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Recent advances in generative artificial intelligence (GenAI), particularly large
language models (LLMs), are profoundly impacting many fields. In chemical
engineering, GenAI plays a pivotal role in the design, scale-up, and
optimization of chemical and biochemical processes. The natural language
understanding capabilities of LLMs enable the interpretation of complex
chemical and biological data. Given the rapid developments of GenAI, this
paper explores the extensive applications of GenAI in multiscale chemical
engineering, spanning from quantum mechanics to macro-level optimization.
At quantum and molecular levels, GenAI accelerates the discovery of novel
products and enhances the understanding of fundamental phenomena. At
larger scales, GenAI improves process design and operational efficiency,
contributing to sustainable practices. We present several examples to
demonstrate the role of GenAI, including its impact on nanomaterial hardness
enhancement, novel catalyst generation, protein design, and the development of
autonomous experimental platforms. This multiscale integration demonstrates
the potential of GenAI to address complex challenges, drive innovation, and
foster advancements in chemical engineering.
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Introduction

Generative artificial intelligence (GenAI) has enabled several recent developments in
various fields (Decardi-Nelson et al., 2024; Gangwal and Lavecchia, 2024; Preuss et al., 2024;
Subramanian et al., 2024). A notable example is the few-shot learning capability of GenAI
tools like ChatGPT, which can understand and interpret natural language (Wu et al., 2023).
GenAI refers to artificial intelligence (AI) models that generate new data that resembles a
given set of input data. Recently, large GenAImodels with extensive parameters have gained
significant attention for their ability to perform a wide range of tasks including natural
language processing (NLP), image generation, and complex decision-making. These models
include large language models (LLMs) (Zhao et al., 2023), large vision-language models
(LVLMs) (Zhang et al., 2024), and large decision models (LDMs) (Zhang, 2023) (see
Figure 1). Typically, these GenAI models are built using deep learning models, such as
generative adversarial networks (GANs) (Goodfellow et al., 2020), autoencoders (Kingma
and Welling, 2013), autoregressive (Vaswani et al., 2017), diffusion (Ho et al., 2020), and
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flow-based models (Chen et al., 2019). For instance, ChatGPT is an
LLM powered by a Transformer model (Vaswani et al., 2017), which
is an autoregressive model. The recent success of GenAI across
multiple disciplines highlights the need to explore its potential in
chemical engineering.

In modern chemical engineering, which involves the design,
scale-up, and optimization of chemical and biological processes, the
impact of GenAI across multiple scales is equally significant. In this
context, text-based representations of chemical and biological
processes can be considered as codified unstructured languages to
describe domain knowledge, which parallels with general NLP tasks.
As discussed earlier, GenAI goes beyond NLP, to encompass
mechanisms that generate data in an adversarial manner (such as
GANs), or ones that mimic diffusion and flows, each uniquely
equipped to capture the underlying data patterns and generate
novel instances. While GenAI in process design has been
previously discussed (Schweidtmann, 2024), here we emphasize
that the applications of GenAI in chemical engineering extend
significantly beyond such confines, poising to address a spectrum

of multiscale chemical engineering problems from quantum
mechanics to macro-level optimization (see Figure 1) (Decardi-
Nelson et al., 2024).

Generative AI in multiscale chemical
engineering

In molecular and materials design, the integration of GenAI
techniques is inspiring a multiscale design approach, from atomic-
scale interactions to macroscopic phenomena (Alshehri and You,
2021). A notable example application of GenAI in tooth enamel
design has demonstrated its effectiveness in enhancing nanomaterial
hardness through non-destructive methods, facilitating bioinspired
engineering solutions using a generative adversarial model
(Goodfellow et al., 2020) with deep image regression (Lew et al.,
2023). Another example in catalysis is the application of generative
variational autoencoder (Kingma and Welling, 2013), inspired by
interatomic insights from density functional theory (DFT) data, to

FIGURE 1
GenAI in chemical engineering span multiple scales. GenAI is reshaping chemical engineering by impacting multiple levels of design and operation,
including quantum, molecular, process unit, plant, and enterprise-wide scales. At the quantum and molecular levels, GenAI enhances our understanding
of fundamental chemical and biological phenomena and accelerates the discovery of novel products. At the process, plant, and enterprise scales, GenAI
improves the overall design and operational inefficiencies. These advancements collectively contribute to more efficient and sustainable chemical
engineering practices. Large GenAI models like LLMs, LVLMs, LDMs, as well as their multimodal counterparts are behind the recent successes of GenAI.
Notable implementations of large GenAI models have been provided.

Frontiers in Chemical Engineering frontiersin.org02

Decardi-Nelson et al. 10.3389/fceng.2024.1458156

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2024.1458156


facilitate the generation of novel catalysts with optimized binding
energies via latent space representation and deep learning-based
regression (Schilter et al., 2023). These innovations span multiple
areas of materials design, including drug discovery (Decardi-Nelson
et al., 2024), functional biomaterials (Gartner et al., 2024), among
others (Alshehri and You, 2022). This multiscale integration
combining imaging techniques, quantum chemistry calculations,
and molecular dynamics simulations, and empirical data using
GenAI, offers improvements in molecular and materials design,
bridging the gap to broader chemical product and process scales
(Gartner et al., 2024).

Another aspect of chemical engineering where GenAI is
significantly impacting is protein design. The Chroma (Ingraham
et al., 2023) generative model samples novel protein structures and
steers the design process towards desired functionalities.
Incorporating a diffusion-based framework (Ho et al., 2020), the
Chroma generative model captures the complex statistical
distributions of natural proteins, transforming them into simpler
distributions through a series of infinitesimal, constraint-biased
steps, enabling the design of novel protein structures that meet
specific functional requirements (Ingraham et al., 2023). These
developments extend across the biomolecular domain with novel
enzymes and nucleic acids, carrying promising advances for
bioengineering and therapeutic innovations in medicine (Langer
and Peppas, 2024), and more broadly in biomanufacturing.

On a macroscale, the integration of GenAI into robotic
experimentation platforms, exemplified by GPT-Lab, can
potentially transform the planning and execution of chemical
experiments (Qin et al., 2023). As an (Analysis - Retrieval -
Mining - Feedback - Execution) workflow, GPT-Lab employs a
GPT-4 (OpenAI, 2024) as the generative model to analyze and
synthesize experimental parameters, integrating these with robotic
platforms for the autonomous execution of chemical syntheses (Qin
et al., 2023). By mining literature for experimental parameters and
validating outcomes through high-throughput synthesis, GenAI has
brought us closer to achieving full-process autonomy in self-driven
laboratories.

Beyond GenAI’s roles in design and optimization, interpretable
GenAI enhances our scientific understanding of complex
phenomena within complex fluids and interfacial science, such as

the nature of disorder in domain boundaries (Dan et al., 2023).
However, this important aspect of chemical engineering was not
discussed in the literature (Schweidtmann, 2024). Utilizing a
diffusion-based approach (Ho et al., 2020), the hybrid generative
model synthesizes domain boundary structures by employing a
limited Markovian dataset to algorithmically predict and scale
structural motifs from atomistic to mesoscopic levels, thus
uncovering critical, previously unobserved configurations that
enhance our understanding and design of functional materials
(Dan et al., 2023).

Table 1 illustrates the diverse applications of GenAI across
prominent chemical engineering disciplines. Despite the limited
examples, they underscore the expansive potential and broad
applicability of various generative techniques within the branched
and complex landscape of chemical engineering.

Challenges and opportunities

Despite the promising potential of GenAI in chemical engineering
across multiple scales, their use and implementation come with
significant challenges and limitations. Successfully addressing these
challenges will require international collaboration among all
stakeholders, including researchers from relevant disciplines,
industrial practitioners, and regulatory authorities.

One of the foremost issues is the quality and availability of data.
GenAI models, such as LLMs, need vast amounts of high-quality,
domain-specific data to train effectively (Whang et al., 2023). In
chemical engineering, such data is often proprietary, sparse, or
inconsistent (Chiang et al., 2017), complicating the development
of robust GenAI models. This challenge presents an opportunity for
the entire community to collaborate in establishing standard data
representations and open data-sharing platforms, thus facilitating
the development and application of chemical engineering-specific
GenAI models.

Another major limitation is the interpretability of GenAI
models. Many large GenAI models often hallucinate (Rawte
et al., 2003), and provide little to no insight into how they arrive
at specific solutions (Ross et al., 2021). This lack of transparency can
be a significant barrier to adoption in the safety-critical applications

TABLE 1 Example applications of GenAI techniques across chemical engineering disciplines.

Discipline Generation example Generative technique

Biomolecular Engineering Functional protein (Ingraham et al., 2023) Diffusion models (Ho et al., 2020)

Environmental Analysis Data retrieval (Luo et al., 2023) Autoregressive models (Vaswani et al., 2017)

Reaction Engineering Transition state (Duan et al., 2023) Diffusion models (Ho et al., 2020)

Process Engineering Chemical flowsheet (Vogel et al., 2023) Autoregressive models (Vaswani et al., 2017)

Process Control Soft sensing (Wang and Yan, 2024) Generative adversarial networks (Goodfellow et al., 2020)

Soft Matter Polymer dielectrics (Liu et al., 2023) Flow models (Chen et al., 2019)

Separations Metal-organic frameworks (Yao et al., 2021) Variational autoencoder (Kingma and Welling, 2013)

Transport Phenomena Multiphase flow (Wang et al., 2022) Generative adversarial networks (Goodfellow et al., 2020)

Thermodynamics Phase morphologies (Chen and Dorfman, 2023) Generative adversarial networks (Goodfellow et al., 2020)

Frontiers in Chemical Engineering frontiersin.org03

Decardi-Nelson et al. 10.3389/fceng.2024.1458156

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2024.1458156


often encountered in chemical engineering. Therefore, there is a need
to develop benchmarks and metrics tailored to the needs of chemical
engineering, requiring input from regulators, researchers, and
industry. Additionally, integrating well-established first principles
modeling in chemical engineering with GenAI can enhance their
interpretability and trustworthiness (Takeishi and Kalousis, 2021).

Lastly, the ethical and regulatory implications of deploying
GenAI in chemical engineering cannot be overlooked. Issues such
as data privacy, security, and ethical considerations surrounding the
autonomous nature of GenAI systems need to be carefully addressed
(Huang et al., 2024). Regulatory bodies, researchers, and industrial
practitioners must collaborate to establish guidelines on data use,
security, and ethical issues.

Outlook

These multiscale successes demonstrate the potential of GenAI in
chemical engineering. This potential extends beyond individual
examples, offering novel solutions to the complex, multiscale
challenges at the forefront of research in the field (Torrente-
Murciano et al., 2024). At various scales, from molecular
engineering to enterprise-wide supply chain (Grossmann, 2005),
GenAI can enable the design and optimization of chemical and
biological processes across multiple scales with high precision and
efficiency. Particularly promising areas include foundation models
that can be adapted to diverse chemical engineering tasks, multimodal
systems that integrate heterogeneous data types (e.g., textual, visual,
and experimental data), and language models that enhance data
retrieval and knowledge extraction processes in chemical systems.
Additionally, GenAI can facilitate advanced task learning and the
development of autonomous experimental robotic systems, thereby
accelerating the cycle of hypothesis generation, testing, and validation
in chemical research and development. The integration of GenAI
across the multiple scales and facets of chemical engineering holds the
promise of significantly advancing the field, driving innovation, and
fostering sustainable industrial practices.
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