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This work investigates the potential of hybrid modelling in the digitalization of the
chemical and biochemical industries. Hybrid modelling combines first-principles
with data-driven models and is a vital enabler for the knowledge-informed
transition to Industry 4.0 and, ultimately, 5.0. By integrating data with
mechanistic know-how, hybrid modelling facilitates the implementation of
“smart manufacturing”. Although there have been many innovations in the
field of machine learning, AI, and cloud computing, the industry is still some
distance away from becoming truly digital; this is particularly true in the case of
the biochemical industry, which in many ways still is in the industry 3.0 stages.
This gap hinders the full realization and benefits of the digital transition, such as
easier process optimization, better cost-efficiency balance, and overall improved
competitiveness and sustainability. This research delves into documented
examples of hybrid modeling in chemical and biochemical engineering
research and industries. It aims to illustrate current motivations,
implementation challenges, and practical issues that hybrid modeling can
address. The goal is to derive the path towards fully implementing hybrid
modeling as an effective tool and key enabler for creating true digital twins
and successful digitalization.
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1 Introduction

The chemical and biochemical industries face numerous challenges and opportunities
due to the ever-changing technological landscape. The rise of Industry 4.0 and Industry 5.0,
as presented in Figure 1, has brought about digitalization and automation, offering the
potential for significant efficiency and productivity improvements. As presented in Figure 2,
companies can improve operations and transition to Industry 4.0 and 5.0 by employing
advanced technologies such as Digital Twins (DTs), Internet of Things (IoT), Artificial
Intelligence (AI), and big data analytics, among others (Udugama et al., 2021; Gargalo et al.,
2021; Pandey et al., 2024; Isoko et al., 2024). Indeed, Industry 4.0 is the embodiment of
digital transformation through the development of high-fidelity digital copies of the
processing plant operations (Gargalo et al., 2021; Isoko et al., 2024). Although
Industries 4.0 and 5.0 both leverage advanced technologies (see Figure 2), the former is
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FIGURE 1
Illustration of the Industrial Revolution stages. Diagram created in Canva.com, icons obtained from Flaticon.

FIGURE 2
Key enabling technologies of Industry 4.0 and 5.0. Diagram created in Canva.com, icons obtained from Flaticon.
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focused mainly on automation and digital transformation towards
smart manufacturing, whereas the latter targets improving the
collaboration between humans and machines towards a more
“human-centric” approach (Aheleroff et al., 2022; Maddikunta
et al., 2022; Nahavandi, 2019). Moreover, while Industry
4.0 paves the way for a sustainable (bio)economy, Industry
5.0 emphasizes and implements the concept of circularity
(Pandey et al., 2024). Adopting circular (bio)economy leads
companies to reduce, reuse, and recycle by leveraging
technologies like IoT sensors for continuous energy monitoring,
AI-powered analytics, and additive manufacturing. This paradigm
targets to reconcile technological advancements with human values
(“human-centric”), sustainability and environmental-conscious
decision-making (aiming to reduce the environmental impact in
place since the rise of Industry 2.0), and workforce well-being,
promoting agile and robust production systems (Aheleroff et al.,
2022; Bazel et al., 2024; He and Chand, 2024; Maddikunta
et al., 2022).

Yet, the journey towards successful implementation of Industry
4.0 in (bio)chemical processing plants is not simple and/or
straightforward (Pandey et al., 2024; Isoko et al., 2024; Udugama
et al., 2021). It implies not only technological advancements but also
workforce training, organizational changes, and regulatory backing
(Pandey et al., 2024; Isoko et al., 2024; Udugama et al., 2021; Gargalo
et al., 2021). In particular, the biochemical industry, including
sectors such as enzyme production and biopharma, seems to be
falling behind, with many companies still operating within the
limitations of Industry 3.0 (Arden et al., 2021). This gap can be
due to various reasons, including the intrinsic complexity of
biological systems (difficult to optimize and scale), regulatory
guidelines, scalability, data security, and the high expenses linked
with upgrading current infrastructure (e.g., sensors, cloud
computing, cybersecurity) (Isoko et al., 2024; Gargalo et al., 2021;
Arden et al., 2021; Maddikunta et al., 2022). Another significant
barrier to the digitalization of the (bio) industry is the shortage of
skilled workforce - digital literacy is now a mandatory set of skills
(Caccavale et al., 2024). Thus, the adoption of Education 4.0 in
educational institutions is under discussion, with some Universities
taking the lead in training students towards this goal (Caccavale
et al., 2024).

Despite these and other challenges companies face in
implementing Industry 4.0 principles in the chemical and
biochemical industries, several technologies have emerged that
could facilitate the implementation of these strategies. Hybrid
modelling is a promising approach that combines first-principles
models with the flexibility of data-driven techniques to make more
accurate predictions, improving process control and optimization,
and increasing efficiency and flexibility (Narayanan et al., 2023;
Sokolov et al., 2021; Narayanan et al., 2020; Albino et al., 2024).
Hybrid models work on counteracting the advantages/disadvantages
of both mechanistic and data-driven approaches. This synergy not
only improves the predictive accuracy of models but also provides
deeper insights into process dynamics, enabling better control and
optimization (Narayanan et al., 2020; Narayanan et al., 2023). This
approach is especially applicable and beneficial for industries where
data generation is highly resource intensive, and the fundamental
processes are not 100% understood (e.g., biochemical processes,
transport and reaction mechanisms) (Narayanan et al., 2023; Yu

et al., 2022). This is due to the fact that hybrid modelling identifies a
compromise between the governing relationships among the
variables while permitting the flexibility to discover possible
interactions between these variables (Narayanan et al., 2023).
Therefore, in essence, one substitutes excessively intricate
processes that cannot be physically modelled with simplified
dynamic, machine learning (ML) processes, or time series
modelling. This enables the direct acquisition of new
parameterizations from observations and/or high-resolution
model simulations using machine ML methods (Kasilingam
et al., 2024). Even before coining the term of hybrid modelling in
1992 (Psichogios and Ungar, 1992), numerous works on grey box
modeling have demonstrated their successful implementation in
representing complex systems, such as, for example, kinetic
modelling (e.g., Monod), mass transfer between liquid and gas
phases, among others. In summary, the shift toward Industry
4.0 and 5.0 brings both challenges and opportunities for the
chemical and biochemical industries. Although the journey ahead
may be challenging, the potential benefits in terms of efficiency,
improved sustainability, and competitiveness are too significant to
overlook. We believe that this article will shed light on these
challenges and motivate further research and discussion.

The remaining manuscript is organized as follows. Section 2
delves deeper into concepts and principles behind the successful
implementation of hybrid modelling, and discusses the
advantages over conventional modelling approaches in the
context of Industries 4.0 and 5.0. Section 3 presents a
pragmatic review of works detailing the implementation of
hybrid modelling and discusses the lessons learned. Section 4
presents perspectives on the use of hybrid modelling for resource
optimization and the pursuit of sustainability. Lastly, Section 5
summarizes the main findings and provides insights for future
advancements in this field.

2 Hybrid modelling in the digital era:
concepts and principles

As previously mentioned, we distinguish between two distinct
modelling approaches: i) knowledge-driven, and ii) data-driven.
Combining these two results in a third approach, a hybrid
modelling approach. Each approach will be elaborated on in this
section so as to provide the rationale for the emergence of
hybrid modelling.

Knowledge-based modelling is also referred to as mechanistic
modelling, first-principles modelling, white-box modelling,
parametric modelling, or physics/science-based modelling.
Despite the wide range of terminologies used, the concurring fact
is that such an approach is based on a first-principles understanding
of the phenomena occurring in the system, where the parameters in
the model have a physical meaning. Such models include physical
laws and constraints resulting from combining observations,
theoretical analysis, hypothesis construction, and experimental
validation (Rudolph et al., 2024). These laws usually result in
mass, energy, and momentum conservation laws. First principle
models conventionally take the form of either algebraic equations,
systems of ordinary differential equations (ODEs), or systems of
partial differential equations (PDEs).
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Many studies have focused on the mechanistic modelling of
various processes relating to the upstream and downstream of
chemical and biochemical industries. Some examples are:
Saccharomyces cerevisiae fermentation process (Sonnleitner and
Käppeli, 1986), lactic acid bacteria fermentation (Spann et al.,
2018), filamentous fungal fermentation (Mears et al., 2017),
membrane filtration (Rischawy et al., 2023), pectin extraction
(Andersen et al., 2017), ion exchange chromatography (Rischawy
et al., 2022; Meyer et al., 2023) and distillation processes (Bisgaard
et al., 2017).

Mechanistic models are usually data-efficient (in contrast to
data-hungry) and are capable of providing a causal explanation of
the generated output. As such, they are reliable as long as the
underlying assumptions and the domain of applicability are valid.
One major drawback of this modelling approach is that it requires
expert domain knowledge to derive the underlying dynamics.
Considering the multiscale nature of many of the phenomena
occurring in a chemical process and the wide range of expertise
required (metabolism, metagenomics, fluid dynamics, etc.), this
could pose a serious challenge. This a challenge many have
sought to solve using data-driven modelling.

Data-driven modelling is also referred to as black-box modelling
and non-parametric modelling. The concept of nonparametric
reflects the fact that the parameters in these models do not carry
any physically meaningful sense. These models are data-centric and
use the data to deduce the underlying patterns between a set of
inputs and outputs. This pattern recognition is used to approximate
the underlying mechanism, which is especially important when the
true dynamics are too complex for to derive first-principles models.
Data-driven modelling is usually based either on statistical
modelling or more recently on ML principles. Statistical
modelling has been used for many years, e.g., the use of
autoregressive and moving average models for time series, linear
multivariate models (partial least square model), as well as non-
linear multivariable models (polynomial functions). The major
distinction between ML-based models and statistical or classical
first-principles models is that the relationship between the input and
output is not explicitly programmed or encoded in the program. ML
covers a wide range of modelling techniques that can be classified
based on the model structure, the learning process, or the intended
application. Model structures include deep neural networks,
Gaussian processes, graph neural networks, support vector
machines, random forests, k-nearest neighbors, etc. Intended
applications include regression (predicting numerical values),
classification (predicting classes), or clustering (group data based
on similarity). The learning process covers supervised (data used are
labeled) and unsupervised learning (data used are not labeled).

The strength of data-driven models is that they do not “require”
expert domain knowledge and are capable of extracting highly non-
linear relationships between the input and output. This is especially
the case for deep neural networks, which, in theory, are capable of
approximating any non-linear function (hence the universal
approximation nature). However, data-driven models are data
inefficient (data “hungry”) as the data demand scales
exponentially with the feature dimensions (Schweidtmann et al.,
2023). This results in over-parameterized models (with many
weights), which ultimately results in overfitting, especially if the
number of parameters exceeds that of the data used for model

training. Furthermore, the nonparametric models lack an aspect of
explainability, meaning that despite the ability to capture the
intricate relationships between input and output, they cannot
explain the underlying mechanism of a given system, thus the
black-box notation. A model’s ability to extrapolate is of great
interest regardless of the underlying modelling approach.
Mechanistic models are well suited for extrapolation (as long as
the assumptions hold) and the limits of the models can be subjected
to analysis. Meanwhile, some data-driven techniques such as deep
neural networks are subject to the universal approximation principle
and can in theory replicate any non-linear continuous trend.
However, the validity of these models when subjected to extreme
values is not well described but can be inferred through simulation.

Efforts to alleviate the weaknesses of both modelling approaches
while leveraging their individual strengths gave birth to the concept
of hybrid modelling. As such, a hybrid model is any model that
combines first-principles and data-centric approaches. These
models are also referred to as semi-parametric, as only a subset
of its parameters carries any physical meaning. Hybrid models can
potentially provide high accuracies while maintaining a certain
degree of interpretability. The work by Psichogios and Ungar
(1992) as highlighted by Schweidtmann et al. (2023) reported an
improved model performance through better extrapolation, a
reduced need for data, and an increased interpretability of the
models. However, hybrid modelling could also pose a new
challenge as such approaches require both expertise and
knowledge in first-principles modelling and data-driven
modelling to ensure efficient integration Rudolph et al. (2024).
Such an added layer of complexity can arise in determining the
level of detail of each compartment and a suitable configuration to
combine the two approaches.

Rudolph et al. (2024) provide an extensive overview of hybrid
models design patterns. These design patterns are generalized to
unify and formalize the various modelling approaches across
domains and applications. These design patterns are introduced
in the following and exemplified by a few selected relevant studies
from the literature. A more extensive list can be found in Section 3
(dissection and analysis of case studies). Rudolph et al. (2024)
defined two types of hybrid modelling design patterns based on
how the parametric and the non-parametric models interact into
base patterns and composition patterns. The base patterns cover
basic elemental units and take two computational models (one
parametric and one non-parametric). These base patterns cover
the delta model, physics-based preprocessing, feature learning, and
physical constraints (soft and hard constraints). The delta model is
identical to what Psichogios and Ungar (1992) and von Stosch et al.
(2014) refer to as the parallel structure. This design pattern aims to
use the same input for both models and combine their output into
the final target through, e.g., summation. This is especially useful
when the mechanistic model is not entirely understood nor capable
of capturing the entire dynamics exhibited by the system. Therefore,
the data-driven part compensates for this lack of details in the
mechanistic model, yielding higher accuracy and robustness. An
example could be that the mechanistic part describes an ideal system
with a set of associated assumptions, while the data-driven model
provides corrective action to overcome these assumptions. Bradley
et al. (2022) also refer to this as “mechanism correction”. As such, an
important distinction of this configuration is that the two models
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are, in principle, “independent” of each other, and the sole
functionality of the data-driven model is to “improve” and
“correct” the performance of the mechanistic model. An
advantage of the delta model configuration is that it is less data
dependent, as modelling residuals of the mechanistic model is easier
than modelling the complete dynamics of the system and thus will
require less data than a complete data-driven model. From a
conceptual point of view, this configuration supports
“specialization”. The delta model is capable of overcoming cases
where it is infeasible for data to be obtained abundantly over the
entire input space (expensive, safety, or time-consuming). For data
beyond the training domain (aka the test set), the mechanistic model
allows for safe extrapolation, while for data already considered in the
training domain, the data-driven model is already “specialized” as it
offers accurate and reliable predictions. One disadvantage of this
approach is that it does not allow for higher-order interactions
between the two blocks, as their output is only added together.
Besides the parallel combination of the two modelling approaches,
combining these sequentially (serial model structure) is also
possible. For this, Rudolph et al. (2024) distinguishes between
two types of serial combinations based on their purpose:
“physics-based preprocessing” or “feature learning”, depending
on the relative positions of the mechanistic and data-driven model.

If the data-driven approach processes the data-driven model,
it is called “feature learning”. This pattern is used when the
mechanistic model requires input that might be either difficult or
infeasible to measure directly, and thus, the need for the data-
driven model to infer these from auxiliary measurements or
inputs. Within this pattern, we further distinguish between
two “learning paradigms”: sequential and end-to-end learning.
In sequential learning, the training of the two models is
decoupled. This can be used when the desired feature or input
to the mechanistic model is available but at much less frequency
or size than the other measurements. Then, a data-driven model
can be trained using a set of inputs to predict this correctly. The
output of this can then be used in the mechanistic model. In end-
to-end learning, the training of the models is combined, and the
two models are jointly optimized using, e.g., backpropagation of
the errors and gradient-based algorithms. This, however, requires
both models to be differentiable, which is always the case for the
data-driven model, but in some cases, the derivative of the
mechanistic model can be non-tractable. In both cases, the
main advantage is that the output of the hybrid model is still
physically constrained by the mechanistic part, increasing its
reliability. State estimators for control systems are a perfect
example of this approach.

In the “physics-based preprocessing” design pattern, domain
knowledge is used to perform a set of transformations to produce a
set of inputs that can support and enhance the performance of the
data-driven model. This reduces the resources allocated by the data-
driven model for feature extraction, making it easier to relate the
input to the output. This is especially true as the risk of learning
irrelevant features is avoided. This also potentially reduces the need
for complex architecture and long training time. This inductive bias
reduces the input data dimensionality and can enhance accuracy and
interpretability. However, it is important to note that in some cases
and due to the “representation learning capabilities” of data-driven
models, they might be capable of extracting better underlying

features than humans. This renders the mechanistic part an
obstacle rather than an advantage.

The final base pattern defined by Rudolph et al. (2024) is the
physically constrained hybrid approach. These constraints can affect
the parameters, structure, or output of the hybrid model. As such,
two types of constraints are introduced: soft and hard constraints.
The mechanistic part of this pattern is not necessarily a model but
can also be domain knowledge. The difference is that hard
constraints cannot be violated, while soft constraints exhibit
some elasticity that occasionally allows them to be breached. The
previously described feature learning pattern is comparable to a hard
constraint design pattern but ultimately differs in the aim and
purpose, while the physics-informed neural network is an
example of a soft constraint design pattern. An example of a
hard constraint could be the addition of a ReLU layer at the end
of a neural network to ensure that the output is non-negative to
model concentrations and pressure or using a softmax layer to
ensure output is between zero and one for molar fractions
(Aouichaoui et al., 2023). An important prerequisite for the hard
constraint modelling approach is that the data used are in fact in line
with said constraint. This corrective action is also known as data
reconciliation. A major challenge with introducing hard constraints
is that it might result in non-differentiable models making it harder
to use gradient-based optimization (Rudolph et al., 2024).

In soft-constrained design, the mechanistic insight is
incorporated into the loss function as a penalty to guide the
data-driven model toward fulfilling the domain knowledge during
training. The aim is that this constraint is somehow retained at
inference time, and therefore, at inference, the model is purely data-
driven, where knowledge is implicitly encoded. An example of such
an approach includes physics-informed neural networks (PINNs).
These models have been heavily used in problems that include
differential and partial differential equations. These models
introduce an additional term to the loss function of the neural
network that reflects the dynamics that occur in the system. This
term usually reflects the “initial and boundary conditions along the
space-time domins as well as the residuals of the (partial) differential
equation system” (Cuomo et al., 2022). It is important to note that
this adds an additional challenge to the modelling process as the
objective function now becomes multi-objective, which will then
require calibration in order to balance the two target objectives.
Another potential issue arises, such models might not be able to
catch complex dynamics that present multi-scale behaviours
(Cuomo et al., 2022).

Finally, these base design patterns can be combined in many
ways to create composition patterns. Two patterns are defined:
recurrent composition and hierarchical composition. The
recurrent composition involves models that are updated using
an internal state. This update can either be in the form of a data-
driven model or a mechanistic model. The recurrent pattern is
similar to recurrent neural networks and numerical integration
for differential equations. The advantage of this composite
pattern is that it enables pattern recognition across time and
parameter sharing (the same parameters are used for all time
steps). This parameter sharing will then result in a model with a
reduced number of parameters and resulting in a model with a
global understanding of the dynamics of the system. The
hierarchical pattern composition consists of combining two or
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more distinct hybrid modelling patterns. This allows modelling
for more complex problems. An example would be to apply a
delta pattern to two distinct hybrid models, each trained with soft
constraints in the form of domain knowledge in the loss function.
Figure 3 revisits the advantages of white-, gray- (hybrid
modelling), and black-box modelling, while Figure 4 presents
an overview of the various base design patterns along with their
advantages and disadvantages.

3 Case studies and lessons learned: a
pragmatic review

As previously mentioned, hybrid modelling has gained
increased interest from the modelling and digitalization
communities within the biochemical industry, combining the
strengths of mechanistic and data-driven modelling paradigms to
address the complexities inherent in various biological processes.
This review examines 50 case studies published between 2020 and
2024, providing a comprehensive analysis of the principles,
challenges, and lessons learned from the application of hybrid
modelling across a range of biochemical processes. This
comprehensive review is presented in Supplementary Table S1.
Of the 50 case studies reviewed, a significant proportion (28)
dealt with fermentation and bioprocesses, 12 on downstream
processes, eight on upstream chemical processes, and two on the
holistic chemical processes. A schematic overview of the analyzed
case studies is presented in Supplementary Figure S1. In this figure,
the case studies are categorized and examined based on the year of
publication, citation count, the process investigated, and the hybrid
model pattern used.

3.1 Fermentation and bioprocesses

3.1.1 Addressing nonlinearities and time-varying
parameters

One of the primary challenges across biochemical processes,
particularly those relating to fermentation, revolves around their
complex and nonlinear dynamics, making them difficult to model
and predict accurately. These complexities arise from incomplete
mechanistic knowledge, as well as the variability that comes with
biological processes. For instance, Lee et al. (2020) worked on
modelling intracellular signaling pathways, where conventional
models struggled to capture all necessary dynamics, resulting in
significant discrepancies between predictions and actual
measurements. By combining mechanistic models with artificial
neural networks, the authors were able to improve the accuracy of
predictions for TNFα and IκBα dynamics. Similarly, Vega-Ramon
et al. (2021) focused on optimizing astaxanthin production, where
they combined kinetic models with probabilistic methods,
represented by Gaussian processes, to better handle
batch–to–batch variability and improve robustness under
uncertain conditions. Bangi et al. (2022) also addressed the
challenges posed by nonlinear and time-dependent parameters
using similar hybrid modelling approaches. Specifically, the
authors focused on modelling the production of beta-carotene
using S. cerevisiae in batch fermentation. They employed a
hybrid modelling approach using universal differential equations
(UDEs), which combined traditional kinetic models with neural
networks to capture the complex, unknown dynamics of the process.
This approach significantly improved the prediction of critical
parameters, such as biomass, acetic acid, and β-carotene
concentrations, in the fermentation production of beta-carotene

FIGURE 3
Advantages and disadvantages of mechanistic, data-driven, and hybrid modelling.
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using S. cerevisiae. Similarly, Da Silva Pereira et al. (2021) aimed to
optimize ethanol production from cashew apple juice. This was
achieved by using a hybrid neural model (HNM) combined with
particle swarm optimization (PSO) which resulted in high accuracy in
predicting the dynamic behavior of the fermentation process, with a
low residual standard deviation for the model predictions. Cui et al.
(2024) addressed the challenge of modelling CHO cell bioreactor

dynamics, where incomplete knowledge of metabolic processes
complicates simulation and control. They employed a gray-box
hybrid modelling approach, combining mechanistic models with
physics-informed neural networks (PINNs). This approach allowed
the model to learn and predict partially unknown kinetic expressions,
resulting in a robust model capable of adapting to changes in
operating conditions without extensive re-parameterization.

FIGURE 4
Overview of various hybrid modelling pattens.
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3.1.2 Model integration and reduction
Integrating mechanistic models with data-driven approaches is

challenging, particularly when incorporating complex dynamics and
nonlinear behaviors. Pinto et al. (2023) exemplified this by developing
a general hybrid modelling framework for systems biology
applications. The study focused on integrating deep neural
networks (DNNs) with mechanistic models encoded in the
Systems Biology Markup Language (SBML). They addressed the
complexity of training such hybrid models by using the
SBML2HYB tool, which facilitates the conversion of existing
models into hybrid formats. The use of the ADAM optimizer and
stochastic regularization were used in managing the training
complexity and ensuring the models could capture complex
dynamics, such as yeast glycolytic oscillations, that the original
mechanistic models were not able to achieve. Similarly, Rogers
et al. (2023a) explored the application of physics-informed neural
networks (PINNs) in hybrid modelling for bioprocesses. Their study
focused on constructing models for γ-linolenic acid (GLA)
production, where one of the main challenges was the complex
model structure identification. The PINN framework allowed for
the simultaneous determination of model structure and parameter
trajectories, improving the accuracy and efficiency of hybrid model
construction. However, challenges remain in achieving global optima
and accurately identifying parameters in highly nonlinear systems.
Bae et al. (2020) emphasized the importance of defining and
maintaining a valid domain of applicability for hybrid models to
ensure accurate predictions, particularly in dynamic optimization
scenarios. By carefully constructing and updating the valid domain,
the study was able to maintain prediction reliability while optimizing
fed-batch bioreactor operations, leading to improvements in
production yields. This is known as domain shift, where the
current data domain differs from the one the model was originally
trained on. Zhang et al. (2020) focused on balancing the complexity of
kinetic models with data-driven components to avoid overfitting
while maintaining accuracy. In their study on photo-production in
microalgae, they combined a simplified kinetic model with a
polynomial regression-based data-driven model. This approach not
only improved predictive accuracy but also simplified the model
structure, making it easier to manage and less prone to overfitting.
The use of sparse identification of nonlinear dynamics (SINDy)
further optimized the model, demonstrating the effectiveness of
hybrid models in scenarios with limited data availability. Maton
et al. (2022) developed a minimal bioreaction model by integrating
elementary flux modes (EFMs) with multilayer perceptrons (MLPs).
The study addressed the challenge of reducing the initial large set of
EFMs to a biologically meaningful subset while the MLPs captured
complex kinetic behaviors. This approach successfully reduced the
model’s complexity without compromising predictive accuracy,
making it a valuable tool for process monitoring and control. In
another study, Xu et al. (2022) combined a mechanistic model
(ASM3) with a recurrent neural network (RNN) to predict the
enrichment of polyhydroxyalkanoates (PHA) accumulating
bacteria. The integration allowed for accurate long-term
predictions, demonstrating the effectiveness of hybrid models in
optimizing microbial enrichment processes under dynamic
conditions. Rogers et al. (2023b) focused on the challenge of
balancing the amount of kinetic information incorporated into
hybrid models. In this study, the authors developed three hybrid

models with varying degrees of kinetic information combined with
Gaussian Processes (GPs) to simulate unknown kinetics during the
fermentation process of the fungus C. echinulata. The study found
that a moderate amount of kinetic information provided the best
balance between accuracy and uncertainty, demonstrating that there is
an optimal degree of “grayness” in hybrid modelling. Cheng et al.
(2021) introduced a novel approach for bioelectrochemical systems by
integrating mechanistic models with Bayesian networks to enhance
prediction robustness and interpretability. This hybrid model
effectively linked microbial population dynamics with microbial
kinetics, addressing the challenge of parameter identifiability and
improving prediction accuracy.

3.1.3 Model transferability and scalability
A critical challenge in fermentation processes is ensuring the

transferability of hybrid modelling across different scales. Bayer
et al. (2021) and Hutter et al. (2021) addressed this by developing
models that could effectively predict process behavior across
scales, reducing the experimental burden. Bayer et al. (2021),
for instance, addressed this issue in their study on CHO cell
culture processes. They developed a hybrid model that predicted
viable cell concentration (VCC) and product titer across different
scales, from shake flasks to 15 L bioreactors. This was achieved by
combining mechanistic models with artificial neural networks,
along with an intensified design of experiments (iDoE) approach.
The model demonstrated good transferability with minimal
recalibration. Hutter et al. (2021) further explored this by
using a hybrid Gaussian process model, which successfully
transferred knowledge across different cell lines, reducing the
need for extensive experimental work.

The majority of these studies were conducted at the theoretical or
laboratory scale, with only a few advancing to pilot or industrial-scale
applications. Bayer et al. (2021) and Okamura et al. (2022) successfully
scaled up their models from lab to pilot scale, showing the potential of
these approaches in larger operations. In particular, Okamura et al.
(2022) addressed scale transferability in their study on CHO cells,
where they developed a three-module hybrid model to predict cell
growth,metabolism, and impurity generation under varying cultivation
conditions. The inclusion of a data-drivenmodule allowed themodel to
dynamically update parameters and improve prediction accuracy,
particularly for metabolites like lactate, which exhibit fluctuations
that are difficult to capture with the kinetic model alone. Building
on top of that, Shah et al. (2022) applied theirmodels to a full industrial-
scale fermentation process with a volume of over 100,000 gallons. In
particular, the authors provided a comprehensive case study on the
large-scale production of various biochemical products by developing a
hybrid model that combined modified kinetic models with deep neural
networks (DNNs). The hybrid model showed improved performance
across various conditions, except for predicting an intermediate
component where it was comparable to the kinetic model alone.
This indicates that while the hybrid approach offers substantial
improvements, there is still room for further refinement, particularly
in complex multi-step processes. The study is a prime example of how
hybrid modelling can be applied to large-scale industrial processes,
addressing the challenges of scalability and real-world application.
Future work suggested by the authors includes addressing potential
issues like overfitting and exploring the effectiveness of simpler ANN
models compared to more complex DNNs.
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3.1.4 Overcoming limited and noisy data
A significant challenge in hybrid modelling for biochemical

processes is managing data quality and availability. This issue is
particularly important in processes where data are noisy, sparse, or
limited. Several studies have addressed these challenges using
various strategies. For instance, Faure et al. (2023) addressed the
issue of sparse data in genome-scale metabolic models (GEMs) by
integrating neural networks with flux balance analysis (FBA). They
developed an artificial metabolic network (AMN) that preprocesses
input data and refines predictions through mechanistic solvers,
reducing the need for extensive datasets and improving
prediction accuracy in metabolic flux distributions. Similarly,
Lopez et al. (2021) addressed the problem of noisy data in
lignocellulosic ethanol fermentation processes. They combined a
kinetic model with a data-driven model using a continuous-discrete
extended Kalman filter (CD-EKF) to reconcile noisy spectroscopic
data with mechanistic predictions. This hybrid model significantly
improved the robustness of real-time estimates, outperforming
standalone models in handling process disturbances and
measurement noise. Kay et al. (2023) approached the challenge
of limited and sparse data by using transfer learning within a hybrid
modelling framework. Their study on lutein production in
microalgal strains demonstrated how knowledge from well-
understood systems could be transferred to new, less-studied
domains, overcoming the limitations of data scarcity. The
concept of transfer learning is well established in the field of AI/
ML where an initial model is trained on a related application with
abundant data potentially with lower quality. By then using this as
the starting point for the application of interest, the prior knowledge
is refined and adjusted to the new data/application. This method not
only improved model accuracy but also provided robust predictions
with uncertainty estimates, even in data-poor scenarios. Lagergren
et al. (2020) focused on modelling biological systems with sparse
and noisy data by introducing biologically-informed neural
networks (BINNs). This method allowed the learning of
nonlinear terms directly from data within a mechanistic
framework, significantly enhancing the model’s ability to capture
complex dynamics in cell migration studies. Narayanan et al. (2022),
on the other hand, emphasized balancing model accuracy with
interpretability while dealing with noisy and limited data. Their
functional-hybrid model used symbolic regression to integrate
domain-specific knowledge into the model structure, improving
both accuracy and interpretability and performing well even with
limited experimental data. Cruz-Bournazou et al. (2022) addressed
these challenges in their work on fed-batch bioprocesses for
monoclonal antibody production. By integrating Gaussian
process state space models (GPSSMs) with polynomial
regression, they addressed the issues of noise sensitivity and
multi-rate data handling. Their approach provided smooth and
accurate predictions of system dynamics, demonstrating the utility
of hybrid models in optimizing fed-batch processes despite the
inherent challenges of data quality. Morabito et al. (2021) addressed
batch-to-batch variability and uncertainty in early-stage
bioprocesses by incorporating Bayesian inference and Gaussian
processes within a hybrid model. This approach allowed the
quantification of model uncertainty and the integration of risk
measures into process optimization, ensuring robust performance
even with limited data.

3.1.5 Reducing computational cost
A critical aspect of hybrid modelling in biochemical processes is

computational cost, particularly in the context of training complex
models. Kotidis and Kontoravdi (2020) addressed the computational
burden in predicting protein glycosylation by developing a hybrid
model that integrates kinetic models with artificial neural networks
(ANNs). Their approach reduced the need for extensive
parameterization and training time while also improving
prediction accuracy. However, Pinto et al. (2022) demonstrated
that by using a deep hybrid model framework, the CPU time was
reduced by 43.4% with respect to using shallow hybrid models.
Several studies highlighted the importance of balancing model
complexity with the need for accurate predictions while
minimizing computational costs. Mowbray et al. (2023)
introduced a hybrid framework combining kinetic modelling
with reinforcement learning (RL) to tackle the challenges of over-
parameterization and overfitting in models dealing with time-
varying and history-dependent kinetics. Their RL-based approach
effectively identified correct model structures and provided accurate
parameter estimates, even in the presence of noise and sparse data.
This framework proved robust in navigating the trade-off between
model complexity and prediction accuracy, avoiding over-
parameterization. In contrast, Ramos et al. (2024) investigated
the application of long short-term memory (LSTM) networks
within hybrid models for HEK293 cell culture dynamics. While
LSTM models offered superior predictive power and robustness
compared to classical feedforward neural networks (FFNNs), the
study highlighted the significant computational costs associated with
training these models. The complexity of the LSTM models, though
advantageous in handling time-series data, resulted in higher
computational demands, which could be a limiting factor in their
broader application. Conclusively, the computational cost reduction
is highly dependent on the hybrid configuration used and the
underlying mechanistic and data-driven compartments chosen.

3.2 Chemical processes

3.2.1 Challenges addressed by hybrid modelling in
the chemical industry

The case studies by Chakraborty et al. (2021), Polak et al. (2023),
Huster et al. (2020), and Bui et al. (2022) address similar issues in
hybrid modelling of chemical processes as the ones encountered in
fermentation processes, such as managing noise, handling sparse
data, accounting for process variability, and incorporating complex
dynamics into models. In particular, Chakraborty et al. (2021)
addressed the issue of noise and sparse data in nonlinear
parametric systems by developing the AI-DARWIN approach,
which combines genetic algorithms with nonlinear regression for
parameter estimation. This hybrid approach was effective in
identifying accurate and interpretable models, even with limited
and noisy data, showing the potential of genetic algorithms to
improve the reliability of hybrid models. Polak et al. (2023)
focused on the impact of raw material variations and process
parameter changes in continuous manufacturing processes. Their
hybrid model, which combined mechanistic models with artificial
neural networks (ANNs), was able to capture the influence of these
variations on product quality. However, the study also highlighted
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challenges in extrapolating model performance to unseen process
conditions and the need for robust training datasets that integrate a
wide range of operational scenarios. Huster et al. (2020) addressed
the challenge of incorporating accurate thermodynamic models into
the optimization of a transcritical organic Rankine cycle (ORC) for
geothermal power generation. By integrating data-driven surrogate
models with mechanistic models, they were able to optimize the
ORC system more effectively than traditional methods. This study
emphasized the importance of accurate thermodynamic modelling
in achieving optimal performance in energy systems. Bui et al.
(2022) dealt with process variability and unplanned events in an
industrial-scale catalytic process. Their hybrid model, which
combined a fundamental reactor model with an empirical partial
least-squares (PLS) model, predicted catalyst lifetime and allowed
for real-time monitoring and adaptive recalibration (Ryu et al.,
2023). utilized PINNs as a surrogate model to replace the
computational fluid dynamics (CFD) calculation. This was done
through including a physics loss that describes the loss w.r.t. the
governing equations (continuity, momentum and species transport).
The model has demonstrated the impact of operating conditions and
various design variables on the performance of a polymerization
reaction. The results obtained suggest that while intrapolation loss
might be comparable to that of purely data-driven model, the loss
when extrapolating is almost a third of that of a data-driven
approach. These findings are in accordance with the theoretical
motivation of building such models.

3.2.2 Model predictive control (MPC)
The studies by Wu et al. (2020), Alhajeri et al. (2022), and Bangi

and Kwon (2023) all emphasize the application of hybrid models in
improving model predictive control (MPC) frameworks in
continuous stirred tank reactors (CSTRs). These studies address
the challenges of predicting the dynamic behavior in chemical
processes while minimizing computational costs. Wu et al. (2020)
introduced partially connected and weight-constrained RNNs,
integrating first-principles models to improve both accuracy and
computational efficiency. Similarly, Alhajeri et al. (2022) explored
fully-connected versus partially-connected RNNs, with the latter
showing improved performance in terms of reduced computational
time and process stability. Bangi and Kwon (2023) took this a step
further by incorporating NNs into first-principles models, creating a
deep hybrid model (DHM) within a control Lyapunov-Barrier
function-based MPC framework. This approach ensured system
stability and accurate predictions, even under complex dynamic
conditions. Despite being applied at a theoretical scale, these studies
demonstrate that integrating process knowledge into neural network
architectures improves the performance of MPC, making it a
promising approach for real-time control in chemical processes.

3.2.3 Comparison of hybrid modelling approaches
The studies by Jul-Rasmussen et al. (2023) and Peterson et al.

(2024) focused on comparing different hybrid modelling
approaches. Jul-Rasmussen et al. (2023) compared stochastic
gray-box modelling and serial semi-parametric hybrid modelling
for a CSTR. The stochastic gray-box model, which incorporated
system knowledge through stochastic differential equations, was
more robust to noisy data and varying measurement frequencies
than the semi-parametric approach. The effectiveness of hybrid

models in real-world applications often depends on their ability to
outperform purely data-drivenmodels, as demonstrated by Peterson
et al. (2024) in their study on CO2 methanation in a CSTR. The
study compared purely data-driven models with hybrid models
incorporating mechanistic elements. The findings revealed that
while the hybrid models generally outperformed data-driven
models in terms of accuracy and reliability, the complexity of the
hybrid models required careful calibration and could lead to
increased computational costs. Bikmukhametov and Jäschke
(2020) explored various methods of combining machine learning
with first-principles models for estimating multiphase flow rates in a
petroleum production system. Their findings showed that hybrid
models, which incorporated physically meaningful features from
first-principles models, improved the accuracy and interpretability
of predictions compared to purely data-driven models. These
findings demonstrate the importance of carefully selecting hybrid
modelling approaches based on the specific requirements of
accuracy, robustness, and data availability.

3.3 Downstream processes

3.3.1 Challenges addressed by hybrid modelling in
downstream processing

The case studies by Di Caprio et al. (2023), Narayanan et al.
(2021), Krippl et al. (2020), Jul-Rasmussen et al. (2024), and Schäfer
et al. (2020) address various challenges in hybrid modelling of
downstream processes, including data quality, model integration,
and scalability. Di Caprio et al. (2023) addressed the issue of poor
data quality in the constant volume solvent switch (CSS) process, a
critical downstream operation in active pharmaceutical ingredients
(API) production. By combining first-principles models with
multivariate rational functions and polynomial functions, they
developed a hybrid model that outperformed traditional models
in both accuracy and robustness. The study showed the importance
of model configuration and optimization techniques in achieving
reliable predictions, even with low-quality data. Narayanan et al.
(2021) addressed the challenge of modelling chromatographic
processes, which require accurate knowledge of adsorption
isotherms and mass transfer kinetics. Their model integrated the
mechanistic framework of the lumped kinetic model (LKM) with a
neural network that learns the adsorption dynamics of the protein.
This approach bypassed the need for detailed mechanistic
assumptions. This approach proved flexible and accurate,
particularly in scenarios involving unknown adsorption isotherms
or conditions outside the training data. Krippl et al. (2020) explored
the application of hybrid modelling in cross-flow ultrafiltration (UF)
processes, focusing on predicting flux evolution and process
duration. Their hybrid model, which integrated mechanistic
models with artificial neural networks, showed high accuracy and
adaptability across different UF modes and feed characteristics. The
study highlighted the potential of hybrid models to reduce
experimental workload and improve process control. Jul-
Rasmussen et al. (2024) focused on improving the prediction
accuracy and robustness of models for aeration in bubble
columns. Their study compared different hybrid AI modelling
techniques, finding that AI-Darwin symbolic regression-inspired
techniques provided a valuable alternative to traditional neural
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networks, particularly in scenarios requiring model interpretability
and better generalization. Schäfer et al. (2020) addressed the
complexity of dynamic modelling for distillation columns, a
challenging task due to their nonlinear thermodynamic
behaviour. By integrating artificial neural networks with existing
model reduction approaches, they developed a hybrid model that
achieved a good balance between computational efficiency and
accuracy. This study proves the potential of hybrid models in
real-time control applications, particularly in complex
dynamic systems.

3.3.2 Application of hybrid modelling in
particle processes

Several studies have focused on the application of hybrid models to
particle processes, such as crystallization, flocculation, and sieve tray
extraction. The works of Nielsen et al. (2020), Nazemzadeh et al. (2021),
Sitapure and Kwon (2023), Lima et al. (2023), and Palmtag et al. (2024)
exemplifies the diverse approaches and innovations in this area. Nielsen
et al. (2020) explored the control and modelling of crystallization
processes, which are notoriously difficult due to their complex
dynamics and limited solubility information. The hybrid model
developed integrated deep neural networks (DNNs) with
mechanistic population balance models. This allows for better
prediction of particle properties and process dynamics, being
particularly successful in pharmaceutical crystallization. Similarly,
Nazemzadeh et al. (2021) focused on flocculation processes, where
the aggregation and breakage phenomena present significant modelling
challenges. The study compared three models with different degrees of
“grayness” of first principle and kinetic information showing that a
simple first principles model had limited accuracy, while the hybrid
model integrating PBM and DNN improved accuracy. However, some
challenges were also reported in the form of increased sensitivity to the
initialization of the neural network. The hybrid model incorporating
additional kinetic information showed the best performance. The
integration of kinetic expressions into the deep learning framework
also reduced the model’s sensitivity to initialization, a common issue in
purely data-driven approaches. In another study, Sitapure and Kwon
(2023) developed hybrid models using time-series-transformers (TST)
for batch crystallization processes. They compared series and parallel
configurations, finding that the series model provided more accurate
predictions, especially over long-term process dynamics. Lima et al.
(2023) introduced a novel approach by integrating population balance
models with universal differential equations (UDEs). Their UDE-based
hybrid model reduced the need for extensive experimental data while
maintaining high prediction accuracy. This approach is particularly
valuable in crystallization processes where data availability is often a
limiting factor. Finally, Palmtag et al. (2024) addressed the challenges in
modelling pulsed sieve tray extraction columns, focusing on drop
breakage and coalescence phenomena. By integrating data-driven
parameter estimator models with physical models, they developed a
hybrid model that reduced the need for re-parameterization. This
model demonstrated high accuracy and robustness, making it a
promising tool for industrial applications.

3.3.3 Hybrid modelling in water treatment
applications

Water treatment processes present a unique set of challenges due
to their inherent complexity and fuzziness. This is largely due to the

mixture of microbial entities present in the sludge. The studies by
Quaghebeur et al. (2022) and Cheng et al. (2023) illustrate the
application of hybrid models in this domain, particularly in
wastewater treatment and water resource recovery. Quaghebeur
et al. (2022) developed a hybrid model by integrating neural
differential models into existing mechanistic models. The hybrid
model outperformed purely mechanistic or data-driven models,
demonstrated robustness and accuracy in both dry and rainy
weather scenarios. Cheng et al. (2023) focused on a fuzzy
wastewater treatment process, using a hybrid model that
integrated an activated sludge model (ASM) with a convolutional
neural network (CNN) and long short-term memory (LSTM)
network. This hybrid approach showed better predictive
performance compared to traditional models and robustness in
handling the fuzziness inherent in wastewater treatment
processes. Asrav and Aydin (2023) proposed two approaches to
integrate physics into recurrent neural networks and applied it on
synthetic data generated from benchmark simulation models
(BSM1). The first approach consisted of augmenting the loss
function with a discretized form of the dynamic mass balance of
the soluble nitrogen-containing species. The second includes
repurposing the recurrent cell to include the Euler discretization
of the dynamic balance of nitrogen-containing species. Their results
showed that the physics-informed approaches provided were better
at extrapolating to unseen data (the test set). The same approach was
later applied to an industrial case study of wastewater treatment,
obtaining test errors that were 82% lower than that of a purely data-
driven approach.

3.4 Discussion and outlook

The case studies analyzed showed hybrid modelling to be
particularly successful in capturing complex dynamics that are
difficult to model using purely mechanistic or data-driven
approaches, such as, for example, in MPC applications. In
processes involving time-varying or non-linear kinetics, several
studies have demonstrated the successful application of hybrid
models across different scales, from laboratory to industrial scale.
This scalability is important in the biochemical industry, where
processes often need to be transferred from small-scale experiments
to large-scale production, reducing in this way the need for extensive
experimental data. Furthermore, a great promise has been seen
in situations with limited or sparse data. Techniques such as transfer
learning, where knowledge from well-studied processes is applied to
less-understood ones, have been effective in overcoming data
scarcity. This approach allows for accurate predictions even when
experimental data is scarce, as at the beginning of a process. In water
treatment processes, the integration of mechanistic and data-driven
models was successful in handling the fuzziness and complexity
inherent in these systems. However, the model performance is
largely dependent on the quality of the training data, highlighting
the need for rigorous data preprocessing and quality control. An
important challenge in these processes is the presence of gradients
and that target variables are measured locally and might not capture
gradients. A critical lesson is the trade-off between model accuracy
and interpretability. Particularly in complex systems like distillation
columns or protein purification processes, achieving high accuracy
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often comes at the cost of model interpretability. For example, while
ANNs incorporated into hybrid models provide high accuracy in
predicting system behaviors, they often lack transparency, which can
be problematic for understanding and validating the model’s
predictions in industrial applications. This might also hinder
their wider applicability and adoption in the process industry.
The development of symbolic regression techniques, such as AI-
DARWIN, presents a promising approach to balancing these
competing needs. Despite their advantages, hybrid models also
present challenges, particularly in terms of computational cost
and the risk of overfitting. The integration of deep learning
components, for example, can lead to high computational
demands. Moreover, ensuring that these models generalize well
to new data while avoiding overfitting remains a significant
challenge. Strategies such as regularization, cross-validation, and
careful selection of model architecture have been used to address
these issues, but they require careful consideration during model
development.

Looking forward, several areas of research and development could
further improve the effectiveness of hybrid modelling in the
biochemical industry. For example, focus should be put on
optimizing the architecture of hybrid models to balance accuracy
and computational efficiency. This includes exploring new machine
learning algorithms, improving neural network training techniques,
and refining hybrid frameworks to reduce the computational cost
while maintaining high predictive accuracy. The integration of hybrid
models with real-time monitoring systems presents a significant
opportunity for improving process control and optimization. By
combining real-time data with predictive models, it may be
possible to develop adaptive control strategies that can respond
dynamically to process changes, leading to more efficient and
robust processes. Another important direction is the development
of hybrid modelling frameworks that are more interpretable and user-
friendly. As industries increasingly adopt digital twins and predictive
control systems, there will be a growing demand for models that not
only provide accurate predictions but also offer insights into the
underlying process dynamics. This could involve further exploration
of techniques like symbolic regression or the integration of
explainable AI methods within hybrid models. Moreover, there is
a need to explore the application of hybrid models to a broader range
of processes and scales. While current research has demonstrated the
effectiveness of hybrid models in specific applications like
fermentation and catalytic processes, expanding these approaches
to other areas, such as continuous manufacturing or additional
biochemical systems, could unlock new opportunities for process
optimization and control. This expansion will require not only the
refinement of existingmodels but also the development of new hybrid
frameworks that can handle the unique challenges of these processes.
In conclusion, while hybrid modelling has demonstrated significant
potential in improving process understanding, control, and
predictability in the biochemical industry, its successful
implementation requires careful consideration of data quality,
model interpretability, and scalability. Addressing these challenges
through ongoing research and innovation will be key to realizing the
full benefits of hybrid models in industrial applications. An important
aspect going forward is to introduce these concepts to future
practitioners through an updated curriculum for various STEM
educations.

4 Perspectives on digital transition,
hybrid modelling, and sustainability

Industries are under increasing pressure to adapt, innovate, and
strike a balance between environmental accountability and
economic prosperity (highlighted by the Green Deal (European
Commission, 2019)). The digital transformation is a paramount
element in achieving the goals set by the Green Deal (Garske et al.,
2024; Bauer et al., 2021; European Commission, 2020), and of note is
that the sustainability and sustainable and digital transition are
intertwined in a myriad of ways (Garske et al., 2024; Ekardt, 2022).

The digital transition paradigm aims at streamlining and
improving accessibility by converting analog information into
digital platforms. The changing landscape, marked by evolving
regulations, customer demands, and environmental
considerations, is currently challenging conventional processes
and standards. The drive towards implementing Industry 4.0,
and even 5.0, offers an excellent opportunity (and challenges) to
address these concerns and ensure positive steps towards increased
sustainability in all regards; thus, it plans for social welfare,
economic growth, and positive environmental impact (three
pillars of sustainability). This section, as illustrated in Figure 5,
explores the interplay/relationships between digitalization, hybrid
modelling, and sustainability and the opportunities they hold for the
future of manufacturing.

Several concepts have arisen as key drivers of efficiency and
sustainability in this fast-evolving technological paradigm. A crucial
example is, as previously mentioned, the concept of digital twins
(DTs), virtual copies of entire running physical production plants,
processes and/or supply chains. DTs allow for real-time monitoring
and control, predictive analytics and scenario simulation,
optimization, and predictive maintenance, among others. DTs
enable organizations to pinpoint inefficiencies, decrease waste
production, and optimize processes and systems (Gargalo et al.,
2021; Udugama et al., 2021).

DTs are built on a complex setup of coupled-up high-level
technologies (hybrid modelling, IoT, Cloud computing, smart
sensors, etc.). Smart technologies such as smart sensors are
integral and critical parts of DTs. They are integrated to enable
predictive maintenance and enhance performance. By combining
data-driven techniques with conventional first principles-based
models, hybrid modelling improves the predictive ability of
digital twins by providing a more holistic way to predict and
understand complex system behaviors. Thus, it leads to more
accurate simulations and better management of resources and
optimization due to having a more detailed and comprehensive
understanding of the system and system dynamics (Boschert and
Rosen, 2016; Tzachor et al., 2022; Sansana et al., 2021). DTs can
monitor the real-time dynamic behavior of the physical running
plant and experiment/simulate different conditions (‘what if’
scenarios) and resource allocation, thus optimizing resource
consumption and allocation from supply to final production
steps (Tzachor et al., 2022; Garske et al., 2024; Bauer et al.,
2021). Of note is that hybrid modelling is especially useful in
handling the multifaceted nature of sustainability, where there
are multiple interacting elements and preexisting correlations
(Bennett et al., 2005). For example, depicting the relationship
between technical and economic factors and variables allows one
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to strategize to improve environmental impact while maintaining
economic growth and prosperity and thus obtaining sustainable
business models. Furthermore, in order to achieve the mentioned
goals, DTs should enable decision-makers, policymakers, and
scientists to evaluate environmental impact and human influence
to make decisions that will indeed support sustainable development,
as well as production and consumption, all safely within planetary
boundaries (Garske et al., 2024; Li et al., 2023; Rockström
et al., 2023).

By relying on digital transformation, hybrid modelling, and
other enabling technologies, a symbiotic relationship is achieved
between these concepts and DTs. Together, they drive optimization,
resource efficiency, and sustainability - by leveraging these concepts
and technologies, industries can positively contribute to sustainable
development, where societal wellbeing aligns with environmental
demands and economic growth (as pointed out by the 17 Sustainable
Development Goals (Nations, 2024)).

5 Conclusion and the road ahead

Hybrid modelling integrates human expertise, in the form of
domain-specific process knowledge, with data-driven information
and machine learning techniques. In this work, to pinpoint essential
concepts and critical insights regarding successful implementation,
we have performed a pragmatic literature review of works exploring
the use of hybrid modelling. It is noteworthy that hybrid modelling
is paramount in the digital transformation of (bio)chemical
industries (where intrinsically complex processes prevail) into
Industry 4.0 and beyond. Some key takeaways are as follows.

• Holistic understanding and insights. The synergy obtained by
applying hybrid modelling and thus integrating different
sources of information can help with resource-intensive
challenges (e.g., biopharma, enzyme production) and
provide a more comprehensive understanding and overview
of complex processes.

• Real-time decision-making and predictive power. Digital twins,
enabled by hybrid modelling and other technologies, simulate
the behavior of the physical plant, allowing for monitoring,
predictive analytics, process optimization, fault detection, real-

time decision-making, and predictive maintenance, avoiding
costly downtime. Hybrid models perform well in dynamic
conditions, adjusting predictions based on incoming data/
information. Hence, as pointed out by the works reviewed in
Section 3, it is essential to have this tool in the (bio)chemical
engineer toolkit due to the innate dynamic nature of
these processes.

• Sustainability and resource optimization. As discussed in
Section 4, hybrid models, coupled with digital twins, can
potentially lead industries to significantly reduce resource
consumption and minimize waste production and
emissions by increasing overall and process-specific
efficiency. This is highly significant when aiming at
reaching environmental targets and leads to improved cost-
effectiveness circularity.

• Skilled workforce. Successful digitalization and use of hybrid
models (and other technologies) require skilled professionals
who are fluent in both the technical aspects of implementation
and also have domain-specific knowledge. As pointed out in
Section 1, more institutions (universities and companies) are
increasingly embracing this and focusing on educating
students/workforce on key topics and these technologies.

Furthermore, regarding the technical aspects of the successful
development and implementation of hybrid models, the
literature review has demonstrated that the main lessons are
the effectiveness of hybrid models in providing robust
predictions even with noise or sparse data, reducing the need
for extensive datasets, the need to balance model accuracy with
computational efficiency to ensure practicality in industrial
applications, and the challenge of maintaining model
interpretability, particularly in complex systems, to facilitate
wider adoption and effective process control.

In summary, the transition towards digitalized operations can
help the industry become resilient and attain remarkable levels of
efficiency and sustainability. Thus, it is highly desirable and is on the
agenda of most (bio) chemical industries. Since hybrid modelling
plays a key role in this, it must be embraced and taken on as part of
our toolset. Therefore, continuous efforts should be allocated to
exploring different opportunities and implementation techniques
and deep diving into developing and (when possible) sharing models

FIGURE 5
Digital and Sustainable Transition: the intersection of digitalization and sustainability.
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for the digitalization of downstream and upstream processing steps
at different scales.
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Nomenclature
ML Machine Learning

DT Digital Twin

AI Artificial Intelligence

IoT Internet of Things

PDE Partial Differential Equations

ODE Ordinary Differential Equations

ANN Artificial Neural Networks

RL Reinforcement Learning

LSTM Long Short-Term Memory

FFNN Feedforward Neural Networks

DNN Deep Neural Networks

SBML Systems Biology Markup Language

GPSSM Gaussian Process State Space Models

CHO Chinese Hamster Ovary (in reference to cell lines)

STEM Science, Technology, Engineering, and Mathematics

PINN Physics-Informed Neural Networks

HNM Hybrid Neural Models

PSO Particle Swarm Optimization

UDE Universal Differential Equations

EFM Elementary Flux Modes

RNN Recurrent Neural Network

BINN Biologically-Informed Neural Networks

CD-EKF Continuous-Discrete Extended Kalman Filter

iDoE Intensified Design of Experiments

ASM Activated Sludge Model

GLA γ-Linolenic Acid

PHA Polyhydroxyalkanoates

MPC Model Predictive Control

CSTR Continuous Stirred Tank Reactor

DHM Deep Hybrid Model

PLS Partial Least Squares

ORC Organic Rankine Cycle

CSS Constant Volume Solvent Switch

API Active Pharmaceutical Ingredients

TST Time-Series-Transformers
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