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Density functional theory calculations have been performed to study the detailed
mechanism of Ni-mediated [3+2] cycloaddition of 2-trifluoromethyl-1-alkenes with
alkynes via cleavage of two C-F bonds. It was found that the reaction pathway involves
oxidative cyclization, the first β-fluorine elimination, and then intramolecular 5-endo
insertion of difluoroalkene, followed by the second cleavage of C-F bond, and finally
the dissociation of difluorides yields the fluorine-containing product cyclopentadienes in
sequence. The overall rate-determining step is the combined processes of the β-fluorine
elimination and the 5-endo insertion. Furthermore, we investigated the effect of different
ligands and the regioselectivity of asymmetric alkynes. The detailed energy profiles and
structures are presented in this study.
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INTRODUCTION

The knowledge of formation and breakage of C–C bonds is important issue in the organic
synthesis reactions. However, the high strength of the C–C bond makes it difficult to achieve.
Weaker metal–carbon (M–C) bonding provides the necessary fundamental basis for catalytic
transformations (Macgregor et al., 2003; Ananikov et al., 2005; Ananikov, 2015). Nickel holds
a special place among the transition metals on account of reactivity trends, functional group
tolerance, and catalytic activity (Montgomery, 2004). Theoretical studies showed that the M–
C bond strength of group 10 metals changes in the order Ni–C < Pd–C < Pt–C < C–C
(Macgregor et al., 2003; Ananikov et al., 2005; Ananikov, 2015), which supports the higher
reactivity of nickel species and provides a reference for the design of active catalysts. In
particular, Ni-catalyzed cross-coupling of electrophiles (organic halides and pseudohalides)
with carbon nucleophiles (organometallic compounds) have important consequences (Negishi,
1982; Tamao et al., 1982; Kumada, 2009). The chemical inertness of the C–F bond makes
the chemistry of C–F bond activation a specialized field. Fluorine forms the strongest σ

bond to carbon and its high electronegativity leads to a significant ionic bond character.
Likewise, fluorine substituents are weak Lewis bases and fluoride is a poor leaving group,
which all give rise to a high thermodynamic stability and a kinetic inertness of C–F bonds
(Kuehnel et al., 2013).

Outstanding progress has been made recently in transition-metal-mediated C–F activation
reactions and in the development of new catalytic processes for the functionalization of
fluoroorganics (Murphy et al., 1997; Jones, 2003; Mazurek and Schwarz, 2003; Ahrens et al., 2015).
Research on transition metal-catalyzed C (sp2)–F bond activation has been intensively studied
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(Amii and Uneyama, 2009; Braun et al., 2009; Laot et al., 2010;
Ohashi et al., 2011; Lv et al., 2012; Fujita et al., 2016) while
C(sp3)–F bond activation needs much more exploration (Choi
et al., 2011; Benedetto et al., 2012; Blessley et al., 2012; Kuehnel
et al., 2012; Zhang et al., 2015; Huang and Hayashi, 2016).
Recently, Prof. Ichikawa’s group (Ichitsuka et al., 2014) developed
an efficient synthesis of 2-fluoro-1,3-cyclopentadienes through 2-
trifluoromethyl-1-alkenes with alkynes by sequential β-fluorine
elimination of a trifluoromethyl group (Equation 1).

To account for the reactions, the authors proposed a plausible
reaction pathway on the basis of the experimental observations
(Scheme 1). In the proposed mechanism, nickelacyclopentene
B bearing a trifluoromethyl group was formed by oxidative
cyclization of 2- trifluoromethyl-1-alkene and alkyne with
Ni0L reactant. Subsequently, β-fluorine elimination involving
one of C–F bond of trifluoromethyl in organonickel B then
generates the intermediate C, followed by intramolecular 5-
endo insertion of difluoroalkene leading to the formation of
difluorocyclopentenylnickel D. Finally, in D, the second β-
fluorine elimination of NiIIF2 yields the product 2-fluoro-1,
3-cyclopentadienes.

In this article, we plan to elucidate the detailed mechanism
of the nickel-mediated [3+2] cycloaddition reaction shown in
Equation (1) and explore the sequential β-fluorine elimination
and the normally disfavored insertion in C via density functional
theory (DFT) calculations. Moreover, we are interested in
another different addition method from A to B, involving
the alkyne insertion process. Depending on the calculations
we obtained, we discuss the regio-selectivity of asymmetric
alkynes.

SCHEME 1 | A plausible mechanism proposed on the basis of the experimental observations.

COMPUTATIONAL DETAILS

The geometries of all reported reactants, intermediates, transition
states, and products were optimized at the DFT level using the
B3LYP hybrid functional (Lee et al., 1988; Miehlich et al., 1989;
Becke, 1993; Stephens et al., 1994). All of the Ni and P atoms
in this analysis were described using the LanL2DZ basis set,
including a double-ζ valence basis set with the effective core
potentials (ECPs) of Hay and Wadt (1985a,b; Wadt and Hay,
1985). Polarization functions were added for Ni (ζf = 3.130)
and P (ζd = 0.340) (Huzinaga, 1985; Ehlers et al., 1993;
Höllwarth et al., 1993). The 6-31G(d) basis set was used for
other atoms (Hariharan and Pople, 1973; Koseki et al., 1992).
Vibrational frequency calculations were carried out at the same
level to confirm the nature of all of the optimized structures
as the minima (zero imaginary frequency) or transition states
(one imaginary frequency). Each of the calculated transition
states connects two relevant minima were further confirmed
by intrinsic reaction coordinates (IRC) calculations (Fukui,
1970, 1981). In consideration of the dispersion and solvation
effects, single-point energy calculations (based on the gas-phase
optimized geometries) were performed at the M06 (Truhlar,
2008; Zhao and Truhlar, 2008a,b, 2009) level of theory in
conjunction with the solvation model density (SMD) continuum
method (Marenich et al., 2009). According to the reaction
conditions, 1,4-dioxane was employed as the solvent in the SMD
calculations. All the single-point calculations employ a larger
basis set SDD for Ni and 6-311++G(d,p) for other atoms,
respectively, except P atom remains unchanged. In this paper,
the dispersion- and solvation-corrected free energies are used for
discussion throughout the text. All calculations were performed
using the Gaussian 09 software package (Frisch et al., 2009).
And the selected calculated structures were visualized using the
XYZviewer software (de Marothy, 2010). Cartesian coordinates
and total energies for all of the calculated structures are listed in
Supplementary Table 1.
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RESULTS AND DISCUSSION

Mechanisms of the Ni-Mediated Reaction
Shown in Scheme 1
In the nickel-mediated cycloaddition reaction, we expanded
two possible oxidative addition methods in Scheme 2 to better
clarify the detailed reaction mechanism in Equation (1). Path
1 starts from ligand exchange and oxidative cyclization of
fluorine-containing alkenes and alkynes with Ni0 in complex
A, which affords a five-membered nickelacycle B, followed by
β-fluorine elimination gives C. However, path 2 proceeds with
ligand dissociation and oxidative addition of the C-F bond in 2-
trifluoromethyl-1-alkenes, which results in the formation of the
conjugated species A′, followed by the ligand substitution gives
B′. Then, the insertion of alkynes leads to the formation of species
C. C is the common species for both path 1 and path 2. In
the following step, the intramolecular 5-endo insertion generates
a new five-membered difluoro-cyclopentadiene D. β-fluorine
elimination of D affords the Ni(II) species, from which leaving
of the NiF2Ln, provides the monofluorinated cyclopentadiene
product.

On the basis of the mechanism shown in Scheme 2, we
select butyne as simple substitute for symmetrical experimental
model substrates 4-octyne and employ PCy3 as ligand in
our calculations. The calculated energy profiles are presented
in the Figures 1, 3, and the selected optimized structures
of intermediates and transition states are depicted in
Figures 2, 4.

Firstly, we focus on the two different oxidative addition
mechanisms shown in Figure 1. Ni(0) establishes initial contact
with alkene through the way of π-coordination and two PCy3
ligands, resulting in a stable three-component complexRe, which
is lower in energy than the two-component complexes, Re′ and
Re′′, by 16.2 and 24.4 kcal/mol, respectively. For path 1(in red
line), ligand exchange of complex Re with one PCy3 ligand to
form another three-component complex A, which is found to
be 9.6 kcal/mol higher than Re in free energy. A undergoes
oxidative addition to form the metallacycle intermediate B via
the transition state TSA−B with a barrier of 11.1 kcal/mol.
TSA−B has C1-C2, C2-C3, and C3-C4 distances of 1.48, 1.96, and
1.30 Å, respectively (Figure 2). In B, both C=C of alkene and
C≡C of alkyne were elongated to 1.54 and 1.35 Å, respectively.
Subsequently, the first β-fluorine elimination reaction occurs
from complex B in path 1 to C through the transition state
TSB−C, in which the migration of F1 atom from CF3 to Ni(II)
center via the cleavage of the C–F bond and C–Ni bond and the
formation of Ni–F bond simultaneously with a barrier of 14.6
kcal/mol. The cleavage of C–F1, Ni–C1 and formation of Ni–
F1 bond occur synchronously, and the C–F1, Ni-F1 and Ni–C1
distances being 1.89, 1.96, and 2.10 Å, respectively, as shown in
Figure 2. From Figure 1, we can see that β-fluorine elimination
is the most energy-demanding for the conversion from Re to C.
The overall barrier calculated for Re to C is 22.4 kcal/mol (Re→

TSB−C).
For path 2 (in black line), the reaction starts with Re′,

followed by the oxidative addition of the C-F bond to Ni(0)

SCHEME 2 | Two different oxidative addition pathways for the Ni-mediated reaction.
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FIGURE 1 | Energy profiles calculated for the oxidative cyclization (TSA−B ) and β-Fluorine elimination (TSB−C) (path 1 in red line), oxidative addition (TSRe′
−A′ ),

ligand substitution (A′
→ B′ ) and alkyne insertion (TSB′

−C) (path 2 in black line). The solvation-corrected relative free energies and electronic energies (in parentheses)
are given in kcal/mol.

FIGURE 2 | Structures calculated for selected intermediates and TSs in the oxidative cyclization (TSA−B) and β-fluorine elimination (TSB−C) (path 1 in red line). The
distances are given in angstroms (Å).
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via the transition state TSRe′
−A′ , generating the corresponding

π-allylnickel complex A′ with a barrier of 20.7 kcal/mol. The
coordination of the alkyne CH3C=CCH3 gives the precursor
intermediateB′ ready for alkyne insertion. Alkyne insertion leads
to formation of C, having an approximate ring structure with the
Ni metal center being coordinated with the alkenyl moiety, via a
very high barrier transition state (38.0 kcal/mol, Figure 1). The
C1–C(F2) distance is shorten to 1.37 Å (Figure 2). The alkyne
insertion is the most energy-demanding for the conversion from
Re′ to C. The overall barrier calculated for Re′ to C is 38.0
kcal/mol (A′

→ TSB′
−C). It is worth of note that the pathway

involving the alkyne insertion path 2, have considerably higher
barrier than the path1 (Figure 1).

From complex C, both path 1 and path 2 would undergo
the same reaction process 5-endo insertion through transition
state TSC−C1, shown in Figure 3, a disfavored process for the
construction of five-membered rings in general because of the
severe distortions required in the reaction geometry (Sakoda
et al., 2005; Ichikawa et al., 2006). However, complex C possesses
an unique moiety of 1,1-difluoro-1-alkenes, making even a
nucleophilic 5-endo-trig approach feasible. The polarization of
the C=C bond caused by the two fluorines (Chambers, 1973;
Banks et al., 1994; Sakoda et al., 2005; Fujita et al., 2014) results
in electrostatic attraction for an intramolecular nucleophile
to overcome the difficulty of the formation of ring complex
precursor C1 with a barrier of 12.4 kcal/mol (Figure 3). The

distance of C(F2)–C4 is close to 2.12 Å (Figure 4). Then, C1
isomerizes to the difluorocyclopentenylnickelD by breaking the
Ni center and C=C bond with a barrier of 15.5 kcal/mol. In
D, the Ni metal center has no interaction with C3 atom, as
indicated by the long Ni–C(F2) and Ni–C3 distances of 2.49
and 3.27 Å, respectively. Whereafter, β-fluorine elimination inD

forming the 5-endo-trig species E via the transition state TSD−E

only need to overcome an energy barrier of 0.3 kcal/mol. In
this transition state, cleavage of C–F2 and re-bonding of Ni–
F2 occur synchronously with the distances being 1.66 and 1.93
Å, respectively. The distance of Ni–F2 decreases to 1.77 Å in
complex E. Finally, the dissociation of difluorides would yield the
desired 2-fluoro-1,3-cyclopentadienes product.

On the basis of the calculations shown in Figures 1, 3, it is
notable that the pathway involving alkyne insertion (path 2 in
Figure 1) has considerably higher barriers than that involving
oxidative cyclization (path 1 in Figure 1). And the 5-endo
insertion transition state is rate-determining for the whole Ni-
mediated reaction and the overall energy barrier is calculated
to be 26.7 kcal/mol, corresponding to the energy difference
between TSC−C1 and complex Re (Figures 1, 3). The first
β-fluorine elimination process is endergonic. Therefore, the
combined processes of the β-fluorine elimination and the 5-endo
insertion can be viewed as the rate-determining step because the
endergonicity of the β-fluorine elimination process contributes
to the overall rate-determining barrier. This finding is consistent

FIGURE 3 | Calculated energy profiles for the pathway starting from complex C to the product. The solvation-corrected relative free energies and electronic energies
(in parentheses) are given in kcal/mol.
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FIGURE 4 | Structures calculated for selected intermediates and TSs for complex C to product. The distances are given in angstroms (Å).

FIGURE 5 | Energy profiles calculated for the path 1 by using 1,10-phenanthroline as the ligand. The solvation-corrected relative free energies and electronic energies
(in parentheses) are given in kcal/mol.
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FIGURE 6 | Energy profiles calculated for the reactions of unsymmetrical alkynes, 4-methyl-2-pentyne (A) and 1-phenyl-1-propyne (B), to complexes C1a/C1a′ and
C1b/C1b′, respectively. The solvation-corrected relative free energies and electronic energies (in parentheses) are given in kcal/mol.

with the recent DFT study by Bi’s group (Zhang et al., 2017),
in which the 5-endo insertion transition state is also the rate-
determining for the whole Ni-mediated reaction.

Effect of Ligand
Based on the detailed mechanistic discussion above, we
have achieved an understanding of the competition between
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two alternative pathways. Next, we turn our attention to
investigate why the less electron-donating group is ineffective
for the reactions. Experimentally, reactions carried out in
the presence of PPh3 or 1,10-phenanthroline resulting in
no expected cyclization products. It was also found that
when the reaction was carried out in strong electron-
donating ligands, IMes or PCy3, the yield was unexpectedly
improved. In order to understand the effect of the ligands
on the reaction outcomes, we calculated the energy profiles
for the path 1 (from the reactants to 5-endo insertion
process) by selecting 1,10-phenanthroline as the ligand
(Figure 5).

In Figure 5, we can clearly see that the oxidative cyclization
transition state is the rate-determining from Re-L2 to C1(L2)

reaction and the overall barrier is calculated to be 42.4
kcal/mol, implying the oxidative cyclization process is infeasible
under ambient conditions. This result is consistent with
the experimental observation that electron-withdrawing ligand
do not promote the reactions. The reason is that the
oxidation reaction occurs easily on the highly electron-
rich Ni(0) species derived from strong electron-donating
ligands.

Regioselectivity
In this section, we examine the origin for the regioselectivity
observed for the reactions of unsymmetrical alkynes. When
asymmetric alkynes (in Equation 1) are used, formation of
regioisomeric products is highly possible. Experimentally, for
the [3+2] cycloaddition of 2-trifluoromethyl-1-alkenes with
asymmetric alkynes, the resulting products give complete
regioselectivity with the R3-substituent carbon coupling with
the fluorine-bonded carbon (Ichitsuka et al., 2014). For
example, 4-methyl-2-pentyne (MeC≡Ci-Pr) and 1-phenyl-1-
propyne (MeC≡ CPh) were employed to illustrate the regio-
selectivity for the cycloaddition reaction. When 4-methyl-2-
pentyne was used as the alkyne substrate, the difluoro carbon
atom preferred to couple with the methyl-substituted carbon.
While the alkyne 1-phenyl-1-propyne preferred to couple with
the phenyl-substituted carbon rather than methyl-substituted
carbon.

To better understand the regioselectivity observed, we
calculated the energy profiles for the reaction shown in Figure 6.
The calculated molecular structures for selected intermediates
and transition states are also presented in Figures 7, 8. On
the basis of the proposed mechanism shown in Scheme 2, the

FIGURE 7 | Structures calculated for selected intermediates and TSs for path in Figure 6A. The distances are given in angstroms (Å).
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FIGURE 8 | Structures calculated for selected intermediates and TSs for path in Figure 6B. The distances are given in angstroms (Å).

regioselectivity was initially controlled by the oxidative coupling
step and it is obvious that the most favorable pathway is following
the red line for 4-methyl-2-pentyne (Figure 6A) and 1-phenyl-1-
propyne (Figure 6B). The overall barriers for the more favorable
cycloaddition pathway were calculated to be 28.9 kcal/mol (Re→

TSCa′
−C1a′ , Figure 6A) and 26.6 kcal/mol (Re → TSCb′

−C1b′ ,

Figure 6B), respectively. The calculation results are consistent
with the experimentally observed regioselectivity (Ichitsuka et al.,
2014).

It is well-known that the oxidation state of metal nickel
changes from 0 to +2 through TSAa−Ba/TSAa′

−Ba′ and
TSAb−Bb/TSAb′

−Bb′ , in which the coordinated alkyne acts as a
nucleophile and favorably attacks metal center. The alkyne 4-
methyl-2-pentyne bears two electron-donating groups methyl
and isopropyl, by contrast, i-Pr plays a larger role. It makes the
methyl-substituted carbon of MeC≡Ci-Pr π electron richer in
comparison with the i-Pr-substituted carbon, facilitating both
the oxidative addition and electrostatic attraction between the
–CF2 carbon and the internal nucleophile. As a result, the
desired pathway (red line in Figure 6A) is both electronically and
sterically favorable for alkyne 4-methyl-2-pentyne by oxidative
cycloaddition. The energy barrier of the cycloaddition is 14.0
kcal/mol through the transition state TS

Aa′
−Ba

′ , in which the

C1–C2 distance is 2.02 Å and the i-Pr substituent is far away
from the metal-bonded ligands (Figure 7). 5-endo insertion of
Ca

′

to form C1a
′

via the transition state TSCa′
−C1a′ is required

to overcome an energy barrier of only 7.6 kcal/mol because of the
electrostatic attraction. The distance of C(F2)–C4 in TSCa

′

−C1a
′ is

2.13 Å (Figure 7).
When used the alkyne 1-phenyl-1-propyne, the electron-

accepting phenyl makes the Me-substituted carbon of
MeC≡CPh π electron poorer in comparison with the Ph-
substituted carbon. Therefore, the nickel center is inclined
to coupling with the Ph-substituted carbon no matter for
oxidative cyclization or for electrostatic attraction, with the
energy barriers of 8.6 kcal/mol and 15.4 kcal/mol, respectively
(red line Figure 6B). The distances of C1–C2 in TSAb′

−Bb′ and
C(F2)–C4 in TSCb′

−C1b′ are 2.01 and 2.13 Å, respectively, shown
in Figure 8.

CONCLUSIONS

The detailed reaction mechanism for Ni-mediated [3+2]
cycloaddition of 2-trifluoromethyl-1-alkenes with alkynes
leading to formation of cyclopentadiene derivatives have been
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studied with the aid of DFT calculations. For the energetics
associated with the reaction, two possible oxidative additions
were investigated in detail. Path 1 starts from ligand exchange
of complex Re to form A. Then, the oxidative cyclization of
fluorine-containing alkenes and alkynes with Ni0 in complex
A, which affords a five-membered nickelacycle B, followed
by β-Fluorine elimination gives C. However, path 2 proceeds
with oxidative addition of the C-F bond in 2-trifluoromethyl-
1-alkenes, which results in the formation of the conjugated
species A′, followed by the ligand substitution gives B′. Then,
the insertion of alkynes leads to the formation of species C.
C is the common species for both path 1 and path 2. In the
following step, the intramolecular 5-endo insertion generates
a new five-membered difluoro-cyclopentadiene D. β-Fluorine
elimination of D affords the Ni(II) species, from which leaving
of the NiF2Ln, provides the monofluorinated cyclopentadiene
product. The pathway involving the alkyne insertion path 2

have considerably higher barrier than the path1. The combined
processes of the β-fluorine elimination and the 5-endo insertion
can be viewed as the rate-determining step according to the
calculation results. The overall free energy barrier for the
whole reaction was computed to be 26.7 kcal/mol (Re →

TSC−C1).
The regioselectivity was also investigated using the

unsymmetric alkynes 4-methyl-2-pentyne (MeC≡ Ci-Pr) and 1-
phenyl-1-propyne (MeC≡CPh) as the substrate molecules. The
alkyne MeC≡ Ci-Pr bears two electron-donating groups methyl
and isopropyl, by contrast, i-Pr plays a larger role. It makes the
methyl-substituted carbon of MeC≡Ci-Pr π electron richer in
comparison with the i-Pr-substituted carbon, facilitating both
the oxidative cyclization and electrostatic attraction between
the –CF2 carbon and the internal nucleophile. When used the
alkyne MeC≡CPh, the electron-accepting phenyl makes the

Me-substituted carbon of MeC≡CPh π electron poorer in
comparison with the Ph-substituted carbon. Therefore, the
nickel center is inclined to coupling with the Ph-substituted
carbon no matter for oxidative cyclization or for electrostatic
attraction, eventually leading to formation of the experimentally
observed regioisomer.
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