, ionophores,
from the sensing membrane, may induce low long-term drift
(Lindfors and Ivaska, 2004). In the potentiometric sensors with
glass membranes potential-generating processes occur at the
interface between solution and modified surface layer, which
is formed as a result of oxidation and partial destruction
of glass network by solution (Vlasov and Bychkov, 1987).
Interaction with compounds present in the analyzed media may
lead to changes in the modified surface layer, which provokes
alteration of the sensor response or drift (De Marco et al.,
2003).

Another factor affecting sensor characteristics is fluctuations
of the temperature and humidity in the environment, in which
sensors are deployed. Effect of these two parameters is especially
pronounced in the case of gas sensors. In particular, at some
temperature ranges change of the baseline conductivity of
conducting polymer sensors provoked by the change of the
temperature for 1◦Cmay be comparable of the sensor response to
the analyte (Schaller et al., 2000). Liquid sensors are less sensitive
to the temperature fluctuations. For example, while response
of potentiometric sensors is dependent on the temperature
according to the Nernst equation, potential changes provoked by
temperature alterations within ca. 4◦C are considered negligible,
therefore less strict temperature control during measurements is
required.
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Clearly as drift causes are different, its manifestation in
the sensor system response will also differ. Therefore, several
strategies were put forward to deal with sensor drift.

DRIFT CORRECTION FOR KNOWN
INTERFERENCES

When factors causing sensor drift are not only known but can
also be easily quantified, as is the case with effects of humidity and
to the less extent temperature fluctuation on theMOX gas sensors
response, these factors can be measured and used to compensate
for drift they induce. Temperature and humidity sensitivity of the
sensors may be calculated and used for sensor signal correction
(Kashwan and Bhuyan, 2005; Hossein-Babaei and Ghafarinia,
2010; Mumyakmaz et al., 2010; Huerta et al., 2016).

DRIFT COMPENSATION AND MODELING

Drift compensation and modeling methods presume that drift
can be separated from the analytical signal and modeled and
obtained model can be used for the correction of the sensor array
response in new samples.

Group of methods called Component Correction (CC) is
based on the assumption that sensors of the array have similar
(correlated) behavior with the respect to drift and drift of
sensor array has a specific direction, which is the same for all
measured samples and reference gas. Therefore, drift correction
can be done by identifying and modeling drift direction in the
reference samples and subtracting it from the new data. CC
was implemented using a number of techniques with PCA and
Partial Least Square regression (PLS) being the most common
(Artursson et al., 2000; Gutierrez-Osuna, 2000).

A very simple linear drift correction of sensor signals using
regularly measured standard sample has been proposed in
Haugen et al. (2000). This approach was tested on the data of the
monitoring of fish andmilk spoilage using theMOX sensor array.
The advantage of this method is its obvious simplicity, though for
its proper functioning sensor drift should be linear over time.

PCA applications to drift modeling is straightforward: if the
sensor responses in the reference samples have significant drift,
the first components in a PCA model calculated using only
measurements in reference sample will describe the direction of
the drift (Artursson et al., 2000). Therefore, loading vector pd
of the PCA model calculated in reference sample is attributed
to the noise and used to calculate projection td of the new
measurements Xn. Drift correction is performed by subtracting
drift component from the new measurement matrix:

Xcorr
n = Xn − tdp

′
d (3.1)

Similar reasoning is underlying PLS application for drift
compensation but instead of considering direction of the
maximum variance of the sensor responses in the reference
samples as a drift, changes in the sensor array response in
reference samples are modeled as a function of time. PLS model
is calculated using sensor responses in the reference samples as

an Xd matrix and time as Y matrix. Resulting loadings pd and
weights wd are used to calculate projection of newmeasurements:

td = Xnwd
(

p′dwd
)−1

(3.2)

New measurements are corrected for drift by extracting drift
component:

Xcorr
n = Xn − tdp

′
d (3.3)

Both PCA and PLS model for drift correction may include
one or several latent variables. Important issues for the CC are
scaling and transformation, which must be the same for both
reference and analyzed samples. Outliers, which can skew drift
direction, should be detected and removed prior to the drift
model calculations.

CC has been successfully applied to the drift correction of
MOX sensor array exposed to the 4 gases (hydrogen, ammonia,
ethanol, and ethene) and their mixtures during 2 months
period. Mixture of 4 gases at their mean concentration levels
was measured throughout experiment as a reference. Both
recognition and classification performance of the electronic nose
was improved after drift correction compared to the uncorrected
or corrected by multiplicative drift correction data (Artursson
et al., 2000).

CC is based on an assumption that drift directions of sensors
in reference gas and all measured samples are highly correlated. If
this assumption does not hold, drift correction will be inefficient
and, furthermore, some analytical information will be removed
together with drift. A generalization of PCA to several classes
called Common Principal Component Analysis (CPCA) has been
proposed to take into account different behavior of sensors
in different samples (Ziyatdinov et al., 2010). CPCA calculates
loading vector p so that it expresses common covariance for
all classes (gases) instead of variance observed in the reference
gas. Detailed description of CPCA can be found in (Flury,
1984). CPCA was applied to the drift correction of the data set
measured in ammonia, n-butanol and propanoic acid at different
concentration levels by an array of 17 polymeric sensors over the
period of 7 months. The first 1,000 and 1,200 measurements out
of 3,484 were used for drift modeling by CPCA and PCA. Better
results were obtained using larger calibration data set with CPCA
performing better than both PCA and uncorrected data.

Drift correction using PLS and Canonical Correlation
Analysis (CCA) that employs both measurements in washing
and reference gas sample has been described in Gutierrez-Osuna
(2000). Drift reduction algorithm consisted in three steps:

1. Find linear projections x̃ and ỹ of measurements in wash and
reference gas, x, and samples, y, that are maximally correlated:
{A, B} = argmax

[

ρ(AxBx)
]

;
2. Fit a regression model ypred = Wỹ by ordinary least squares:

W = argmin
(

y−Wỹ
)2 ;

3. Deflate y and use the residual z as a drift corrected data for
classification purposes:

z = y− ypred = y−WBy.

Frontiers in Chemistry | www.frontiersin.org 5 September 2018 | Volume 6 | Article 433

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Rudnitskaya Multisensor System Calibration Update

PLS and CCA were used to find projection matrices A and B in
the first step of the algorithm. Drift correction was applied to
the measurements made by an array of 10 MOX sensors in four
spices’ headspace during 3 months. Success of drift correction
depended on the size of the calibration data set and on the
period of time elapsed between last calibration measurement and
test. Both PLS and CCA could maintain correct classification
rate of 95% for up to 10 consecutive measurement sessions
when at least 5 days of measurements were used for calibration.
This was significant improvement in comparison to uncorrected
data, for which classification rate varied between 70 and 80%
in the same settings. However, increase of the time elapsed
between calibration and test measurements was shown to have
detrimental effect on the efficiency of drift correction.

CC using PCA was employed for the drift reduction of the
voltammetric electronic tongue and compared to the additive
correction (Holmin et al., 2001). Additive correction consisted in
subtraction of the sensor signal measured in the reference sample
from the signals measured in the analyzed samples. An electronic
tongue comprising 4 metal electrodes (gold, iridium, platinum,
and rhodium) was used for measurements in the green and black
tea brews, apple juice and process water from pulp and paper
plant. Solution of potassium hexacyanoferrate(II) in phosphate
buffer was used as a reference solution for drift modeling. Both
CC and additive drift correction were effective in drift reduction
for the studied data set as sensor drift in this experiment was
linear.

Modification of PCA called correlated information removing
based interference suppression (CIRIS) has been suggested for
background correction of the electronic nose in (Liang et al.,
2017). CIRIS consists in applying PCA to the measurements
in reference gas and analyzed samples individually. The
1st PC calculated in the reference gas describes to the
interference/drift of the sensor signals and corresponding loading
vector corresponds to the main direction of this interference.
Loading vector calculated in the analyzed samples, which is
most correlated with that interference direction, is used for data
correction. CIRIS was applied for correction of measurements
with an array of 30 tin oxide sensors in the headspace 8 cultured
bacteria, which are commonly associated with wound infections.
Headspace of aqueous ethanol solution was used as a reference
gas. CIRIS improved correct classification rate compared to the
uncorrected data from 85 to 93%.

Drift filtering using OSC has been reported in (Padilla et al.,
2010). The main idea of OSC consists in removal of the variance
not correlated to a vector (or matrix) Y. This is done by
constraining the deflation of non-relevant information of X in
such a way that only information orthogonal to Y is removed
(Wold et al., 1998). OSC filtering was applied to the data set
consisting of measurements with an array of 17 conductive
polymer sensors in ammonia, propanoic acid and n-butanol over
the period of 10 months. Measurements made during the first 15
days were used for calculation of OSC model and optimization
of a number of components to remove, and for calculation of
classification model using k-NN. Use of OSC filter permitted
to maintain correct classification rate between 80 and 98% for
the test data set compared to 64–93% for uncorrected data.

PCA correction performed slightly worse than OSC with correct
classification rate between 78 and 97% for test data.

Another method for compensation of the drift that has a
specific direction is Independent Component Analysis (ICA) (Di
Natale et al., 2002; Kermit and Tomic, 2003; Tian et al., 2012).
Similarly to PCA, ICA decomposes matrix of sensor signals X as
X = AS, where A is called mixing matrix and S is a matrix of
independent components or source signals (Hyvärinen and Oja,
2000). ICA differs from the orthogonal methods such as PCA in
that extracted latent variables are statistically independent, i.e.,
information contained in one independent component cannot
be inferred from the others. In practice it means that matrix
of sensor array signals can be decomposed into a series of
components, some of which are correlated with analytical signal
and some with drift. Therefore, independent components mostly
correlated with known drift source can be removed.

Removal of independent components correlated with
temperature and humidity fluctuations was demonstrated to
improve capability of an arrays of quartz microbalance (QMB)
sensors with metalloporphyrine membranes to discriminate
between two types of peaches (Di Natale et al., 2002). Limitation
of this work is that measurements were done during only 4 days.

The same approach was applied to the background removal
from the responses of an array of 30 metal oxide gas sensors in
the headspace of the infected mouse wounds (Tian et al., 2012).
Signal correction by ICA was found to be more effective than
PCA and permitted to improve correct classification rates for
three bacterial species compared to uncorrected data from 85 to
96%.

ICA can be also used for removal of drift of unknown origin
in unsupervised mode (Kermit and Tomic, 2003). After pre-
processing of the raw electronic nose data by PCA, obtained
square matrix with number of principal components equal
to the number of sensor signals was decomposed by ICA.
Some of the Independent Components are expected to be
highly correlated with sensor drift while other components are
expected to be largely free of drift and, thus, can be used for
classification purposes. This approach was tested on the data
from the mixed sensor array comprising 10 MOSFET and 12
MOS sensors. Sensor signals were collected in two measuring
sessions: in headspace of solutions of 5 organic compounds
(1% cyclohexanal, 1% ethanol, 5% ethanol, 1% hexanal, and
1% isopropanol) and 5 sample of propanol and butanol
at different concentrations, with 200 and 90 measurements
acquired, respectively. Unfortunately, no information about
timeframe of the measurements was provided. Only sensors
responding to some of the analytes were retained for the analysis,
resulting in 9 and 6 variables for the 1st and 2nd measuring
session, respectively. In both cases combination of PCA and
ICA permitted to separate drift from analytical signal improving
discrimination performance of the sensor array.

Another group of drift filtering methods is based on the
premises that drift of a sensor array resides in low frequency
of the signal contrary to the response to analytes, which is high
frequency. Sensor signals are split into low and high frequency
components, and the slowest signal component is considered
drift and removed from the data.
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Application of one of such methods - Discrete Wavelet
Transform (DWT) was described in Zuppa et al. (2007). The
procedure of the drift removal using DWT consist of three steps:
decomposition of the signal, thresholding, and reconstruction of
the signal. In the decomposition step, a signal is decomposed
into a set of orthonormal wavelet functions that constitute a
wavelet basis. After that small wavelet coefficient associated to
the noise are remove and signal is reconstructed using remaining
coefficients. Detailed description of DWT algorithm can be found
in Mallat (1989); Ergen (2012). Efficiency of DWT for drift
removal was demonstrated on the artificially generated drifting
sensor responses.

Methods developed for time series analysis such as
Autoregressive moving average (ARMA), Kalman filter (Zhang
and Peng, 2016) and chaotic time series analysis (Zhang et al.,
2013) have been adopted for drift modeling. These methods
are used to analyze time series of signals, in which the present
signal value depends on its preceding values. ARMA and Kalman
filter algorithms have been tested on data set consisting of the
same sample measured by an array of 4 MOX sensors for 10
months. Composition of measured samples was unfortunately
unspecified. Measurements carried out during the first month of
experiment were used to model drift of each sensor of the array
sensor and the rest of the data for model testing. ARMA was
found to be more efficient with prediction errors of sensor drift
about an order of magnitude lower compared to Kalman filter.
Detailed description of ARMA and Kalman filter algorithms
can be found in Navarro-Moreno (2008) and Faragher (2012),
respectively.

The same group has applied a chaotic time series analysis
to the sensor drift modeling (Zhang et al., 2013). Drift
extraction was done using discrete Fourier Transform with an
assumption that sensor drift belongs to low frequency part of
the signal. Further drift modeling included two steps: phase
space reconstruction of the drift and training of the Radial Based
Function (RBF) neural network for the prediction of the sensor
baseline. This approach was tested on the data set described
above. Increase of the number of measurements used for the
modeling was demonstrated to improve baseline prediction.
Using at least 1,000 points measured during 3 weeks period
was enough to achieve the best performance in prediction of
the sensor baseline for the data measured in the following ca. 9
months.

It is important to note that in Zhang et al. (2013) and Zhang
and Peng (2016), drift modeling methods were applied to the
prediction of the portion of the sensor signals separated as drift,
efficacy of the methods of time series analysis to maintain initial
calibration performance in prediction of new samples has not
been demonstrated.

Obvious problem with drift modeling methods is that a
relatively long series of measurements is required to produce
a drift correction model. Measurements made during several
weeks are typically used. Furthermore, it can be expected
that after some time of the sensor system functioning, drift
correction model would become invalid and would need an
update, which logically requires another worth of several weeks of
measurements.

MULTIVARIATE CALIBRATION UPDATE

Calibration update methods relay on the regular sensor array
measurements in a small number of standards that are used for
correction of sensor responses in new unknown samples or for
re-calculation or update of calibration model.

Data Standardization
This group of methods aims to correct new measured
data by eliminating new variation. For this purpose, a
relationship between two experimental conditions is established
and measurements made in new experimental conditions are
corrected by this relationship and used for concentration
prediction in new samples using initial calibration model.
Reduced set of standards measured at both conditions also called
standardization or transfer data set is used to for such correction.
Two approaches are possible for data standardization: correction
of the concentrations predicted at new conditions correction of
signals measured in the new conditions.

Slope and Bias Correction of the Predicted Values
The slope and bias correction adjusts concentrations predicted in
unknown samples using a relationship between concentrations
predicted by the calibration model in the standardization subset
measured initially and in new conditions (Sales et al., 1999). The
relationship between two sets of prediction concentrations, ci and
cn, corresponding to the initial and new conditions, respectively,
is calculated by the univariate regression:

ci = Intercept+ Slope× cn (4.1)

Concentrations of the samples measured in new conditions are
predicted using initial calibration model and corrected using
slope and bias determined using update sample set as described
above:

ccorrn = Intercept+ Slope× cn, (4.2)

where ccorrn is corrected concentrations measured in new
conditions.

Slope and bias correction has been applied to the data from
the potentiometric sensor arrays: an array of 7 sensors with
plasticized PVCmembranes used for quantification of potassium
and calcium in the synthetic ground water (Sales et al., 1999)
and an array of 7 sensors with chalcogenide glass and plasticized
PVC membranes used for quantification of copper and lead in
the model solutions (Rudnitskaya et al., 2017). In both cases slope
and bias correction was compared to the other calibration update
techniques and was found to be the least less efficient (Sales et al.,
1999; Rudnitskaya et al., 2017).

Signal Standardization
Signal standardization is by far the most widely used approach
among calibration update methods. It was applied to drift
removal and calibration transfer from one instrument to the
other for both electronic nose and electronic tongue. Signal
standardization consists in using a relationship between sensor
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responses in the initial (at the time of calibration) and new
conditions in standardization sample set for correction of the
data measured in unknown samples in new conditions. Methods
used for data standardization differ in the way the relationship
between two sets of sensor signals is calculated (Wang et al.,
1991; Bouveresse et al., 1996; Feudale et al., 2002). Single
wave standardization (SWS) calculates relationship between
each signal individually, piecewise direct standardization (PDS)
between groups of signals and direct standardization (DS)
between all signals. Both SWS and PDS are linear methods,
i.e., they account for the linear shifts of the sensor signals.
PDS was proposed as an improvement over SWS with the
rational that spectroscopic signals at the adjoin wavelengths are
highly correlated, which allows to take into account not only
vertical but also horizontal shifts, i.e., shifts of the wavelengths.
Both SWS and PDS have been applied to the standardization
of the potentiometric sensor data and PDS was found to
produce better results (Sales et al., 1999). However, responses of
sensors in an array can be independent or partially correlated
depending on the array composition, sensor arrangement in the
array and analyzed samples, which contradict rational of PDS
of high correlation between adjoin signals. Considering this,
standardization method that corrects all signals simultaneously,
the DS, is more commonly used for the calibration transfer
for sensor arrays. Relationship between signals measured in
the initial and new conditions can be calculated by means of
various multivariate techniques, such as the Multiple Linear
Regression (MLR), Partial Least Square 2 regression (PLS2) or
auto-associative artificial neural network (ANN), among others.

Calibration transfer from one “master” to four “slave”
identical electronic noses equipped with 8 polymer coated QMB
sensors has been performed using univariate and multivariate
methods, namely linear regression and PLS2 regression (Tomic
et al., 2002). Measurements were carried out in the individual
solutions of anisole, cyclohexanone, propanol, and toluene
during 50 weeks. Calibration transfer was done using the first 72
measurement points acquired over the period of ca. 1 month for
each instruments with the rest of the data used for testing. Both
linear regression and PLS2 were demonstrated to be successful in
removing shifts between instruments according to the RMSEP of
the predicted sensor response.

Calibration transfer from one electronic nose to the other
using robust regression has been proposed in Deshmukh et al.
(2014). Electronic nose instruments were identical and each was
equipped with an array of 6 MOX sensors. Calibration model
was calculated using back-propagation ANN and measurements
in gas samples collected at the pulp and paper production sites.
Transfer of the calibration model to the other instrument was
done using 27 transfer samples comprising 27 mixtures of four
target compounds (hydrogen sulfide, dimethyl sulfide, dimethyl
disulphide e methyl mercaptan).

Comparison of the four methods of data standardization
has been done using two electronic noses of different models
each equipped with identical 12 conducting polymer sensors
and measurements in milk samples stored for different periods.
Data standardization was done by ANN, MLR, and least squares
individually for each sensor with and without intercept, of which

MLR produced the best results for the storage time prediction
(Balaban et al., 2000).

Calibration transfer between two electronic noses employing
different types of sensors, one with QMB sensors and another
with conducting polymer sensors, has been described (Shaham
et al., 2005). Measurements in vapors of 23 organic compounds
were used for both calibration and data standardization.
Performance in data standardization of MLR, PLS2, Principal
Component regression (PCR), ANN and a method introduced
in this work called Tessellation-based linear interpolation (TLT)
was compared. The TLT is a local method that uses for prediction
only calibration samples near unknown one. The TLT consists of
two stages: tessellation and prediction. First, tessellation of the
calibration data, i.e., sensor responses, X, for which class labels Y
are known, is performed. Tessellation is done in such a way that
all vertices of all simplexes are calibration set X points. Prediction
of class membership of a new sample is done by first locating
simplex enclosing vector of sensor responses and calculating
barycentric coordinates of this sample relative to the vertices of
simplex that encloses it. The barycentric coordinates of a point
p within a simplex can be defined as weights, which, if placed
at the simplex’s vertices, will have their center of mass coincide
with p. After normalization of sum of coordinates to 1, unique
coordinates are obtained that are used as interpolation weights.
The value of the Y is when predicted as the average of Y values
of the simplex’s vertices, weighted according to the barycentric
coordinates. Among all data standardization methods, ANN was
found to be the most effective for the studied data. Unfortunately,
no comparison with uncorrected data was shown. Another
observation is that mapping from quartz microbalance sensor
array to conducting polymer ones was more complicated and
yielded higher classification errors than vice versa.

In the works described above successful calibration transfer
between electronic noses using data standardization has been
demonstrated, though relatively large data sets (Balaban et al.,
2000; Tomic et al., 2002; Deshmukh et al., 2014) or even
entire calibration sets were necessary for the efficient calibration
transfer (Shaham et al., 2005).

Comparison of different approaches to the data
standardization for the calibration transfer from one sensor
array to the other and for calibration update for the same sensor
array were reported in Fernandez et al. (2016) and Fonollosa
et al. (2016).

In the first series of experiments, measurements were made
with five identical arrays of 8 MOX sensors in the individual
vapors of ethanol, ethylene, carbon monoxide, or methane, each
at 10 concentration levels (Fonollosa et al., 2016). Calibration
transfer from the “master” to four “slave” instruments has
been carried out as well as calibration update for the same
instrument. Calibration was done using measurements from
the same measuring session, of which 20 samples were used
for calibration and other 20 as tests. Standardization data set
comprised 2 concentration levels for each gas, i.e., 8 samples in
total Four methods were evaluated for both calibration transfer
and update: DS and PDS, both employing PLS2 regression
for mapping, OSC and Generalized Least Squares Weighting
(GLSW). GLSW is a data selection method as it identifies
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and “shrinks” instrument channels (sensors or sensor response
features) that are responsible for the main sources of variance
between initial and new conditions (Martens et al., 2003).

In the second series of experiments, 12 identical arrays
composed of three MOX sensors were used for measurements
in individual vapors of ethanol, acetone and butanone at 7
concentration levels. Measurements at 0 ◦C were considered as
initial condition and used for calibration while measurements
at ±10◦C, ±20◦C, ±30◦C, ±40◦C, and ±50◦C were considered
new conditions. Data correction is performed for an increasing
number of transfer samples, from 2 to 12 (Fernandez et al., 2016).
In both experiments data standardization improved performance
of the calibration model with DS and PDS producing lower
prediction errors for the new conditions/new instrument. It was
also found that PDS needs less standardization samples to achieve
lower error, i.e., 5 vs. 11 necessary for DS (Fernandez et al., 2016).

A combination of two standardization methods–Windows
Piecewise Direct Standardization (WPDS) and Standardization
Error based Model Improvement (SEMI) was proposed for the
electronic nose calibration transfer in Yan and Zhang (2015).
WPDS is a modification of PDS that weighs a subset of
initial sensor signals used for standardization of new signals.
Data standardization by WPDS was implemented using ridge
regression algorithm. SEMI works similarly to GLSW by
weighing down variables that had highest standardization errors,
i.e., sensors that drifted most, before feeding standardized new
data to the calibration model for prediction. This approach was
tested on the data from three identical portable electronic noses
equipped with 8 MOX sensors, one of which was considered
“master” instrument. Seven groups of samples were measured:
acetone, hydrogen and ammonia at different concentration
levels, air exhaled by healthy people and air exhaled by healthy
people and spiked by three aforementioned compounds, 248
samples in total. All available measurements were used for
calculating classification and calibration model for prediction of
gas concentrations. Six samples, three individual compounds at
two concentration levels, were used as transfer set for calibration
transfer from “master” to two “slave” instruments. Combination
of WPDS and SEMI was effective for the calibration transfer
particularly in the case of the regression models, where RMSEP
of concentrations decreased, in some cases 3-fold compared
to uncorrected data. Improvement of the correct classification
rate for classification models was more modest, which indicates
higher tolerance of the classification model to drift.

Application of the Robust Weighted Least Square (RWLS) to
the data standardization was described in Zhang et al. (2011).
RWLS belongs to the robust regression algorithms that owe their
name to the property of being less sensitive or more “robust”
in the presence of outliers in the data. Detailed description
of RWLS algorithm implemented in Zhang et al. (2011) can
be found elsewhere (Heiberger and Becker, 1992). Calibration
transfer was done from one “master” to five “slave” electronic
noses, all equipped with 3 MOX sensors, using measurements
in the individual vapors of formaldehyde, benzene and toluene
at different concentration levels. Transfer data comprising 5
samples of formaldehyde, which was considered a reference gas,
were selected by Kennard-Stone algorithm. Data standardization

by RWLS allowed to achieve lower concentration prediction
errors compared to uncorrected data. It was also observed
that efficiency of data standardization varied between “slave”
instruments.

Signal standardization was applied to both calibration transfer
and update for the electronic tongue sensor system (Panchuk
et al., 2016; Debus et al., 2017; Khaydukova et al., 2017a,b).

Calibration update was applied to the potentiometric
electronic tongue comprising 10 sensors with plasticized PVC
and chalcogenide glass membranes (Panchuk et al., 2016).
Measurements were made in the tap water spiked with different
amount of cyanobacteria growth media from both nontoxic
and toxic, i.e., microcystin producing, strains over the period
of 74 days. Tap water and two solutions of inorganic salts in
HEPES buffer at different concentration levels, which were used
as standardization samples, were measured at each measuring
session. Data were standardized by SWS and DS, employing
LS regression and MLR for the data mapping, respectively.
Both standardization methods were effective in drift removal in
classification model, allowing to maintain correct classification
rate throughout the experiment. SWS performed better in
microcystin quantification achieving lower errors compared
to both DS and uncorrected data though ca. 2-fold increase
of RMSEP was observed along the time. Surprisingly, no
improvement was found for data standardization by DS as
RMSEP of microcystin concentration was the same with
uncorrected and DS corrected data.

The same two techniques, SWS and DS with MLR
and Tikhonov regularization were used for the calibration
transfer between two identical arrays of potentiometric sensors
(Khaydukova et al., 2017b). Arrays comprising 17 sensors with
plasticized PVC membranes was used for measurements in
mixed solutions of 6 lanthanides. Ten solutions selected by
Kennard-Stone algorithm were used for standardization. DS
with Tikhonov regularization performed better producing lowest
RMSEP for all tested models, i.e., prediction of sum of all, light
and heavy lanthanides, which were close to the errors obtained
using the “master” instrument. SWS and DS showed unstable
behavior with DS producing highest errors for prediction of sum
of all and light lanthanides and SWS producing highest errors for
the prediction of heavy lanthanides and an error slightly lower
than DS for the prediction of light lanthanides.

Results reported in Panchuk et al. (2016) and Khaydukova
et al. (2017b) indicate that performance of data standardization
methods is dependent on the data and, probably, composition of
standardization data sets.

An ambitious task of calibration transfer between two
different types of sensor systems was described in Khaydukova
et al. (2017a). Two electronic tongues, potentiometric one
comprising 26 sensors with plasticized PVC and chalcogenide
glass membranes and voltammetric one comprising 4 carbon
paste electrodes modified with metal nanoparticles, were used for
measuring 8 samples of must of different grape varieties. Three
samples were selected for the calibration transfer using Kennard-
Stone algorithm. Transfer of the PLS regression models for the
prediction of tartaric acid content, pH and total phenolics was
done by DS. Transfer of the calibrationmodel from voltammetric
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to potentiometric sensor array worked better than vice versa,
which is in agreement with the results reported for the two
electronic noses based on different types of sensors (Shaham
et al., 2005). RMSEP values close to the “master” electronic
tongue were obtained for tartaric acid and total phenolics when
calibration was transferred from voltammetric electronic tongue
to the potentiometric one. In other cases calibration transfer
was not successful. The authors point to the importance of
the standardization samples for calibration transfer to work
considering that Kennard-Stone algorithmmay be not be optimal
for this purpose. Another culprit can be limited number of
calibration samples that were available in this work.

Model Expansion
This group of methods is based on the expansion of calibration
model by joining initial calibration data set and measurements
made in new conditions in the subset of standardization or
transfer samples, and recalculating calibration model. In this
way, new sources of variance are incorporated in the updated
calibration model, which allows to decrease prediction errors for
the samples measured in new conditions.

Application of three methods of calibration model expansion,
namely weighting, Tikhonov regularization and Joint-Y PLS, to
the calibration update of potentiometric sensor array has been
reported in Rudnitskaya et al. (2017).

Weighting is the most straightforward approach to the
model expansion consisting in simply adding newly measured
standardization samples to the calibration data set and re-
calculating the model (Stork and Kowalski, 1999; Capron et al.,
2005).

Initial calibration model can be expressed as:

yi = Xibi + e, (4.3)

where Xi is a matrix of sensor responses and yi is concentrations.
Regression coefficients bi are calculated according the

following expression:

bi = X′
iyi (4.4)

Model update is performed by adding measurements in
standardization samples made in new conditions to the initial
sensor response matrix and recalculating calibration model
according to the equation:

bn =
[

Xi

WXn

]′
×
[

yi
Wyn

]

, (4.5)

where Xn is a matrix of responses in the transfer samples, yn
is respective reference values and W is a weighting factor that
may be applied to the transfer data set. Number of samples in
the transfer data set is typically significantly smaller than in the
initial calibration set. Thus, increasing weight of added samples is
necessary to avoid that initial calibration data dominate updated
model. Sample weighting is usually done by including multiple
copies of the standard update samples. Value of W has to be
determined empirically.

Tikhonov regularization is a variant of a ridge regression
adapted to the calibration update purposes (Kalivas et al., 2009;
Kunz et al., 2010).

Standard form of TR or ridge regression can be expressed as
follows:

[

X
λI

]

b =
[

y
0

]

, (4.6)

where I is identity matrix and λ is a regularization meta-
parameter.

Regression coefficients b can be calculated according to the
following equation:

b̂ =
(

X′X+ λ2I
)−1

X′y (4.7)

Modification of Tikhonov regularization to make it applicable to
the calibration update consists in introduction of an additional
meta parameter τ :





Xi

τ I
λXn



 bn =





yi
0

λyn



 (4.8)

Parameter τ enhances the degree of nonsingularity of the
covariance matrix in the inverse operation. Regression
coefficients bn for the updated calibration model can be
calculated using the following expression:

b̂n =
(

Xi
′Xi + τ 2I+ λ2Xn

′Xn
)−1 (

Xi
′yi + λ2Xn

′yn
)

. (4.9)

Both parameters λ and τ need to be optimized.
Joint-Y Partial Least square regression (JYPLS) has been

developed to solve a product transfer problem from one plant
to the other while maintaining the same quality of the final
product (Jaeckle and Macgregor, 1998; García Muñoz et al.,
2005). When applied to calibration update. JYPLS consists in
modeling common latent variable space of the response matrices
in initial (i) and transfer (n) calibration samples, Xi and Xn, and
corresponding concentrations, Yi and Yn.. JYPLS models joint Y
matrix combining Yi and Yn using matrices Xn and Xn (García
Muñoz et al., 2005):

Yj =
[

Yi

Yn

]

=
[

Ti

Tn

]

Q′
j + EYj (4.10)

Xi = TiPi
′ + EXi Xn = TnPn

′ + EXn (4.11)

Ti = XiW
∗
i Tn = XnW

∗
n (4.12)

W∗
i = Wi(P

′
iWi)

−1 W∗
n = Wn(P

′
nWn)

−1 (4.13)

Where Pi, Wi, Ti, Pn, Wn, and Tn are weights, loadings and scores
for the Xi and Xn matrices (,) that have the same interpretation
as in the PLS regression model, and QJ is a common loading
matrix of Y. JYPLS is very flexible as response matrices Xi and
Xn can have different number of both variables and samples
and matrices Yi and Yn can have different number of samples.
However, matrices Yi and Yn must have the same number of
variables andmatrices Xi andXn should have the same covariance
structure.
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Comparison of model expansion methods, weighting,
Tikhonov regularization and JYPLS, and data standardization
methods, slope and bias correction of predicted values and DS
with PLS2 regression and ANN for data mapping, has been done
for the electronic tongue (Rudnitskaya et al., 2017). An array of
7 potentiometric sensors with chalcogenide glass and plasticized
PVC membranes was used for measurements in copper, lead and
cadmium mixed model solutions during 3 months. Calibration
model was calculated using samples measured during first
experimental session and used for prediction of copper and lead
concentrations in samples measured in consequent sessions.
A set of transfer samples, from 4 to 7, was selected using
Kennard-Stone algorithm. Model expansion methods generally
performed better achieving lowest RMSEP of lead concentrations
and the same RMSEP of copper concentration but with
smaller number of transfer samples compared to the data
standardization.

Furthermore, JPLS was used to account for the matrix effect
for the potentiometric electronic tongue (Cruz et al., 2018).
Electronic tongue constituted by 6 sensors with plasticized
PVC membranes was calibrated in the mixed solutions of
four paralytic shellfish toxins. Afterwards, 4 mixed solutions
prepared in bivalve extracts were used as transfer samples for the
calibration recalculation. Updated calibration model was applied
to the quantification of three toxins in contaminated bivalve
extract. Results obtained using updated calibration model were
close to the reference method, while without update calibration
model was unusable.

Model expansion by a variant of ridge regression called by
the authors transfer sample-based coupled task learning (TCTL)
has been reported for an electronic nose (Yan and Zhang,
2016a). Two tasks were addressed: calibration transfer using
data set described in Yan and Zhang (2015) and calibration
update using long-term drift data set described in Vergara et al.
(2012). Calibration update for the long-term drift data set was
done using 10 transfer samples selected using Kennard-Stone
algorithm, as it was found that smaller number of samples did not
ensure the best performance. For both tasks and data sets, TCTL
allowed to obtain better results compared to the uncorrected
data and performed similarly to the combination of variable
standardization with SEMI (Yan and Zhang, 2015), TCTL with
SEMI and DAELM (Zhang and Zhang, 2015).

An important issue in model expansion methods is validation
of the updated calibration models for optimization of the model
parameters. Cross-validation is not a viable option as number of
transfer samples is typically limited while validation using initial
calibration samples would not reflect model performance in new
unknown samples. Several approaches to model diagnostics that
do not require use of validation data set has been proposed to
deal with this issue. These tools mainly focus on finding a trade-
off between bias and variance of the updated calibration model,
i.e., finding number of latent variables or model parameter values
(transfer sample weights, Tikhonov regularization parameters λ

and τ ) that minimizes both. Graphic diagnostic tools such as
plots of b-coefficients errors of the updated calibration model
vs. RMSEC or RMSE in calibration samples vs. RMSE in
transfer samples, have been demonstrated to be efficient (Stork

and Kowalski, 1999; Green and Kalivas, 2002; Kalivas et al.,
2009).

Selection of Standardization Samples
In practice it is preferable to avoid using large data sets for the
data standardization or calibration transfer. Thus, efforts were
directed to decrease number of standardization samples. This
can be achieved by careful selection of standardization samples
with the aim to identify samples describing enough variation
to allow successful calibration transfer while keeping number
of samples necessary to measure in new conditions or by new
instrument to the minimum. In some instances standardization
samples can be selected on the basis of the previous knowledge
or convenience, i.e., each analyte at two concentration levels,
when the task is discrimination of individual gases’ vapors at
different concentration levels. In other cases, leverage (Hoaglin
and Welsch, 1978) and Kennard-Stone algorithm (Kennard and
Stone, 1969) were proposed for identification of the of the
most relevant samples for the calibration transfer. Leverage
matrix is calculated as a covariance matrix of the sensor array
mean-centered responses. Maximum diagonal elements of the
leverage matrix correspond to the most relevant samples in the
training data set. Kennard-Stone algorithm is commonly used for
selection of samples uniformly distributed over the object space.
This is sequential procedure consisting of selecting as the next
sample the one that is most distant from those already selected.
Two samples that are the most distant from each other serve as a
starting point. The distance is usually the Euclidean distance.

Adaptive Learning
Adaptive drift correction methods are based on the idea of
continuous update of the classifier using unknown samples
measured during routine functioning of the sensor array. This
approach is attractive for practical applications as it does not
require reference samples beyond the calibration data set and
does not require long-term measurements as drift modeling
methods. At the first stage calibration is performed by using a set
of calibration samples with known class membership to calculate
and optimize classification model. In the following testing stage
new unknown samples are used for correction/recalculation of
the classification model after they have been assigned to the
class. Adaptive drift correction can be performed in supervised,
unsupervised and semi-supervised mode depending on the
employed method.

First implementations of adaptive drift correction used
unsupervised neural network—Self-Organizing Map (SOM) (Di
Natale et al., 1995; Marco et al., 1998). SOM consists of a
rectangular single layer of neurons, whose weight vectors have
the same dimensionality as input data (Kohonen, 1996). During
calibration step a known sample is presented to the net and
distances between this sample and all neurons are calculated
using Euclidean or othermetrics.Weights of the winning neuron,
i.e., neuron closest to the particular calibration sample, and its
neighbors are updated to decrease even further their distance
to the calibration sample. Learning rate decreases monotonically
with the increase of the neuron distance to the winning neuron
and along the training. Trained network forms clusters of
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neurons corresponding to the same class, i.e., to the similar
calibration samples. This process is unsupervised, however, after
its completion, user intervention is necessary to label clusters
according to the classes and define criterion to avoid cluster
overlapping, i.e., allocate neurons corresponding to more than
one class. During routine operation, training of the SOM can
continue with a slow learning rate to account for the sensor drift
and resulting cluster displacement. Continuously adapting SOM
has been shown to be more robust in the presence of the drift
compared to the static one (Marco et al., 1998).

Use of multiple self-organizing maps or mSOM, one for each
modeled class, has been proposed with the aim to increase user
influence over training process (Distante et al., 2002; Zuppa et al.,
2004). mSOM have been tested using data from an array of 32
polymeric conducting sensors measured in 6 gases (acetonitrile,
methanol, propanol, acetone, butanol, and water) over the period
of 4 weeks. Use of continuous net training permitted to decrease
error rate from 9% to less than 3%.

Similar modification of unsupervised technique for the
purpose of semi-supervised classification has been proposed
for the other type of the network—Artificial Immune Network
(AINET). AINET is an algorithm inspired by the adaptive
immune system (de Castro and von Zuben, 2002). Modified
algorithm called Adaptive Artificial Immune Network (A2INET)
consists in training separate AINET for each class (Martinelli
et al., 2013, 2014). Calibration starts by initiation of a set of
processing units or network cells. Distances or affinities between
network cells and calibration sample are calculated and a cell
closest to this sample is selected. Then selected cell is replicated
or cloned and cells with less affinity are changed or mutated.
Both number of clones to add and mutation rate being are
functions of the affinity of particular cell to the calibration
sample. Cells with less affinity are eliminated and a pool of the
cells is updated. Detailed description of both original AINET and
adapted algorithms can be found in de Castro and von Zuben
(2002) and Martinelli et al. (2013). For the purpose of pattern
recognition outputs of the trained network are used as inputs
into classifier such as e.g., k nearest neighbors (k-NN). A2INET
is continuously adapted during sensor operation as after new
unknown sample is assigned to the class, it is used to clone and
mutate network cells.

A2INET performance in drift compensation has been assessed
using synthetic and experimental data. The latter included
measurements with an array of four MOX sensors in five
individual gasses (acetaldehyde, acetone, ammonia, ethanol, and
ethylene) during 18 months and in 3 gases (acetaldehyde,
ethylene, and toluene) during 12 months. A2INET permitted to
improve classification rate compared to the standard classifier
from 81 to 95% (de Castro and von Zuben, 2002; Martinelli et al.,
2013) and from 90 to 99% (Martinelli et al., 2014), respectively.
Adaptive classifier was also robust in the presence of artificially
added noise and faults.

Algorithm of unsupervised on-line selection of training
features (UOL) was described in (Magna et al., 2018). This
method performs selection of the features of the sensor response
matrix that afford better class separation during initial calibration
step and after each new sample is measured. Features here refer

to the parameters of the response of QMB sensors, for which
frequency shifts at different time periods, response integral at
different time frames, etc. are measured. After new sample is
measured, feature selection from the calibration set is performed
in such a way as to avoid that new sample is considered an
outlier (far from all classes) or ambiguous (between several
classes). Thus, UOL “adapts” calibration data set to new unknown
samples. Selected features are used to recalculate classification
model. Any classifier, e.g., LDA, PLS-DA, or k-NN can be
used in combination with UOL. Feature selection is done
using two criteria, MR and PR. MR is the ratio between
Mahalanobis distances from the new sample to the two nearest
class distributions M1 and M2. MR is calculated for each feature i
according to:

MRi = M1
M1

M2

Feature is not included in the calibration model when MRi is
bigger than a fixed value, i.e., 0.9. PR evaluates probabilities of
a new sample to belong to known class distribution:

PRi = maxj

(

1

σj
√
2π

exp

(

−
(x− µj)

2

2σ 2
j

))

,

where µj and σj are the standard deviation and the mean of the
the ith feature for the jth class. A large value of PRi means that
new sample has a low probability to be an outlier for at least one
class. Thus, features with PRi lower than certain threshold are
rejected.

UOL has been applied to the synthetic and experimental
data sets, the latter consisted of measurements made in ethanol,
toluene and their mixture with an array of seven QMB sensors
with metalloporphyrin coatings. Measurements were carried out
during two measuring sessions 45 days apart. For the best
performing classification method, LDA, use of unsupervised on-
line selection allowed to improve classification rate from 88 to
100%. Classification improvement was even more drastic when
noise was added to the data: from 66 to 92% without calibration
update to 88–100% after using unsupervised on-line selection.

Adaptive drift correction for back-propagation neural
network (BPNN) classifier was implemented using two semi-
supervised algorithms: semi-boost and Semi-Supervised
Regression with Co-Training (COREG) (De Vito et al., 2012).
The crucial step in both algorithms is selection of unlabeled
samples from the pool for classifier recalculation. Semi-boost
selects unlabeled samples with highest relevance, which is
estimated by taking into account their classification confidence
and the presence of labeled samples in their neighborhood.
Thus, COREG algorithm selects unlabeled samples that decrease
classification error for the calibration data set when included
in it. Both methods have shown improvement of the correct
classification rates compared to BPNN without recalculation.
Semi-boost classifier update applied to the measurements with
an array of 5 MOX sensors in head-space of ground coffee
samples improved classification rate from 89 to 93%. COREG
was used for model correction for 1 yearlong city air pollution
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monitoring data measured using the same electronic nose
system. Performance gain of 11% was obtained when employing
optimal data split into 6% of the data as calibration, 10% as
unlabeled sample pool and the rest as test samples.

A method based on system identification theory that models
responses of each of the individual sensors of the array in
new samples using responses of the other sensors in new and
previously measured samples has been proposed (Holmberg
et al., 1996, 1997). Dynamic sensor response is described by the
linear Box-Jenkins model in the following form:

ŷi (t) = G
(

q, θA
)

u (t) + v (t)

where ŷi (t) is the value of the modeled output of the sensor i in
discrete time; u(t) are the inputs (signals from the other sensors
of the array), G is the linear function of the sensor dynamics; q
is the time shift operator, qy(t) = y(t+ 1); 2A are parameters
of the model of the class A; and v(t) is disturbance or noise.
Model parameters2 for each class are estimated using calibration
data set. When new (unknown) sample is measured, estimates
of each sensor response in this sample ŷ (t) are calculated using
actual and previous responses of all other sensors of the array for
all possible classes (gases). Overall square error E is calculated
according to an expression:

E =
N
∑

i=1

(yi (t) − ŷi
(

t
∣

∣

∣
θ̂Ai

)

)
2

Unknown sample at a time t is assigned to the class, for which the
lowest error E was found.

At the same time with each new measurement, classification
models are updated using recursive least squares (RLS)
algorithm, which assigns exponentially decreasing weights to the
older measurements:

θ̂Ai (t) = θ̂Ai (t− 1) + Li (t) εi (t) ,

where εi(t) is the prediction error for the sensor i calculated
according to the previous equation and Li(t) is a gain vector
estimated by the RLS algorithm. To avoid updating wrong model
due to misclassification of the new (unknown) samples, model
parameters are updated only in the case of significant difference
between the prediction error of the model of the recognized gas
and the prediction errors of the other models. This approach
has been applied to the data set consisting of the measurements
of three MOX sensors in 1-propanoI, 2-propanol, 1-butanol
and 2-butanol during 45 days. Measurements collected during
the first 10 days (150 measuring cycles) have been used for
calculating classification models, while measurements collected
during consequent 35 days (730 measuring cycles) were used
for model testing and update. Adaptive model displayed lower
prediction errors compared to the static model with average
classification rates 91 and 85%, respectively (Holmberg et al.,
1997).

An approach named classification ensembles was proposed for
continuous update of the calibrationmodel during functioning of
the electronic nose system (Vergara et al., 2012). First, a Support

Vector Machine (SVM) classifier is trained on a set of calibration
data. When the next batch of calibration data is available, the
next classifier is trained and the final classifier ht+1(x) at time
step (t + 1) is a weighted combination of all classifiers. Thus,
drift correction is performed by gradually including it in the
calibration model. Classifier ensembles were applied to the very
large data set consisting of measurements in 6 individual gases
(ammonia, acetaldehyde, acetone, ethylene, ethanol, and toluene)
at different concentration levels by an array of 16 MOX sensors
during 36 months. Classification ensembles were shown to be
effective as a drift reduction strategy though the more time
elapsed between the last calibration and new unknown samples,
the more classification rate deteriorated.

Domain regularized component analysis (DRCA) has been
proposed for the adaptive drift correction in Zhang et al. (2017).
DRCAfinds a common subspace for both reference and new data.
Its algorithm can be summarized as follows:

1. Calculate matrix A =
(

(µr − µn) (µr − µn)
′)−1

(

XrXr
′ + λXnXn

′), where µ is a mean vector, X–matrix
of sensor responses, indexes r and n refer to reference and new
data, correspondingly. λ is a regularization parameter, which
is used since less new data are typically available compared to
the reference data.

2. Perform eigenvalue decomposition of the matrix A and
consider eigenvector corresponding to the first d largest
eigenvalues an optimum subspace: P= [p1, p2, . . . pd].

3. Correct data by calculating subspace projection: Xr
′ = P′Xr

and Xn
′ = P′Xn.

Performance of DRCA combined multi-class SVM with RBF
kernel was evaluated using publicly available data set (Ziyatdinov
et al., 2010) and it compared favorably with other classification
and drift correction approaches.

Calibration model expansion by inclusion of the transfer
samples in the calibration model was described in Zhang and
Zhang (2015). Two approaches based on extreme learning
machines or back-propagation neural network were employed.
The first one named source domain adaption extreme learning
machine (DAELM-S) uses transfer samples for regularization or
update of the calibration model. The second one named target
DAELM or DAELM-T works similarly to a semi-supervised
adaptive neural network described in (De Vito et al., 2012;
Martinelli et al., 2014). Both algorithms were shown to be more
successful in drift reduction compared to CC by PCA and
Support VectorMachine classificationmodels as theymaintained
correct classification rate close or above 90%. It is worth to note
that relatively large number of transfer samples were necessary
for these algorithm functioning: 20 to 30 for DAELM-S and 40 to
50 for DAELM-T.

An ANN with three hidden layers, which combines drift
removal and calibration model update using both new unknown
and transfer samples has been described in Yan and Zhang
(2016b). This method named drift correction autoencoder
(DCAE) includes the following steps:

1. The first denoising layer is pre-trained with new unknown
data (or data measured on the “slave” instrument) in
unsupervised mode followed by fine-tuning of the network
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weights using calibration data set (or data measured on the
“master” instrument.

2. The second layer is initialized using weights of the denoising
layer.

3. The domain vector d (d ∈ X) is created for each calibration,
transfer and unknown sample such as di = 1 if the sample is
from the ith device and 0 otherwise. The acquisition time t can
also be added into d.

4. The second layer is trained to minimize the expression
∑P

p=1

∥

∥

∥
f(xcpd

c
p)− f(xnpd

n
p

∥

∥

∥

2
, where P is the number of transfer

samples, xc and dc are transfer samples from the calibration
data set or “master” instrument and its respective domain
vector, and xn and dn are transfer samples measured at new
conditions or “slave” instrument and their respective domain
vectors.

5. Using output of the second layer, the third layer is trained as
classifier using calibration data set and consequently used to
predict class membership for the new unknown data.

DCAE performance was evaluated using public data set described
in Vergara et al. (2012) DCAE performed similarly to the
other drift reduction methods such as CC by PCA, OSC
and classification ensembles for the second data batch, i.e.,
data measured in the month following calibration. However,
contrary to the other methods DCAE was able to maintain
this performance for the consequent batches due to the use
of transfer samples. DCAE also performed slightly better than
DAELM-S.

Obvious attraction of adaptive methods of drift reduction
and model update is that no reference samples are required,
instead unknown samples measured during routine sensor array
operation are used. However, no strategy has been proposed to
deal with the situation when due to the sensor drift or condition
change newly measured samples began to be allocated to the
wrong classes. It also should be noted that the best performance
of the adaptive correction is achievedwhen all sensors of the array
display similar behavior with respect to drift.

GLOBAL MODELS

Instead of being modeled, known sources of variation can be also
included in the calibration model, which in this case becomes
global or general calibration. Combination of the data pre-
treatment and variable selection by fuzzy inference system with
linear multivariate regression was proposed to account for the
effects of humidity on the response of an array of gas MOS
sensors (Šundić et al., 2002). Measurements with an array of
5 sensors were carried out in carbon monoxide, methane and
their mixtures at three humidity levels. Nonlinearity of the sensor
responses caused by varying humidity as well as sensor cross-
sensitivity at low gas concentrations could be taken into account
by the fuzzy inference algorithm.

Global calibration can be applied to the calibration transfer
between electronic nose instruments, in which case source of
undesirable variation is differences in response characteristics
between sensors of the same composition (Solórzano et al., 2018).

General calibration model is calculated using measurements
made with several replicas of sensor array and is expected
to include variations between different sensor arrays of
the same composition. This approach was evaluated on 5
arrays constituted by 24 MOX sensors, which were used
for measurements in six gases (acetaldehyde, methane,
ethanol, propane, nitrogen dioxide, and carbon monoxide)
at 3 concentration levels each at varying humidity. General
classification models were calculated using multiclass Partial
Least Squares–Discriminant Analysis (PLS-DA), followed by
k-NN in the latent variable (LV) subspace. Calibration and
validation data sets were composed by the measurements of
4 sensor arrays, while measurements with fifth were used
to test classification model performance. While individual
calibration requires less samples and gives better prediction
results compared to the general calibration, the latter is capable
to provide significant cost-reduction for mass-produced sensor
array ensuring acceptable performance.

CONCLUSIONS

Calibration update is essential for the practical use of the
electronic nose and electronic tongue sensor systems. Several
methods discussed in this review have been successfully applied
to tackle issues of temporarily sensor drift, matrix effects
or calibration transfer between instruments. Performance and
consequently choice of the calibration update method depends
on the data at hand, i.e., on the behavior of the particular
sensors in analyzed samples. In practice multivariate calibration
update methods may be preferable to the drift modeling as
they require only few transfer samples to be measured regularly
to maintain calibration model indefinitely. Special attention
should pain to the provision of the adequate transfer samples
matching matrix of the analyzed media and with reproducible
compositions.

As transfer samples in some cases can be of limited availability
or have high costs, even if only few of them are necessary,
adaptive drift correction methods may be of interest. It is
difficult to envisage that adaptive correction can function without
any standard samples at all after calibration completion, but
it may serve as a mean to decrease even further number
of transfer samples or frequency, at which they need to be
measured.

Though drift reduction and calibration update are very
important issues for practical applications of the sensor systems,
they are not routinely used yet. With exception of Component
Correction and Direct Standardization, a typical situation for
the most methods described in the review is that they were
reported only once in an article dedicated to a novel approach
to the calibration update, which was tested on the available data
set, often public or artificial one. It is important to note that
nothing precludes application of methods developed for one type
of sensor system to the other.

Finally, while a wide number of algorithms of both drift
reduction and calibration update were described, they were
mostly tested in the model samples. Only few works dealt with
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analysis of the real world samples and none of the methods was
tested in the real world setting and for long periods of time.
More applications of calibration update techniques to the sensor
systems deployed in real world scenarios are called for.
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