
Data analysis-based framework
for the design and assessment of
chemical process plants: a case
study in amine gas-treating
systems

Rahul Gupta1, Gladys Navas2 and Daniela Galatro1*
1Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON,
Canada, 2Material Science, IUTFRP/UNETRANS, Caracas, Venezuela

This work presents a process-integrity assessment framework to chemical
process design that combines first principles, heuristics, vendor specifications,
standards/codes, data analysis, and machine learning modelling, hypothesized as
an efficient route for optimal process design. Our case study, a gas treating unit,
illustrates its implementation compared with traditional process guidelines.
Surrogate models are fitted with hybrid data from process simulation and
plant values, supporting the integration between process and integrity values,
as well as equipment sizing and cost estimation. Considerable errors are obtained
when estimating design duty (1.4%–8.7%) and power requirements (11.1%–33.5%)
of the main equipment. Potential sources of these deviations might be
attributable to the inherent simplification of process guidelines and intrinsic
noise of the plant data used for fitting surrogate models. The process design
is then assessed by evaluating process variables and corrosion rate within an
operational envelope, showing the synergy and integration of these variables. The
benefits and challenges of this approach are drawn while future work in
engineering education is presented for its future implementation and
effectiveness assessment in enhancing the process design workflow.
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1 Introduction

Chemical process design aims to develop manufacturing processes that can produce
chemicals cost-effectively and safely (Mody and Strong, 2011). At any engineering stage,
chemical process design involves creating deliverables such as design basis, process flow
diagram, heat and material balances, piping and instrumentation diagrams, equipment
sizing, and safety and economic analyses (Sinnott and Towler, 2020; Fengqi, 2024). Process
engineering deliverables can vary depending on the project scope, risk, driving factors, and
client requirements and are created by integrating first principles, heuristics, and vendor
specifications (Radcliffe, 2014; Erwin, 2002). In preliminary design calculations, equipment
sizing can heavily rely on heuristics, leading to considerable errors. As heat and material
balances are further developed mostly using process simulation tools, the uncertainty
around flow rate, temperatures, pressures, and heat duties decreases, and shortcut and
robust sizing methods are then employed to enhance equipment sizing. The latest design
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stages also include checking and evaluating vendor specifications to
“fit” and/or adjusting our equipment sizing against
constructible items.

Process simulation is perhaps themain tool used for engineers in
chemical process design, as the model-based representation of
processes and unit operations provide insights on the heat and
material balance, therefore providing information regarding
thermophysical properties, properties of the unit operations,
kinetics, and environmental and safety-related data (Rhodes,
1996; Gani and Pistikopoulos, 2002). While traditional modelling
is mostly based on first principles and some heuristics, the
integration of first principles models and machine learning has
proven to be an efficient way of representing complex processes and
increasing its prediction accuracy, including improvements when
predicting the dynamics of the system (Nazemzadeh et al., 2021; Sun
et al., 2020; Daoutidis et al., 2024). Thus, machine learning can find
potential applications in surrogate modelling for simulation and
optimization, process monitoring, and fault operation (Daoutidis
et al., 2024), in different areas such kinetics and material selection,
and ultimately, process design (Daoutidis et al., 2024). Industrial
cases studies mostly include plant monitoring, integrated decision
making, and multiscale modelling (Daoutidis et al., 2024). Chemical
engineering, and therefore, process design, is driven by reducing
costs and increasing profit, providing unit operations or blocks that
can be easily used to design a plant (Sinnott and Towler, 2020), and
is motivated by the principles of circular design for
circular economy.

In a traditional process design workflow, a design base scenario
is simulated at design and/or typical process conditions, and the
equipment sizing proceeds considering the heat and mass balance
generated from the process simulation while using sizing procedures
integrating first principles and heuristics, as provided in textbooks
(Sinnott and Towler, 2020; Smith, 2016). In the industry, this is
completed using codes, standards, and recommended practices,
which, in many cases, are implicitly included in undergraduate
textbooks of process design. The design base scenario is then
evaluated based on capital and operating costs, safety, flexibility,
reliability, maintainability, controllability, and sustainability (Smith,
2023). Hence, plant integrity is crucial when designing chemical
process plants to ensure their safety and reliability. Some specific
design aspects related to plant integrity include principles to
minimize hazards, proper material selection (corrosion-resistant),
redundancy and reliability, effective control systems, regular
inspections and preventive maintenance actions, and compliance
with industry standards and regulations. Therefore, assessing
chemical process designs requires evaluating process and integrity
variables by considering energy consumption, yield, and efficiency,
conducting hazard and risk assessments, assessing reliability and
risk of equipment, and assessing environmental impact (Tugnoli
et al., 2012). For this assessment, process engineers typically employ
process simulation tools. With the advancement of artificial
intelligence and, in particular, machine learning can enhance the
process-integrity design assessment by looking at optimizing process
conditions and energy consumption, predicting equipment failures,
and predicting potential safety hazards.

The state-of-the-art chemical process design includes the
application of machine learning and artificial intelligence (AI),
used for surrogate modeling in simulation and optimization, as

well as process monitoring and fault detection, in addition to
contributing to areas such as kinetics and material selection
(Mowbray et al., 2022). Moreover, recent versions of process
simulation software incorporate AI algorithms for more accurate
predictions and optimization of complex processes (Gao et al.,
2022). Finally, modern chemical process design focuses on
sustainability and circular economy, for which design strategies
prioritize reducing energy consumption, minimizing waste and
carbon footprint, and using renewable resources, in alignment
with global efforts to develop sustainable industries.

In this work, we present a data analysis-based framework that
integrates first principles, heuristics, and machine learning when
simulating and sizing equipment, aiming at optimizing design
drivers and principles in chemical process design. As a proof-of-
concept and to validate our approach, our case study (a gas treating
unit) includes a process simulation, which was used to create the
design base scenario and generate data to build surrogate process
and integrity models that convey optimal equipment sizing within a
feasible operational envelope. In real-world process design, complex
processes and dynamics might not be fully reproduced in process
simulation software, from which data-based and intrinsically
machine-learning approaches are required for modelling
purposes instead. Our framework is also a paradigm shift in the
context of engineering education and field process engineering,
integrating features that enhance and validate the chemical
process design, for which we discuss the benefits and challenges
of applying it in the Capstone Project of the undergraduate program
of Chemical Engineering.

2 Methodology

2.1 Overview of our data analysis-
based framework

Our data analysis-based framework enhances the original work
published by (Galatro and Navas, 2022), in which surrogate models
for the same case study combining operational and computational
experimental data were obtained, complying with the exploratory
data analysis and model selection based on statistical metrics.
Figure 1 illustrates the workflow of our framework, where
differences between the original (Galatro and Navas, 2022) and
modified works are indicated in shaded rectangles. This framework
was used by (Galatro and Navas, 2022) to predict and assess
corrosion damages in existing amine systems. In this work, a
process simulation is performed to represent the design base
scenario, and “clean” (without noise) data is generated via
sensitivity analysis within a feasible operational envelope. The
completed data pool is then generated by adding plant data to
the clean data. This data is then used to build surrogate models to
predict process and integrity-related variables, such as duty, power,
and equipment surfaces/areas, fed as input to estimate capital
expenditures, equipment dimensions, and corrosion rate in
critical plant locations. Equipment dimensions are preliminarily
contrasted against vendor specifications. The preliminary process
design is then assessed using our surrogate models within a feasible
operational envelope to provide insight into the plant operation, as
well as predicted plant integrity issues, such as corrosion rates in
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FIGURE 1
Overview of our data analysis-based framework: (A) original framework from reference (Galatro and Navas, 2022) and (B) adapted framework for
design and assessment of chemical process plants.
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critical locations. Surrogate models can also be used as standalone
models for monitoring purposes and can be updated with plant data,
once in operation.

2.2 Case study

Our framework was implemented in a case study including an
amine gas-treating unit. Amine gas-treating involves scrubbing the
gas with various alkyl amines, which removes acidic gases from the
acid natural gas, thereby generating “sweet natural gas.” The bond
between the impurity, such as H2S, and the amine is very weak.
Thus, we can take advantage of this weakness by regenerating the
used amine solution in the stripping section and mixing the
regenerated amine with the fresh amine to recycle it back to the
absorption column. Methyl diethanolamine (MDEA) is an amine
used to selectively remove H2S to pipeline concentrations (<4 ppm
in sweet gas). Critical process parameters in MDEA units include
pressure to the separator, an absorber, and a regenerator,
temperatures in the lean/rich heat exchanger, and regenerator
reboiler duty. The Gas Processors Suppliers Association (GPSA)
provides process guidelines on how to operate these plants (Galatro
and Navas, 2022; Gas Engineering Data Book, 2016) as well as
typical equipment sizing data for these units.

Our design base scenario considers:

- Flow rate of acid gas to be processed: 0.28 MSm³/d.
- Amine type and concentration in liquid solution: 45%
weight MDEA.

- Acid gas concentration in gas: 7.5% mole (H2S: 2.5% and
CO2: 5%).

- Inlet pressure: 5,585 kPag.
- Sweet gas specification: 4 ppm H2S.

2.3 Data generation and surrogate models

A set of surrogate models is created to predict process-corrosion
variables and equipment sizing models. Capital expenditure
(CAPEX) models for the equipment are taken from the literature
(Cooper et al., 2005).

The selection of the surrogate models is made by comparing the
prediction performance of different models, for instance, linear/
polynomial regression, response surface analysis (RSA) and
multivariate adaptive regression spline (MARS). Statistical
metrics include individual and overall p-values, F-statistics,
relative standard error (RSE), and R2.

2.3.1 Process surrogate models
Galatro and Navas (2022) performed a sensitivity analysis using

a commercial process simulation software to obtain “clean” process
data by changing the values of MDEA concentration, MDEA flow
rate, and reboiler duty while recording the effect on the H2S and CO2

composition in the sweet gas, acid gas loading (regenerator bottom),
temperature, and fluid velocity at the regenerator feed and
regenerator bottom streams.

Consequently (Galatro and Navas, 2022), obtained surrogate
models (MARS) from the combined simulated/existing plant data to

predict the acid gas loading and fluid temperature. These variables
are used as input for the surrogate model used to estimate the
corrosion rates in critical streams. In this work, we generated the
process data and fitted to surrogate models, as prescribed by
(Galatro and Navas, 2022). To reduce the computational time
required during the sensitivity analysis in the process simulation
software, we have completed clean data using Random Forest, an
unsupervised machine learning algorithm useful for regression/
prediction purposes (Galatro and Dawe, 2024). This task led to
generating updated versions of the existing process
surrogate models.

2.3.2 Corrosion surrogate model
Process integrity (PI) in manufacturing includes (i) hazard

identification, (ii) material selection, (iii) designing, operating,
and maintaining pressure relief and blowdown systems, (iv) plant
operation guidelines, (v) establishing safe operating limits, (vi)
defining plant layout and area classification, among other topics.
In our case study, integrity was assessed by obtaining the
corrosion rate in critical streams (feed to regenerator and
bottom from regenerator), as suggested by (Galatro and
Navas, 2022). Corrosion is an integrity threat that costs
$1.4 billion in the oil and gas production industry (Bhawna
and Rakesh, 2023).

Amine corrosion is a form of localized corrosion that occurs
mostly on carbon steel and is a function of several factors,
including the concentration of the amine solution, the acid gas
loading, the heat-stable amine salts, temperature, and velocity
(Galatro and Navas, 2022). High lean loadings with a
considerable amount of regenerated amine lead to corrosion;
In H2S/CO2 MDEA systems, acid gas loading is set to a maximum
of 0.55 mol/mol (API RP 581, 2016). Higher temperatures, in
combination with high rich loading, drastically promote
corrosion (API RP 581, 2016). Heat-stable amine salts
(HSAS), comprised of amine degradation products, are
corrosive; furthermore, they cause corrosion by reducing the
amount of active amine available for absorption, resulting in
higher acid gas loadings (API RP 581, 2016).Higher fluid
velocities contribute to localized corrosion in places such as
valves and elbows; for this reason, velocity is limited to 1.5 m/
s for rich amine and 6 m/s for lean amine in carbon steel. Galatro
and Navas (2022) obtained a neural network-based surrogate
model for the corrosion rate in MDEA systems, and it is used in
this work. The validity range of their model is for temperatures
between 80°C–140°C, a maximum HSAS content of 4.5 weight%,
maximum acid gas loading of 0.7 mol/mol, and fluid velocities
between 1.0–6.0 m/s, with a maximum error estimated of 4.2%
(Gas Engineering Data Book, 2016).

2.3.3 Equipment sizing surrogate models
A sensitivity analysis was performed using process simulation

software, varying the input data (as per the design case) to record
their effect on equipment duty, surface area, and power, and vessel
dimensions within the following ranges:

- Flow rate of acid gas to be processed: 0.15–0.30 MSm³/d.
- Amine flow rate: adjusted to obtain 4 ppmH2S in the sweet gas.
- Amine concentration in liquid solution: same as design case.
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- H2S/CO2 composition in the feed gas: 1 to 2.5/1%–10% mole.
- Inlet pressure: 4,500–6,000 kPag.

The decision-making process on which independent variables
are required to size each equipment can be based on first principles,
heuristics, and/or data. In our case study, the reference for
comparison purposes is the GPSA handbook, which presents
heuristics-based correlations. Alternatively, in the case of
unavailable heuristics or lack of first principles governing
equations for a system and/or process, we suggest data-driven
approaches involving typical data analytics stages, such as
exploratory data analysis, feature-importance, and preliminary
interaction between variables, and fitting the data to regression
models (using machine learning algorithms).

Several process simulation software solutions are already
equipped with routines allowing for equipment sizing;
nevertheless, we emphasize the importance of obtaining surrogate
models since (i) they are standalone solutions that can serve
modularization purposes, (ii) there are equipment which are not
embedded in the software database from which dimensions are
typically obtained from vendors and/or licensors, and (iii) they can
be integrated into optimization algorithms.

2.3.4 Capital expenditure models
In this work, we employed a set of correlations to estimate

equipment cost as per (Couper et al., 2005). The equipment CAPEX
estimated with these correlations has been adjusted to the current
cost using the corresponding Chemical Engineering Plant Cost
Index (CEPCI) (Mignard, 2014).

2.4 Process-integrity assessment

A correlogram was used to visually assess the correlation
strength and interaction between the variables affecting the
corrosion rate in MDEA systems, assuming that the relationship
between variables is linear. The “level of importance” of these
correlations and interactions allowed for selecting the critical
process streams where the corrosion rate shall be estimated.
Thus, the process-integrity assessment was performed on the
streams ‘Regen Feed” (feed stream to the regenerator) and
“Regen bottom” (bottom stream from the regenerator) by
estimating the corrosion rate as a function of the temperature,
HSAS content, acid gas loading, and fluid velocity, as suggested
by (Galatro and Navas, 2022). The acid gas loading and temperature
are estimated using the corresponding process surrogate models.
Either when designing or operating the plant, the corrosion rate
allows monitoring, for instance, (i) regeneration efficiency, which is
affected by the acid gas loading, (ii) amine degradation, which is
impacted by the HSAS content, and (iii) localized corrosion, which is
caused by high fluid velocities (>6 m/s).

2.5 Calculation tools

Aspen Hysys® was used as process simulation software. All
calculations in this work were performed in R, a robust free
software typically used in data analytics.

3 Results

3.1 Process and corrosion surrogate models

Figure 2A shows a simplified correlogram for some of the
process design-related variables. Correlograms are used for a
preliminary assessment of the correlation strength and
interaction between process design variables to facilitate the
dimensionality reduction for the equipment-sizing
surrogate models.

Design-related variables, such as the reboiler duty, strongly
depend on the acid gas flow rate, followed by the acid gas
concentration, and weakly on the amine concentration. In our
case study, we can confirm that our data-based models
considered the required independent variables, matching most of
the strength/weak correlations shown in several correlograms.
Similarly to the GPSA, most of the equipment sizing models are
linear and dependent on one variable, except for the pumps power
and the amine flow rate, which depends on the acid gas
concentration, acid gas flow rate, and amine concentration in
liquid solution. These models exhibit R2 close to 1, with RSEs
less than 0.001. The corrosion rate model was taken from
(Galatro and Navas, 2022) and is a neural network-based model
with R2 = 0.991 and RSE = 0.02. The updated acid gas loading and
temperature models, which fitted the hybrid data to MARS and RSA
models, respectively, report R2 close to 1 and RSEs of 0.0001 and
0.026, respectively.

Figure 2B illustrates a correlogram relating the variables
affecting the corrosion rate. The circles are proportional to the
correlation coefficients, showing positive correlations for all
variables; this proportionality allows us to rank the
importance of the variables affecting the corrosion rate,
starting with the temperature, followed by the HSAS content,
acid gas loading, and fluid velocity. Assuming an HSAS content
constant in all process streams, looking at their remaining
variables in the heat and material balance generated by the
process simulation, and estimating the corresponding acid gas
loading as per the fitted surrogate model, it is possible to select
the highest expected corrosion rates of the plant in the streams
“Feed Regen” and “Bottom regen,” as describe by (Galatro and
Navas, 2022).

3.2 Design base scenario

The main results regarding the design base scenario are shown
in Table 1.

The total duty comprising the reboiler, rich-lean amine heat
exchanger, amine cooler, and reflux condenser is 4,581 kW,
totaling 586.2 K$. Regarding power requirements comprising
main amine, amine booster, and reflux pumps, the total is
62.1 kW, costing 119.1 K$. Finally, the contactor, surge tank,
reflux accumulator, and regenerator dimensions were estimated
to cost 155.7 K$. A comparison between our surrogate models
and the GPSA correlations reveals errors of 3.0% (duty), −29.2%
(power), and 4.2% (total CAPEX, which included a design factor
of +30%) in average. Duty errors lie between 1.4% and 8.7%,
while power requirements were estimated between +11.1 and
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+33.5%. Potential sources of deviation for these requirements
might be mostly due to the nature of the GPSA estimations,
which are considered simplified for conventional
monoethanolamine (MEA) and diethanolamine (DEA) amine
gas units (Gas Engineering Data Book, 2016). Moreover,
intrinsic noise in the plant data might contribute to these
deviations. The obtained equipment sizing surrogate models
were linear and/or polynomial, like the models reported in
GPSA (Gas Engineering Data Book, 2016), with R2 of

0.86–0.95; dimensions for vessels obtained with our surrogate
models (contactor, surge tank, reflux accumulator, and
regenerator) are the same as per the GPSA guidelines, as
standard equipment sizing is expected. The amine flow rate
via surrogate model obtained from simulated data was estimated
to be 92% of the calculated using the GPSA guidelines, which
might be attributed to intrinsic noise in the plant data and/or
intrinsic differences derived from the thermodynamic method
used for the process simulation software.

FIGURE 2
(A) Simplified Correlogram for some (A) process design-related and (B) corrosion variables; (C) process-integrity design validation within the
operational envelope.
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3.3 Design validation within the
operational envelope

Table 2 presents a series of scenarios defined for design
validation and visualization purposes. Acid gas flow rate to be
processed, amine concentration in liquid solution and H2S/CO2

composition are varied to evaluate the impact on the total duty and
power of the plant. These scenarios are contrasted against their
corresponding design values (4,581 kW and 62.1 k, respectively) to

validate that expected values within the operational enveloped can
be “handled” by the design.

Table 2 supports evaluating how the design from Table 1 holds
up under different process conditions; multiple scenarios provide
insights into the flexibility and robustness of the chemical process
design. Moreover, Table 2 supports identifying how changes in
process parameters, such as H2S concentration or reboiler
temperature, affect performance indicators, such as equipment
duty, size, or power requirements, allowing for assessing whether

TABLE 1 Equipment sizing for the design base scenario.

Heat exchangers

GPSA Duty, kW Duty, kW % Deviation Area, m2 Duty, Btu/h Cost, K$

Reboiler (direct fired) 2098.5 1969.3 6.2 96.1 6047452.8 131.9

Rich-lean amine HEX 1,308.8 1,271.1 2.9 95.5 3903495.0 48.9

Amine cooler (air cooled) 435.5 473.3 8.7 86.8 2422551.2 379.4

Reflux condenser 880.0 867.3 1.4 44.2 2959479.2 26.0

4,581.0 586.2

Power requirements

GPSA Power, kW Power, kW % Deviation Area, m2 Duty, Btu/h Cost, K$

Main amine pumps, kW 39.1 52.2 33.5 1.9 (2 pumps)

Amine booster pumps, kW 4.5 5.0 11.1 0.2 (2 pumps)

Reflux pumps, kW 4.5 5.0 11.1 0.2 (2 pumps)

62.1 119.1

Contactor

Still diameter, mm 750 636.0

Height, mm 2,250

Weight, lb 186.2 31.2

Surge Tank

Diameter, mm 1,524

Length, mm 4,877

Weight, lb 794.2 50.7

Reflux Accumulator

Diameter, mm 1,067

Length, mm 2,438

Weight, lb 303.3 35.6

Regenerator

Still diameter, mm 1,067

Height, mm 3,201

Weight, lb 372.7 38.2

155.7

1,119.3
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equipment are adequately sized to handle different operational/
process conditions. Finally, Table 2 might support fine-tuning
decisions leading to process optimization when comparing
expected results with actual process behaviour.

Figure 2C shows the process design validation within the
operational envelope for twelve random scenarios (this is only
for visualization purposes, as our approach allows for several
iterations, hence, theoretically an infinite number of
operational scenarios).

The dashed contours depict the design duty and power, while
the solid contours represent the maximum values of duty and power
for each scenario, which never cross the dashed boundaries.
Figure 2B shows the integrity design validation within the
operational envelope, with operational corrosion rates never
crossing the boundaries of the maximum corrosion rate of
1.3 mm/y, set at a maximum gas recommended acid loading in
rich amine (mol/mol) of 0.55 mol/mol (as per GPSA), average
recommended reboiler temperature of 116°C (as per GPSA), and
average HSAS of 2%.

3.4 Importance of our framework in
chemical process design and
engineering education

Our process-integrity design assessment approach looks at
optimizing process conditions and energy consumption while
potentially predicting safety hazards and equipment failures. The
synergy between first principles (via process simulation),
heuristics, data analysis, and complementary modelling/
simulation using machine learning tools allows for assessing
several operating scenarios. In our case study, for instance, we
quantified considerable differences when estimating duty and
power requirements compared to rough estimations, while we
also assessed the integrity of our design in key sections of our
plant using a machine learning model integrated into our process

models, when estimating corrosion rate at several operating
conditions.

Therefore, we foresee the use of our framework as an event-
based approach where process/plant design is seen dynamically.
Field engineers and chemical engineering students could test the
design for different operational scenarios (including off-specs/
failure-inducing ones) and study, through data-based causation,
the interaction between variables when analyzing these scenarios
(refer to the correlogram in a previous section of this paper).

Some of the challenges that we identified for future
implementation of our framework in field process engineering
include (i) defining/scoping feasible scenarios might require a
solid understanding of the process, and potentially be resource-
consuming to execute; and (ii) requiring multidisciplinary expertise
as some integrity-reliability aspects might not be easily identifiable
by process engineers but experts in areas such as corrosion, failure
analysis, etc. In our classrooms, we identified challenges such as (i)
defining fair rubrics to reflect the students’ understanding of the
process design, and (ii) assessing the effectiveness of implementing
this framework, as instructors might require surveying its impact on
the workplace. Future work will examine implementing this
framework for the capstone project in our undergraduate
chemical engineering curriculum and longitudinally assessing its
effectiveness in enhancing the design workflow process of students.

4 Conclusion

In this work, we presented a process-integrity assessment
framework for chemical process design that combines first
principles, heuristics, vendor specifications, standards/codes, data
analysis, and machine learning (ML) modelling. A case study on a
gas treating unit was used to implement and assess our framework.
A set of surrogate models was fitted from process simulation data
and plant data for process, integrity, equipment sizing, and
equipment cost variables that allow for designing the plant, as

TABLE 2 Process scenarios for design validation.

Scenario Acid gas to be
processed, MSm³/d

Amine concentration in liquid
solution, mass%

H2S, % mol
(inlet)

CO2, %mol
(inlet)

Reboiler temperature
(bottom), °C

1 0.283 50 1.0 5.0 119.4

2 0.200 50 1.0 5.0 113.5

3 0.150 50 1.0 5.0 110.0

4 0.283 45 1.0 5.0 121.5

5 0.283 50 1.0 5.0 119.3

6 0.283 55 1.0 5.0 117.5

7 0.283 45 2.0 5.0 125.1

8 0.283 45 2.5 5.0 127.0

9 0.283 45 2.5 1.0 112.3

10 0.283 45 2.5 2.0 116.0

11 0.283 45 2.5 3.0 119.6

12 0.283 45 2.5 4.0 123.3
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well as assessing the design based on several conditions within an
operational envelope. Equipment power requirements showed
considerable differences when compared to values obtained from
traditional process guidelines, with errors up to 33.5%. While we
perceive notable integrating and synergy benefits of applying hybrid
frameworks, including ML modelling, we foresee implementation
challenges associated with scoping scenarios, gathering data, and
combined process/integrity expertise. Finally, we also present
insights into future work for its implementation and effectiveness
assessment in engineering education, looking at enhancing the
design workflow process of students.
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