AUTHOR=Yosipof Abraham , Guedes Rita C. , GarcĂa-Sosa Alfonso T. TITLE=Data Mining and Machine Learning Models for Predicting Drug Likeness and Their Disease or Organ Category JOURNAL=Frontiers in Chemistry VOLUME=6 YEAR=2018 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2018.00162 DOI=10.3389/fchem.2018.00162 ISSN=2296-2646 ABSTRACT=
Data mining approaches can uncover underlying patterns in chemical and pharmacological property space decisive for drug discovery and development. Two of the most common approaches are visualization and machine learning methods. Visualization methods use dimensionality reduction techniques in order to reduce multi-dimension data into 2D or 3D representations with a minimal loss of information. Machine learning attempts to find correlations between specific activities or classifications for a set of compounds and their features by means of recurring mathematical models. Both models take advantage of the different and deep relationships that can exist between features of compounds, and helpfully provide classification of compounds based on such features or in case of visualization methods uncover underlying patterns in the feature space. Drug-likeness has been studied from several viewpoints, but here we provide the first implementation in chemoinformatics of the t-Distributed Stochastic Neighbor Embedding (t-SNE) method for the visualization and the representation of chemical space, and the use of different machine learning methods separately and together to form a new ensemble learning method called AL Boost. The models obtained from AL Boost synergistically combine decision tree, random forests (RF), support vector machine (SVM), artificial neural network (ANN),