
Bioprocess feeding optimization
through in silico dynamic
experiments and hybrid digital
models—a proof of concept

Gianmarco Barberi, Christian Giacopuzzi and Pierantonio Facco*

CAPE-Lab – Computer Aided Process Engineering Laboratory, Department of Industrial Engineering,
University of Padova, Padova, Italy

The development of cell cultures to produce monoclonal antibodies is a multi-
step, time-consuming, and labor-intensive procedure which usually lasts several
years and requires heavy investment by biopharmaceutical companies. One key
aspect of process optimization is improving the feeding strategy. This step is
typically performed though design of experiments (DoE) during process
development, in such a way as to identify the optimal combinations of factors
whichmaximize the productivity of the cell cultures. However, DoE is not suitable
for time-varying factor profiles because it requires a large number of
experimental runs which can last several weeks and cost tens of thousands of
dollars. We here suggest a methodology to optimize the feeding schedule of
mammalian cell cultures by virtualizing part of the experimental campaign on a
hybrid digital model of the process to accelerate experimentation and reduce
experimental burden. The proposed methodology couples design of dynamic
experiments (DoDE) with a hybrid semi-parametric digital model. In particular,
DoDE is used to design optimal experiments with time-varying factor profiles,
whose experimental data are then utilized to train the hybrid model. This will
identify the optimal time profiles of glucose and glutamine for maximizing the
antibody titer in the culture despite the limited number of experiments performed
on the process. As a proof-of-concept, the proposed methodology is applied on
a simulated process to produce monoclonal antibodies at a 1-L shake flask scale,
and the results are comparedwith an experimental campaign based onDoDE and
response surface modeling. The hybrid digital model requires an extremely
limited number of experiments (nine) to be accurately trained, resulting in a
promising solution for performing in silico experimental campaigns. The
proposed optimization strategy provides a 34.9% increase in the antibody titer
with respect to the training data and a 2.8% higher antibody titer than the optimal
results of two DoDE-based experimental campaigns comprising different
numbers of experiments (i.e., 9 and 31), achieving a high antibody titer
(3,222.8 mg/L) —very close to the real process optimum (3,228.8 mg/L).
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1 Introduction

Monoclonal antibodies (mAbs) are biological drugs which have
attracted attention for the treatment of autoimmune, oncological,
and infectious diseases (Castelli et al., 2019). In 2018, they
represented 53% of overall biopharmaceutics approvals by
regulatory agencies and 65.6% of entire biopharmaceutical sales
(Walsh, 2018). At the industrial scale, mAbs are produced in fed-
batch cultures of mammalian cells which are appositely generated to
secrete the desired product (O’Flaherty et al., 2020; Wurm, 2004).

The development of mAbs is a multi-step process which requires
a lot of resources, both of time and capital investment, because it
usually lasts several years and costs billions of dollars (Epifa, 2021;
Farid et al., 2020). The upstream development of mAbs starts with
cell line generation, screening and selection, and process
characterization. At these stages, a large pool of cell lines is
generated and tested at different process scales (Barberi et al.,
2022; Facco et al., 2020) to identify those that meet the desired
performance in terms of growth, productivity, and product quality
(Gronemeyer et al., 2014; Tripathi and Shrivastava, 2019).
Furthermore, the relationship between critical process parameters
(CPP) and critical quality attributes (CQA) is studied for regulatory
compliance and for process optimization. During process
optimization, bioreactor operating parameters—such as
temperature, pH, agitation, and dissolved oxygen—are adapted to
the specific host system to enhance cell growth and specific
productivity (Gronemeyer et al., 2014; Li et al., 2010; Tripathi
and Shrivastava, 2019). Similarly, an appropriate optimization of
the medium and feeding strategy is required to balance cell growth,
productivity, and product quality (Kim and Lee, 2009; Ling et al.,
2015; Tripathi and Shrivastava, 2019).

High-throughput scaled-down equipment and statistical design
of experiments (DoE) are the most common methodologies for
systematically optimizing media and feeding strategy (Li et al., 2010;
Mora et al., 2019; Zhou et al., 1997). Typically, cell cultures are fed
with frequent boluses of glucose and glutamine to maintain a low
concentration and minimize the production of by-products such as
lactate and ammonia (Li et al., 2010). Hence, the optimization of the
feeding strategy requires determining the best way of providing feed
boluses over time. However, DoE only deals with “static” factors. To
deal with the batch process dynamics, DoE can be exploited by
assigning a different DoE factor to the feeding action at each day
(Mora et al., 2019); however, this results in a design with too many
factors that requires several dozen experiments. An appropriate
solution to this issue is the adoption of design of dynamic
experiments (DoDE), which guarantees the optimization of time-
varying factors while minimizing the number of experimental runs
(Georgakis, 2013). In fact, DoDE utilizes dynamic subfactors to code
the profiles of the time-varying factors and then build a response
surface model (RSM) to correlate the factors’ dynamic profile to the
CQA. Research on DoDE applied to the bioprocessing field is still
ongoing, with few examples of application. Specifically, DoDE has
been used to optimize process conditions in 200 L bioreactors for
producing monoclonal antibodies (Luo et al., 2023) and on
simulated fermentation processes (Klebanov and Georgakis,
2016) and mammalian cell cultures (Wang and Georgakis, 2017).

However, despite being designed to maximize the content of
information obtained by experiments while minimizing the number

experimental runs, the number of experiments designed by DoDE
rapidly increases with the number of dynamic variables and the
complexity of their dynamic profiles, leading to high numbers of
required experimental runs. Since each experimental run lasts
several weeks and costs tens of thousands of dollars, the duration
and cost of large experimental campaigns limits the applicability of
DoDE in the biopharmaceutical industry. Accordingly, strategies to
limit the allocation of resources for experimental campaigns are of
paramount importance.

First-principles models are extremely effective tools for digitally
representing biological systems since they incorporate fundamental
physical and biological phenomena. However, first-principles model
identification requires a long trial-and-error procedure, which can
be supported by model-based optimal experiment design (Abt et al.,
2018; Huang et al., 2020). Furthermore, both the model complexity
and the requirement of training data strongly increase when
representing complex dynamics, as in the case of mAbs cultures.
This leads to model over-parametrization, difficult estimation of
model parameters, and thus to the inability to correctly simulate the
system under study (Mahanty, 2023).

Hybrid semi-parametric digital models, instead, represent an
innovative solution to reducing experimental requirements and
development timelines while improving robustness and
extrapolation. Such models combine first principles models,
embedding the mechanistic knowledge of the system under
investigation with data-driven methods which learn complex and
possibly unknown relationships among the system variables from
experimental data (Sansana et al., 2021; von Stosch et al., 2014; Yang
et al., 2020). The data-driven aspect often limits the applicability of
the model-based optimal DoE in hybrid modeling. In fact, these
methodologies are extremely sensitive to uncertainty in model
parameters (Galvanin et al., 2013), which is typical of certain
data-driven methods (e.g., artificial neural networks—ANN).

Hybrid semi-parametric models have been widely applied to the
bioprocess development of tasks such as prediction, process
understanding, and process and quality monitoring. For example,
an improved understanding of the relationship between biomass
and productivity with the process parameters in microbial cell
culture was achieved through hybrid semi-parametric models
(von Stosch et al., 2016), while good prediction accuracy was
attained by hybrid models trained on intensified DoE data (von
Stosch and Willis, 2017), allowing the acceleration of upstream
process characterization (Bayer et al., 2020). In mammalian cell
cultures, the prediction performance of hybrid models was tested in
interpolation and extrapolation scenarios (Narayanan et al., 2021),
while, compared to purely multivariate techniques, the prediction of
the main culture variables through hybrid models resulted in greater
accuracy (Narayanan et al., 2019). In the same context, hybrid semi-
parametric models coupled with the extended Kalman filter were
used to monitor glucose concentration in bioreactors, suggesting the
appropriate timing of feeding action to avoid cell starvation
(Narayanan et al., 2020).

Hybrid semi-parametric models were also used for bioprocess
optimization. For example, the optimal processing conditions
(Ferreira et al., 2014) and glucose feeding strategy (Teixeira et al.,
2006) for microbial cell cultures were identified through an iterative
batch-to-batch strategy based on hybrid models: the optimal
condition identified by the hybrid model at each step was used to

Frontiers in Chemical Engineering frontiersin.org02

Barberi et al. 10.3389/fceng.2024.1456402

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2024.1456402


retrain the model for further optimizations. A similar strategy
identified static process parameters to improve product yield in
E. Coli cultures by means of nine experimental runs, with only five
from the initial exploratory campaign and four suggested in the
batch-to-batch optimization (Bayer et al., 2021). Furthermore, the
feeding schedule of mammalian cell culture was optimized by means
of hybrid semi-parametric models (Teixeira et al., 2005; 2007),
showing the applicability of these methodologies in optimizing
mammalian cell culture. In many cases, dynamic feeding
optimization is performed by a direct parametrization of the
control vector (Banga et al., 2005), where the feeding strategy
over the entire culture duration is discretized in several segments
using a predefined basis function (e.g., piecewise constant
parametrization). For example, such direct dynamic optimization
was conducted to optimize the feeding strategy in mAbs production
using a fully mechanistic model setup (Kaysfeld et al., 2023).
However, in this approach, the number of optimization variables
rapidly increases together with the complexity of the optimization
problem because one control variable is required for each nutrient
and control interval. Instead, conducting optimization in the DoDE
framework, where dynamic profiles are represented using specific
polynomials controlled by a reduced set of subfactors, can reduce the
overall number of optimization variables and the complexity of the
problem (Rodrigues and Bonvin, 2020).

Furthermore, although hybrid models have been applied for
bioprocess optimization and their added value for the optimization
of mammalian feeding schedule has been proven, the advantages of
using hybrid semi-parametric models in feeding schedule
optimization during bioprocess development is underexplored,
and research is still needed to allow a consistent applicability of
hybrid models in bioprocess optimization.

This study compares an in silico experimental campaign for the
optimization of the feeding schedule in mammalian cell cultures

through hybrid digital models with an experimental campaign on
the process to evaluate whether the in silico experiments can
accelerate experimentation and reduce the experimental burden
in the process development. In particular, we use a hybrid semi-
parametric model calibrated on the experiments designed through
DoDEs in such a way as to identify the time profiles of fed glucose
and glutamine, which maximize the antibody titer. The proposed
methodology is tested on a well-established simulated process for
the production of mAbs at a shake flask scale (Kontoravdi
et al., 2010).

2 Materials and methods

2.1 Proposed methodology

In this work, an in silico experimental campaign (strategy #1) for
optimizing the feeding schedule of mammalian cell cultures is
proposed (Figure 1A). The adopted procedure comprises five steps.

1. DoDE planning: initially, experiments are planned according
to a DoDE (Section 2.1.1) on two dynamic factors: the time
profiles of glucose and glutamine concentrations; and as
response, the antibody titer at harvest.

2. Experiment execution: planned experiments are executed on
the process under study, which in this study is a simulated
process for producing monoclonal antibodies at 1-L shake flask
scale (Kontoravdi et al., 2010; Section 2.2). This study used a
simulated process because it allows: i) knowing the exact
relationship between nutrients and antibody titer which can
be exploited to identify the optimal feeding schedule to use as
reference for the performance of the proposed optimization
strategy; ii) following in real-time the entire time evolution of
the culture variables, whose measurements are available only at
a much lower frequency (every few hours) in real processes.

3. Training the hybrid model: a hybrid semi-parametric model
(Section 2.1.2) is trained on the data collected from the
experiments executed at step 2.

4. Optimization: a genetic algorithm (Section 2.1.3) is used to
identify the feeding schedule that maximizes the antibody titer
at harvest. This algorithm exploits the hybrid model to
simulate in silico experiments and predict the resulting
antibody titer, given the profiles of both glucose and glutamine.

5. Execution of the confirmatory experiment at the optimal
conditions: once the optimal nutrient profiles (i.e., feeding
schedule) are identified, they are executed in the process to
assess the antibody titer that the process can achieve and the
reliability of the predicted values.

Optimization strategy #1 is compared with a standard
experimental campaign for optimizing the feeding schedule
carried out directly on the process (strategy #2, Figure 1B).
Although steps 1, 2, and 5 are the same as those of strategy #1,
steps 3 and 4 are as follows.

3. Response surface modeling: RSM is built with the data
collected from the experiments executed at step 2 according
to the DoDE theory. The model is used to predict the antibody

FIGURE 1
Proposed methodology: (A) optimization strategy #1 (in silico)
and (B) optimization strategy #2 (experimental).

Frontiers in Chemical Engineering frontiersin.org03

Barberi et al. 10.3389/fceng.2024.1456402

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2024.1456402


titer at harvest from the DoDE dynamic subfactors after being
updated by excluding those effects with low influence on the
response (Section 2.1.1.2);

4. Optimization: in this case, the genetic algorithm exploits the
RSM to predict the antibody titer given the profiles of glucose
and glutamine.

The confirmatory experiments performed at step 5 of both
optimization strategies are then compared with the process
optimum, which is known in this study because the process is
simulated. In the next sections, details on the DoDE, the process, the
hybrid model, and the techniques used for experimentation and
optimization are presented.

2.1.1 Design of dynamic experiments
Design of dynamic experiments (DeDE) (Georgakis, 2013) is

used in this study to plan the experimental campaign for optimizing
the glucose and glutamine profiles in the cell culture.

2.1.1.1 Design of dynamic experiment fundamentals and
applications

In DoDE, the time-varying factors (i.e., manipulated variables)
are expressed as normalized dynamic variables z(τ), which vary
between −1 and 1. Normalized dynamic variables are the sum of
orthogonal time-varying profiles weighted by dynamic subfactors xi,
which are equivalent to the design of experiment factors. The
normalized dynamic variables (Equation 1) are defined as follows:

z τ( ) � ∑I
i�1
xiPi-1 τ( ), (1)

where Pi−1(τ) is a shifted Legendre polynomial of degree i − 1 and
τ � t/tb is the dimensionless culture time (i.e., the fraction of
experimental batch completion) being tb, the culture duration.
Details on the expression of the Legendre polynomials can be
found in Georgakis (2013). The number of subfactors defines the
maximum degree of the z(τ) profile. In our study, to have
independent profiles for each nutrient with second degree
curvature and avoid an excessive number of factors, I � 3
dynamic subfactors are used for each nutrient, summing up to a
total of K � 6 dynamic subfactors; subfactors xglc

1 , xglc
2 , xglc

3 refer to
the glucose profile and xgln

1 , xgln
2 , xgln

3 to the glutamine one.

Independently of the specific nutrient, subfactor x1 (Figure 2A)
controls the initial value of the profile (e.g., 1 corresponds to the top
of the interval while −1 to the bottom), x2 (Figure 2B) controls the
overall increasing or decreasing tendency of the profile (e.g.,
1 corresponds to fully increasing profiles while −1 to fully
decreasing), and x3 (Figure 2C) controls the concavity of the
profile (e.g., 1 upward and −1 downward).

To ensure that −1≤ z(τ)≤ 1, the dynamic subfactors must
satisfy the following constraints:

−1≤xglc
1 ± xglc

2 ± xglc
3 ≤ 1, (2)

−1≤ xgln
1 ± xgln

2 ± xgln
3 ≤ 1, (3)

and the value of each subfactor must also be bounded:

−1≤ xi ≤ 1. (4)

The glucose and glutamine concentration profiles uj(τ)
(Equation 5) planned through the DoDE can be determined from
the respective z(τ) according to the relation:

uj τ( ) � uj,0 + zj τ( )Δuj with j � glc or gln, (5)
where

uj,0 � uj,max + uj,min

2
, and

Δuj � uj,max − uj,min

2
,

being uj,max and uj,min—the maximum and minimum values in
which the profile of each nutrient j is allowed to vary. We here
assume glucose and glutamine to vary in the ranges [20, 50]mM and
[2, 10] mM, respectively. These values are selected to remain in
proximity to the concentration at which the process operates
(Kontoravdi et al., 2010).

Since the nutrients are both manipulated and observed, their
concentrations vary because of both cell consumption and feeding.
Here, we simulate off-line measurements because advanced
monitoring strategies, such as on-line monitoring and control
systems, are not yet standard in industrial mammalian cell
cultures, especially in the small scales for the early stages of
product development. Furthermore, the measurements and
feeding actions are performed in boluses once every 24 h.
Consequently, the nutrient profile cannot precisely follow that
proposed by the DoDE. To deal with this issue, we introduce a

FIGURE 2
Effect of dynamic subfactors on the normalized dynamic variable z(τ) for a three-subfactor design: (A) x1, (B) x2, and (C) x3. The red arrows indicate
the direction of increasing subfactors.
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specific procedure to replicate as precisely as possible the profiles
indicated by the DoDE during the experiments, which is
schematically represented in Figure 3. The proposed procedure
consists of:

• defining a 10% band around the DoDE profile which is used to
control the feeding actions (Figure 3A, black dashed lines);

• performing the feeding action only if the nutrient
concentration in the culture at the sampling time is < 90%
of the concentration defined by the designed experiment
(Figure 3A, lower black dashed line);

• performing the feeding of a predefined amount
(i.e., constant) of fresh medium with a nutrient
concentration calculated to achieve 110% of the
concentration defined by the designed experiment
(Figure 3A, upper black dashed line).

The feeding actions are visible in the nutrient profiles
(Figure 3A) as the vertical jumps in the blue line where the
nutrient concentration is brought to 110% of that defined by the
designed experiment. Furthermore, since the glucose consumption
is slow and hardly decreases in the final part of the batch, the glucose
cannot follow sharply decreasing profiles; hence it is controlled (and,
accordingly, feeding performed) only in the first 100 h of the batch
(Figure 3B, red dotted line). After this point, the glucose is fed only
to compensate for any dilution effect due to glutamine addition. This
is shown in Figure 3B, where after 100 h (red dotted line) the feeding
is not performed and nutrient concentration decreases because of
cell consumption. Accordingly, the glucose profile after 100 h has no
controllable effect on the antibody titer and is not considered in
the analysis.

2.1.1.2 Design of dynamic experiments response
surface modeling

In this study, the DoDE nutrient profiles are designed by means
of a D-optimal DoE (de Aguiar et al., 1995) applied to the K � 6
subfactors. Once the experiments are executed on the process, an
RSM (Montgomery, 2007) is fitted to the experimental data obtained
from the designed experimental campaign through multiple linear
regression. A second-order RSM (typically used for optimization) is
built to predict the antibody titer at harvest y from the dynamic
subfactors:

ŷ � β0 + β1 β2 / βK[ ]x + xT

Δ1,1 Δ1,2 / Δ1,K

0 Δ2,2 / Δ2,K

..

.

0

..

.

0

1
/

..

.

ΔK,K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦x, (6)

where ŷ is the predicted antibody titer, x �
xglc
1 xglc

2 xglc
3 xgln

1 xgln
2 xgln

3
[ ] is the column vector of the

dynamic subfactors for a single experiment, and βk and Δk,k are
the first and higher order parameters of the RSM, respectively. The
model parameters are estimated by minimizing the residual error in
a least-square manner.

The RSM is affected by uncertainty. The uncertainty of the
estimated parameter β̂e (i.e., β̂k or Δ̂k,k) for each term e of Equation 6
is determined through the parameter confidence intervals:

β̂e ± t1−α/2, N−E


1

N−E∑N
n�

yn − ŷn( )2
∑N
n�1

xn,e − �xe( )2
√√√√√

, (7)

where yn is the measured response of the nth experiment, ŷn is the
response of the nth experiment predicted by Equation 6, xn,e is the
value of the eth term for the nth experiment, �xe is the average value of
the eth term, N is the total number of experiments, E is the total
number of terms of Equation 6, and t1−α/2, N−E is the critical value of
Student’s t distribution withN − E degrees of freedom calculated at
the confidence level α � 0.05. The effects with an uncertainty not
different from zero from the statistical point of view (namely, where
the parameter confidence interval comprises the 0) are removed
from the model because they are considered not significant with a
confidence of 95%.

The uncertainty on the parameter propagates in the uncertainty
of the predictions, which, for a validatory experiment with
subfactors xNEW, is assessed through the 95% prediction interval
(Wang and Georgakis, 2019):

PI � t1-α/2, N-E

s2 1 + xTNEW XTX( )-1xNEW( )√

, (8)

where s2 � SSE/(N − E), SSE being the sum squared error of the
model,X is the matrix containing the subfactors vectors for all theN
designed DoDE experiments placed along the rows, and t1−α/2, N−E is
the critical value of Student’s t distribution with N − E degrees of

FIGURE 3
Schematic representation of (A) glutamine and (B) glucose profiles (blue lines), with the profile determined by DoDE (black line), the 110/90% control
band (black dashed lines), and the 100-h limit for glucose feeding (red dotted line).
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freedom calculated at the confidence level α � 0.05. The real
response y of a confirmatory experiment is expected to lie within
the interval ŷ − PI≤y≤ ŷ + PI with a confidence of 95%.

To assess the extent of process improvement that can be
achieved when planning a different number of experiments,
DoDE is adopted to design the alternative experimental
campaigns A and B. Experimental campaign A is a complete
campaign for process optimization and is used to assess the
process improvement that can be achieved with an extended
experimental campaign. A second-order with pairwise interaction
RSM (as Equation 6) is fitted with data from 31 experiments planned
by assigning the values of the dynamic subfactors through a
D-optimal DoE (Supplementary Table S1). Among the
31 experiments, 28 are required to fit the RSM for the six
dynamic subfactors, while the three remaining experiments are
used to estimate the model’s lack-of-fit (Georgakis, 2013).
Experimental campaign B is used to assess the process
improvement that can be achieved through a small number of
experiments. Data from nine experiments planned by assigning
the values of the dynamic subfactors through a D-optimal DoE
(Supplementary Table S2) are used to fit a first-order RSM:

ŷ � β0 + β1 β2 / βK[ ]x. (9)

Among the nine experimental runs, seven are used to fit the
RSM for the six dynamic subfactors while the two remaining
experiments are used to estimate the model’s lack-of-fit
(Georgakis, 2013).

2.1.2 Hybrid model
A serial hybrid semi-parametric model is used (Oliveira, 2004;

Teixeira et al., 2005; von Stosch et al., 2014) to capture the behavior
of mammalian cell cultures producing mAbs (Figure 4). This digital
model combines a mechanistic model, which embeds the knowledge
of the system, and an ANN, which accounts for the unknown
dependencies in the system under study.

The mechanistic knowledge of the cell culture is described by the
concentration balances of the main culture variables (Equation 10),
organized in the column
vector c � Xv cglc cgln clac camm cmAb[ ]:

dc t( )
dt

� r c* t( ),ω( )-DFc t( ) + u, (10)

where r(c*(t),ω) [V × 1] � [6 × 1] is the vector of volumetric
reaction rates for the V culture variables, c* �

Xv cglc cgln clac camm[ ] is the column vector of culture

variables with the exclusion of the antibody titer, ω is the vector
of the ANN parameters (weights and biases), DF is the dilution
factor, and u [6 × 1] is the vector of controlled inputs. The
volumetric reaction rates can be expressed as a combination of
the specific production/consumption rates and the viable cell
concentration Xv:

r c* t( ),ω( ) � SXv μ c* t( ),ω( ), (11)
where S is the stoichiometric matrix with −1 and 1 on the diagonal
for consumed and produced components, respectively, and
μ(c*(t),ω) [6 × 1] is the vector of the specific production/
consumption rates. In Equation 11, we assume that the
production/consumption rates do not depend on antibody titer
because it is expected to have no impact on other culture
variables (Narayanan et al., 2021). The stoichiometric matrix S
embeds the mechanistic knowledge of the system, indicating
whether a component is consumed or produced by the cells.

The relationship between specific production/consumption
rates and culture variables, μ � f(c*(t)), is very complex, and
accurate mechanistic expressions are not typically available. This
lack of knowledge is compensated by a data-driven model which
captures the relationship between specific production/consumption
rates and culture variables learnt from experimental data. A single
hidden-layer ANN with five neurons and a hyperbolic tangent
activation function (Equation 12) is used to capture the
nonlinear relationship between culture variables and volumetric
production/consumption rates:

μ c* t( ),ω( ) � μmax ○ω 2,1( ) tanh ω 1,1( )c* t( ) + ω 1,2( )( ) + ω 2,2( ), (12)
where ω(1,1) and ω(2,1) are the weights, ω(1,2) and ω(2,2) are the biases
of the hidden and output layer, respectively, μmax [6 × 1] is the
vector of the maximum production/consumption rates, and ○

represents the Hadamard product. The vector of maximum
production/consumption rates, μmax, is used to scale the output
of the ANN at different magnitudes (Teixeira et al., 2007) and is
heuristically determined in preliminary tests. The number of hidden
neurons was selected as that maximizing the Bayesian information
criterion (Schwarz, 1978; von Stosch and Willis, 2017).

The hybrid model is trained with the nine experiments of
experimental campaign B (Section 2.1.1.2) with a stepwise
decreasing learning rate (from 0.005 to 0.0001). The model
parameters ω are estimated through the Adam optimization

FIGURE 4
Schematic representation of the serial hybrid model structure, which comprises the culture material balances and the data-driven part (i.e., an
artificial neural network—ANN), capturing the complex and unknown relationship between the concentrations and reaction rates.
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algorithm (Kingma and Ba, 2015). Additional detail on hybrid
model training is reported in the Supplementary Material.

The hybrid model is used to perform an in silico experimental
campaign. It receives as input both the initial viable cell
concentration and the culture volume, which are required to
simulate the entire experimental run. Feeding is simulated by
adjusting the appropriate value of the controlled input vector u.
Like the process, feeding is performed once daily by adding 20 mL of
fresh medium in 10 min if the nutrient concentration is found to be
outside the control band (as performed in optimization strategy #2;
Section 2.1.1).

2.1.3 Feeding optimization
The optimal profile for glucose and glutamine is determined as

that which maximizes the antibody titer at harvest through an
optimization problem. Since the shape of the nutrient profiles is
defined by the value of the dynamic subfactors according to
Equation 1, the optimization problem is formulated considering
the DoDE dynamic subfactors xi as

max
xi

ŷ xi( ) (13)

subject to the constraints of Equations 2–4. These constraints on the
subfactor values xi ensure that the optimization algorithm remains
within the experimental space spanned in experimental campaigns
A and B, thus limiting the extrapolation of the models that predict
ŷ(xi).

The antibody titer at harvest ŷ(xi) is predicted either by the
RSM in optimization strategy #2 or directly by the hybrid model in
optimization strategy #1. The optimization problem of Equation 13
is solved through a genetic algorithm (Sivanandam and Deepa,
2008) with a starting population of 200 individuals.

All the simulations described in this work are performed in
Matlab® 2020b through the optimization toolbox and in-house
developed routines.

2.2 Case study: simulated process for the
production of monoclonal antibodies at 1-L
shake flask scale

A simulated process for producing monoclonal antibodies at 1-L
shake flask scale (Kontoravdi et al., 2010) is considered in this study;
we will refer to it as “the process” for the reminder of the manuscript.
It models the dynamic behavior of the viable cell density (VCD, Xv)
and the concentration of the main nutrients and by-products such as
glucose (cglc), glutamine (cgln), lactate (clac), and ammonia (camm).
Additionally, RNA and light and heavy chain balances in the cytosol
and Golgi apparatus are considered to simulate protein synthesis
and model the dynamic behavior of antibody titer (cmAb). Details of
the model and the respective parameters can be found in Kontoravdi
et al. (2010).

The total duration of a batch is set to tb � 168 hours, with an
initial volume of 200 mL and inoculation cell density of 0.2 · 106 cell/
mL (Kontoravdi et al., 2010). Measurement sampling is performed
every 24 h through the withdrawal of 2.5 mL from the culture. Feed
of glucose and/or glutamine is performed after the sampling by
adding 20 mL of concentrated medium in 10 min—a bolus addition

which does not cause a severe concentration change. Constant
feeding volume is used to easily maintain the culture volume
within specified ranges and without the addition of any
constraint, simulated overflow, or control loop; however, the
same result can be achieved using variable feeding volumes of
media with constant concentration. To simplify the modeling of
the cell culture system and the demonstration of the proposed
approach, offline measurements of culture variables (i.e., glucose,
glutamine, lactate) are assumed to be available immediately after
sampling, and the measurement delay is not accounted for because
the total batch duration (tb) is much longer than the time required
for analytical measurements. The concentration of glucose and
glutamine is determined at any feeding addition in such a way as
to reach the nutrient concentration profiles planned by DoDE. The
model is integrated between each sampling time instant through a
variable-step–variable-order solver, with a maximum order of 5. A
6% white noise added as measurement error.

3 Results

The results of optimization strategy #2 for experimental
campaigns A and B followed by optimization strategy #1 are
presented here. These results are then compared with the
process optimum.

3.1 Nutrient profile optimization through full
experimental campaign on the process

This section aims to identify the optimal nutrient profile that
maximizes the antibody titer at harvest by performing an extended
experimental campaign on the process through DoDE.

To this purpose, experimental campaign A with 31 experiments
planned through DoDE is performed on the process. The values of
the dynamic subfactors xglc

1 , xglc
2 , xglc

3 and xgln
1 , xgln

2 , xgln
3 for glucose

and glutamine, respectively, and the antibody titer at harvest
obtained by experimental campaign A are used to fit a second-
order RSM. The values of the dynamic subfactors affect the DoDE
nutrient profiles as explained in Section 2.1.1.

The RSM shows a very high coefficient of determination R2 �
0.999 (with an adjusted coefficient of determination R2

adj � 0.999),
indicating the that the model provides an optimal fitting of the data.
Supplementary Figure S1A shows the RSM regression coefficient
with their 95% confidence interval for all the dynamic subfactors xj

i′,
their interactions xj

i′x
j
i″, and second-order terms xj

i′x
j
i′, where i′ and

i″ are the factor number and j � glc, gln is the nutrient. The terms
showing high uncertainty (Equation 7)—those whose error bars in
the figure cross 0 in Supplementary Figure S1—are considered not
statistically significant for the model and are excluded from the
updated RSM. The latter (Supplementary Figure S1B) shows optimal
fitting of the data with R2 � 0.997 (R2

adj � 0.997).
Recalling that the subfactors define the shape of the nutrient

profile and, specifically, that x1 defines the initial value, x2 defines
the increasing or decreasing tendency of the profile and x3 defines
the concavity of the profile. The glutamine profile has a large and
strongly nonlinear effect on the antibody titer at harvest, since all
glutamine first- and second-order terms are significant for the
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model. Specifically, xgln
1 and xgln

3 show negative parameter values,
while xgln

2 and all second-order terms show positive parameter
values. Accordingly, antibody titer is expected to be higher when
the glutamine profile has a small initial value and shows an
increasing tendency with a downward (negative) concavity.
However, the initial glutamine value and shape of the profile are
not independent and must be carefully tuned, since the effects of the
interaction terms xgln

1 xgln
2 and xgln

1 xgln
3 are significant for the model.

The negative effect of the interaction xgln
1 xgln

2 means that the low
initial value of the glutamine should be associated with a profile with
an increasing tendency to induce an increased antibody titer at

harvest, while the positive effect of the interaction xgln
1 xgln

3 means
that the low initial value of the glutamine should be associated with a
negative (downward) concavity to increase the antibody titer. The
glucose profile, instead, has a limited influence on the antibody
concentration at harvest. In fact, the effects of all first- and second-
order glucose terms are negligible and are not included in the
updated RSM (Supplementary Figure S1B). Furthermore, the
profile of the two nutrients does not present any interaction,
with all interaction terms xglc

i′ xgln
i″ non-significant.

According to these results, the antibody titer will not change
much in response to different glucose profiles when set within the

FIGURE 5
Optimal nutrient profile, determined from DoDE experimental campaign A with 31 experiments, performed on the process: (A) glucose and (B)
glutamine. Red dots—processmeasurements; black line—optimal nutrient profile; black dashed line—control band; blue line–continuousmeasurement.
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factor ranges. Instead, the glutamine profile is extremely important
for achieving high antibody titer and must be carefully optimized.

The RSM is then used for process optimization through a genetic
algorithm (Section 2.1.1.2) to determine the nutrient profile that
provides the highest possible antibody titer at harvest. The optimal
nutrient profiles (black line) and the confirmatory experiment at the
optimal conditions executed on the process (red points—process
measurements) are shown in Figure 5. There, the continuous
measurement (blue line) of the nutrient profile is also reported.
Considering that, at shake flask scale, this profile is typically not
available, in this case it is because the process is simulated. In
general: i) the optimal glucose profile (Figure 5A) starts at around
half (33.6 mM) of the range of possible values and follows a decreasing
profile with a very small downward concavity; ii) the optimal glutamine
profile (Figure 5B) starts at the minimum value (2 mM) of its possible
range and follows an almost constant profile for the entire culture. The
optimal values of the glucose and glutamine subfactors are

xoptA � −0.439 −0.385 −0.04 −0.999 −0.0006 −0.0002[ ]. As
expected, the continuous measured profiles of glucose and glutamine
(blue lines) cannot perfectly adhere to the respective optimal
profiles because nutrients are continuously consumed by cells,
while nutrients are fed in boluses once daily. Since the nutrients
are fed only when the measured value (the red dot) falls below the
control band (black dashed line), a sawtooth time profile of the
variables is found. This behavior is common to all experimental
runs, which show natural experimental variability. Furthermore,
the lack of feeding in the final part of the batch does not produce
negative effects on antibody titer because in this phase the viable
cell concentration decreases and the available glucose, which is
usually high, is sufficient to avoid cell starvation.

The optimal antibody titer at harvest predicted by the RSM with
the optimal nutrient profiles is ŷA � 3530.0 ± 54.6 mg/L, while the
confirmatory experiment at the optimal conditions executed on the
process results in an antibody titer at harvest of yA � 3118.2 mg/L.
The experimental antibody titer is outside the prediction interval
(Equation 8), and the RSM in this case is affected by an error of
13.2%. Accordingly, the RSM from an extended experimental
campaign on the process has limited predictive accuracy, despite
effectively describing the calibration data (R2 � 0.997). This is due to
the highly nonlinear nature of the relationship between the subfactor
values (i.e., the shape of the nutrient profiles) and the product titer at
harvest, which cannot be properly captured by the second-
order model.

3.2 Nutrient profile optimization through
reduced experimental campaign on
the process

This section aims to identify the optimal nutrient profile that
maximizes the antibody titer at harvest using a limited set of
experiments planned through the DoDE. This is intended to
describe how the optimal nutrient profiles identified through
DoDE change when the number of performed experimental
runs is low.

Therefore, experimental campaign B with nine experiments
planned through the DoDE is used. The values of the dynamic

subfactors xglc
1 , xglc

2 , xglc
3 and xgln

1 , xgln
2 , xgln

3 for glucose and
glutamine, respectively, and the antibody titer at harvest are then
used to fit a first-order RSM (Equation 9).

The RSM fitted onto the process data shows a coefficient of
determination of R2 � 0.999 (R2

adj � 0.998), indicating that
calibration data are well captured by the model. Similarly, the
updated RSM describes the calibration data very well, with R2 �
0.996 (R2

adj � 0.994). The model coefficients are similar to the linear
terms shown in Supplementary Figure S1A, and hence they are not
shown for brevity. In this case, the initial glucose value results have a
small positive impact, indicating that only the initial glucose
concentration slightly influences antibody titer, while the shape
of the profile has no significant effect. Glutamine instead shows a
strong effect, having negative xgln

1 and xgln
3 and positive xgln

2 .
Accordingly, as previously observed, the antibody titer increases
with the glutamine profile, having a low initial value and an
increasing profile with downward (negative) concavity.

The RSM is then used for process optimization to determine the
nutrient profile that achieves the highest possible antibody titer at
harvest by means of a genetic algorithm.

The resulting optimal nutrient profiles (black lines) and the
confirmatory experiment executed on the process (red
points–process measurements) are shown in Figure 6 with the
continuous measurement (blue lines). The optimal glucose profile
(Figure 6A) starts at around half its possible range and follows a
linearly increasing profile with almost no concavity. The optimal
glutamine profile (Figure 6B) instead shows a constant profile along
the culture at the minimum value of its possible range. The optimal
values of the glucose and glutamine subfactors are xoptB �
0.476 0.433 −0.002 −0.978 0.015 0.002[ ].
The RSM predicts with the optimal nutrient profiles an antibody

titer at harvest of ŷB � 3021.8 ± 112.6 mg/L, which is lower that the
value predicted by the second-order RSM built in experimental
campaign A in 31 experiments. The confirmatory experiment
with the optimal feeding strategy executed on the process
shows an antibody titer at harvest of yB � 3136.3 mg/L. The
experimental antibody is slightly outside the prediction
interval, and the RSM shows an error of 3.8%. In this case,
the error between predicted and experimental value is lower
than in the case of the second-order RSM (Section 3.1) built on
a large number of experiments, indicating that the second-
order model slightly overfits the calibration data, providing
worse prediction than the first-order, demonstrating better
generalization capability. Despite the better prediction
performance, the predicted value is still outside the
prediction intervals, probably due to the highly nonlinear
relationship between nutrient profiles and antibody titer,
which cannot be captured by a first-order model.

3.3 Nutrient profile optimization through an
in silico experimental campaign on the
hybrid model

This section shows the optimization of the nutrient profiles by
performing an in silico experimental campaign through a hybrid
model. This will serve as proof of concept to understand the
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applicability and advantage of conducting virtual experimental
campaigns for optimizing cell culture quality attributes through
hybrid models.

Consequently, a hybrid model (Section 2.1.2) is trained on the
data collected during experimental campaign B planned through the
DoDE (Section 3.2), comprising nine experiments. The hybrid
model is exploited to perform an in silico experimental
campaign, where a genetic algorithm guides the experiments by
suggesting the values of the dynamic subfactors defining the
nutrient profiles.

The optimal nutrient profiles (black lines), those simulated though
the hybrid model (green dashed lines), and the profiles at the optimal
conditions executed on the process (blue lines) are shown in Figure 7.
The initial value of the optimal glucose profile (Figure 7A) is close to the
upper bound of the glucose range (47.7 mM) and follows a
monotonically decreasing profile with slight downward concavity,
while the initial value of the optimal glutamine profile (Figure 7B)
starts at the lower bound of its span range and follows an increasing
profile with a small slope and almost no concavity. The optimal values
of the glucose and glutamine subfactors are

FIGURE 6
Optimal nutrient profile, determined from DoDE experimental campaign B with nine experiments, tested on the process: (A) glucose and (B)
glutamine. Red dots—processmeasurements; black line—optimal nutrient profile; black dashed line—control band; blue line–continuousmeasurement.
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xoptHM � 0.146 −0.772 −0.074 −0.880 0.118 0.001[ ]. The glucose
predicted by the hybrid model (Figure 7A, green dashed line) matches
the simulated process profile before the first feeding action; it
overestimates the process profile in the final part of the batch. This
suggests that the addition of the glucose bolo drives the culture state to a
region only partially explored by the training samples, resulting in the
underestimation of the glucose consumption rate and a reduction in the
prediction performance. Instead, the overall glutamine profile
(Figure 7B) is better predicted throughout the entire culture,

although showing a slight underestimation of the glutamine
consumption.

The hybrid model predicts with the optimal nutrient profiles an
antibody titer at harvest of ŷ1 � 2624.6 mg/L, while the
confirmatory experimental run at the optimal conditions
performed on the process provided an antibody titer at harvest
of y1 � 3222.8 mg/L. Accordingly, the hybrid model underpredicts
the antibody titer by 18.6%, confirming that the hybrid model does
not accurately predict the correct numerical value of the antibody

FIGURE 7
Optimal nutrient profile, determined from the in silico experimental campaign through the hybrid model trained on the nine experiments of
experimental campaign B: (A) glucose and (B) glutamine. Green dashed line—hybrid model simulation; black line—optimal nutrient profile; black dashed
line—control band; blue line—process continuous measurement.
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titer. The high error of hybrid model prediction is due to the low
extrapolation capabilities of the hybrid models, which cannot
accurately predict values far from those observed in the training
data. Despite this large error, the antibody titer predicted by the
hybrid model is much higher than those observed in the training
data (experimental campaign B), indicating that the model correctly
captures the relationship between nutrients and antibody titer and
identifies the region of experimental domain with the highest
antibody titer.

3.4 Optimal nutrient profile

This section presents the real optimum of the process to
understand how well the investigated methodologies can identify
the optimal feeding schedule for the cell cultures. The optimum of
the process is known because a simulated process is considered; this
information would not be available in a real scenario. The genetic
algorithm presented in Section 2.1.3 is applied to the process to
determine the optimal feeding conditions.

FIGURE 8
Optimal nutrient profile of the process: (A) glucose and (B) glutamine. Blue line—continuous process measurement; red dots—process
measurements; black line—optimal profile; black dashed line—control band.
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The optimal values of the glucose and glutamine subfactors are

xoptP � 0.078 0.405 −0.174 −0.882 0.074 −0.042[ ]. The
optimal nutrient profiles of the process are shown in Figure 8
(black lines–target profile; blue line–continuous process
measurement; red dots–measurements). The initial value of the
glucose profile is in the middle of its possible range and
monotonically grows with an upward concavity (Figure 8A). The
initial value of the glutamine profile (Figure 8B) is at the lower
bound of its range and it follows a slightly increasing profile with a
small downward concavity.

The optimal nutrient profiles allow the process to achieve an
antibody titer yP � 3228.8 mg/L.

4 Discussion

This section compares the optimal feeding schedule of the
process with those obtained through optimization strategies
#1 and #2. At its end, the antibody titer in the confirmatory
experiment at the optimal conditions is used to identify the best
optimization strategy.

4.1 Optimal feeding schedule

The optimal feeding schedule of the process (Section 3.4) is
characterized by an initial glucose concentration at approximately
the average value in the range of possible concentrations, which
allows sustained cell growth in the initial part of the culture, and an
increasing profile, which maintains high cell growth even at high
viable cell concentration. The low initial glutamine concentration
provides enough nutrient for sustained growth and at the same time
determines reduced ammonia formation, which is detrimental
because it limits cell growth and favors cell death. Furthermore,
the downward concavity of the glutamine profile is coherent with the
necessity of providing more glutamine when the viable cell
concentration is higher (i.e., in the central part of the culture)
while also limiting ammonia formation. These results are
coherent with previous studies (Teixeira et al., 2005), which
recommended limiting the availability of glutamine in the initial
growth phase and increasing it later in the culture. Unlike here,
previous studies have recommended a low concentration of glucose
along the entire culture, possibly decreasing it later in the culture
(Teixeira et al., 2007). Even if low glucose concentration is
reasonable for limiting lactate production, feeding enough
glucose (as in our case) is of paramount importance for avoiding
cell starvation, which negatively affects cell growth, productivity,
and product quality (Narayanan et al., 2020; Sen et al., 2015).

4.2 Comparison among optimal
feeding schedules

In optimization strategy #2 (experimental campaign planned
through DoDE), the optimal low level of glutamine throughout the
entire duration of the culture is identified in both experimental
campaigns A and B. However, the increased amount required in the

central part of the culture to compensate for the increased viable cell
concentration is not identified in both approaches (that is,
experimental campaign A, with 31 experiments, and B, with nine
experiments). Regarding glucose, a profile similar to the process
optimum is identified only in experimental campaign B (with nine
experiments). However, in experimental campaign A, the identified
glucose profile with high initial concentration and a decreasing
profile leads to a more sustained production of lactate, especially in
the initial part of the culture.

In optimization strategy #1 (in silico experimental campaign),
correct behavior of the glutamine concentration, which starts at a
low level and increases along the culture, is identified. The optimal
glucose profile instead has a high initial concentration and decreases
along the culture, showing some similarity with experimental
campaign A of optimization strategy #2.

These differences in the optimal glucose profiles are due to the
small influence that glucose has on the antibody titer in the process.
In fact, if glucose is not limited, the growth rate (which also
determines the productivity) is only controlled by the glutamine
level and by the ammonia produced, leading to a reduced effect of
glucose on antibody productivity. For this reason, both modeling
strategies effectively capture the glucose behavior. In particular, the
second-order RSM is not affected by glucose and does not capture
the relationship between glucose, lactate, and a lower cell growth,
while the hybrid model underestimates the impact that lactate has
on cell growth. This leads both modeling strategies to suggest high
levels of glucose at the beginning of the culture.

The predicted antibody titer by the two optimization strategies is
compared to that achieved in the process (Section 3.4), with results
summarized in Table 1.

DoDE is thus demonstrated to be applicable in mammalian cell
cultures to optimize the feeding schedule, providing a simple and
robust science-based strategy to improve antibody yield. In fact, in
optimization strategy #2, experimental campaigns A (3,118.2 mg/L)
and B (3,136.3 mg/L) both achieved an improved yield of antibodies
in the confirmatory experiments at the optimal conditions. In
particular, experimental campaign B achieved with only nine
experiments a higher yield than experimental campaign A with
31 experiments. However, optimization strategy #2 achieved
antibody titer consistently lower than the real process optimum
yP (3,228.8 mg/L). Despite the high yield achieved, the predictions
of the antibody titer performed by the two RSMs of optimization
strategy #2 are inaccurate. The second-order RSM fitted on the
31 experiments from experimental campaign A shows a 13.2%
prediction error, which is much greater than the 3.8% error
shown by the first-order RSM trained on the nine experiments of
campaign B. These results suggest that the RSM does not completely
capture the complex relationship between nutrients and product
titer independently of model complexity. Furthermore, the performance
of the first-order RSM of experimental campaign B, which is better than
that of experimental campaign A, indicates that a large number of
samples is not beneficial for optimization when the selected modeling
strategy cannot handle the complexity of the relationship under study. For
this reason, the planning of a large number of experimental runs must be
coupled with a model of adequate complexity. Hence, the generalizability
of the developed models should be carefully tested though validation
experiments in order to avoid overfitting.
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Hybrid semi-parametric models are promising tools which allow
performing of in silico experimental campaigns since they provide a
very good representation of the system even when built on a reduced
number of runs. In fact, the confirmatory experiment with the
optimal feeding schedule identified by optimization strategy
#1 achieved a very high antibody titer (3,222.8 mg/L), with
results very close to the real process optimum yP (3,228.8 mg/L).
Optimization strategy #1 improved the antibody titer by 34.9% with
respect to the training data and provided a 2.8% increase in antibody
titer with respect to the optimal antibody obtained through
experimental campaign B of optimization strategy #2
(3,222.8 mg/L vs. 3,136.3 mg/L). However, the antibody titer y1

predicted in optimization strategy #1 (2,624.6 mg/L) is the lowest
predicted value, showing the largest prediction error (18.6%).
Despite that, the hybrid model captures a relationship between
subfactors and antibody titer which is closer to the real one than
the RSM. This can be observed in Figure 9, where the values of the
optimal subfactors are reported. Concerning glutamine—the most
important factor—the hybrid model identifies profile initial value

(xgln
1 ) and slope (xgln

2 ), which are closer to the process optimum than
the RSM, while similar values of the concavity (xgln

3 ) are identified by
both hybrid model and RSM on experimental campaign B.
Concerning glucose, the hybrid model identifies profile initial
value (xglc

1 ) and concavity (xglc
3 ), which are more similar to the

process optimum than the RSM; the slope of glucose profile (xglc
2 ) is

accurately captured only by the RSM. However, the difference in the
slope of the glucose profile is only partially significant because all
glucose profiles, provided that they do not cause cell starvation, have
a similar effect on antibody titer due to the low influence of glucose
in the range selected for this study. The identification of subfactor
values similar to the process optimum, especially for the subfactors
with the largest influence on the response (i.e., glutamine), indicates
that the hybrid model describes the correct functional relationship
between nutrient profiles and antibody titer, thus successfully
identifying the experiment region with the highest antibody titer.
However, since training data does not explore regions with very high
antibody titer values, the hybrid model is not able to correctly
extrapolate an accurate value of antibody titer, leading to biased

TABLE 1 Optimal nutrient profiles obtained with different strategies: subfactor value, simulated experimental antibody titer, predicted antibody titer, and
95% confidence interval of the predicted antibody titer.

Strategy Campaign Runs Titer [mg/L] Predicted titer [mg/L] CI [mg/L]

Process - 3,228.8 - -

1 In silico 9 3,222.8 2,624.6 353.9

2 A 31 3,118.2 3,530.0 54.6

2 B 9 3,136.3 3,021.8 112.6

FIGURE 9
Comparison of values of the optimal subfactors for process, RSM of experimental campaign B, and hybrid model.
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predictions. This result indicates that hybrid models are promising
methods for capturing complex relationships thanks to their underlying
mechanistic knowledge. However, predicted numerical values are not
always accurate, especially when extrapolating; this is a well-known
drawback of data-driven models. Prediction accuracy can be improved
by introducing new experimental runs into the hybrid model training
data close to the optimal region. In fact, adding only one experiment in
the optimal region to hybrid model training data leads to a lower error
in predicting the optimal antibody titer (8.7%).

It is extremely important to point out that in optimization strategy
#1, an antibody titer so close to the real optimal value is identified by
only nine experiments (i.e., used to train the hybrid model) on the
process. Accordingly, the hybrid model correctly learns and generalizes
the relationship between nutrients and antibody titer and captures the
cross-correlation between them, even if it is trained from a limited
number of experiments. This is somehow expected because hybrid
models combine the knowledge of the biological phenomena involved
in cell cultures with the capability of learning the complex relationships
of data-driven models.

It is also notable that the selected hybrid model structure is the
best in terms of the number of samples required for training and
extrapolation with a different feeding schedule (Narayanan et al.,
2021). In fact, the improvement of the model structure by
introducing additional mechanistic knowledge improves the
description of the system but requires a larger number of
training samples to achieve comparable prediction performance.
Accordingly, a trade-off is required between model effectiveness and
complexity (which requires a higher number of training samples).

5 Conclusion

This study has compared different strategies of experimentation to
optimize the feeding schedule of a mammalian cell culture. In
particular, in silico experimentation was compared with an
experimental campaign on the process to assess if in silico
experimentation can accelerate process development and reduce
experimental burden. To conduct in silico experiments, we used a
combination of design of dynamics experiments (DoDE) and a hybrid
semi-parametricmodel to virtually identify the optimal shape of glucose
and glutamine profile. The optimal nutrient profiles were compared
with those obtained through two experimental campaigns planned with
DoDE: an extended campaign with 31 experiments (experimental
campaign A) and a more parsimonious campaign with nine
experiments (experimental campaign B).

Experimental campaign B reached an improved antibody titer of
3,136.3 mg/L, while experimental campaign A provided a smaller
antibody titer than experimental campaign B had achieved with nine
experiments. Despite being able to improve the antibody titer, the
experimental campaigns planned with DoDE could not achieve titer
values similar to the real process optimum.

The in silico campaign, which required only nine experimental runs
to train the hybrid digitalmodel, provided a 34.9% overall improvement
in the antibody titer with respect to training data and a 2.8%
improvement with respect to experimental campaigns A and B,
reaching a titer very close to the process optimum. The hybrid
model accurately captures the relationship between nutrient profiles
and antibody titer but underpredicts the numerical value of the

antibody titer. Accordingly, hybrid semi-parametric models are
promising tools and can be used to conduct in silico experimental
campaigns, providing very high performance and reducing the
experimental burden and time required to perform feeding schedule
optimization in the real world.

A simulated process to produce monoclonal antibodies at 1-L
shake flask scale was considered as a case study. In future research,
the proposed framework will be checked on a real process to confirm
our findings. Furthermore, a thorough comparison of the proposed
framework with dynamic optimization methods will be conducted
in future studies.
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