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Cordycepin, an adenosine analog, exhibits diverse bioactivities and holds
significant potential for applications in healthcare and agriculture. Fungi of the
genusCordyceps, such asCordyceps militaris, can naturally produce cordycepin.
Current sources of cordycepin primarily involve extraction from fruiting bodies or
isolation from liquid fermentation usingC.militaris, presenting challenges such as
low production intensity, complex separation and purification systems, and high
production costs, limiting industrial feasibility. Recent advancements have
witnessed the utilization of various fungal chassis cells to successfully
engineer heterologous biosynthetic platforms for cordycepin, such as
Saccharomyces cerevisiae and unconventional yeasts, offering advantages of
high yield, short fermentation cycles, and a broad substrate spectrum. This mini
review summarizes the biosynthetic pathways of cordycepin and focused on the
comparison of the characteristics, advantages, current performance and
prospects for the microbial cell factories, analyzing potential targets for
metabolic pathway modification and giving strategies in both genetic
engineering and process engineering to enhance production intensity. The
mini review particularly emphasizes the crucial role of chassis cell stress
tolerance to the toxic product in determining cordycepin yield and highlights
the urgent need for high-throughput screening methods for high-yield strains.
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1 Introduction

Cordycepin (3′-deoxyadenosine) is a unique adenosine analog first identified by
Cunningham et al. (1950) in the fermentation broth of the medicinal fungus Cordyceps
militaris. As a valuable natural compound, cordycepin exhibits a range of biological
functions (Tuli et al., 2014; Radhi et al., 2021), including antitumor (Nakamura et al.,
2015; Khan and Tania, 2023), anti-inflammatory (Tan et al., 2020), antiviral (Rabie, 2022),
immunomodulatory activities (Lee et al., 2020). It also helps alleviate symptoms of diabetes
(Shin et al., 2009) and hyperlipidemia (Guo et al., 2010), showing broad prospects for drug
development and health products (Kunhorm et al., 2019; Yang et al., 2020). To relieve the
rapid deamination of cordycepin in vivo, cordycepin derivatives with N6 protection
(Schwenzer et al., 2021; Cui et al., 2024) have been developed, and the ProTide NUC-
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7738, featuring a protective phosphoramidate cap, has overcoming
cellular resistance (Schwenzer et al., 2021) and is currently in Phase
II clinical trials. Cordycepin directly inhibits cancer cell proliferation
and disrupts the tumor microenvironment (Khan and Tania, 2020;
Chen et al., 2024), making it suitable for combination therapies (Liao
et al., 2020). Additionally, cordycepin exhibits antibacterial (Jiang
et al., 2019), insecticidal (Woolley et al., 2020), and allelopathic
effects (Quy et al., 2019) comparable to glyphosate in
dicotyledonous plants, indicating potential agricultural
applications. However, research on the mechanisms underlying
cordycepin’s activity has predominantly focused on mammalian
cells, involving pathways such as PI3K/Akt/mTOR, MAPK and
AMPK signaling (Radhi et al., 2021), with limited data on
microbial or plant systems. Phosphorylation of cordycepin
(CoTP) (Hawley et al., 2020) plays a central role in its activity.

Cordycepin can be obtained via chemical synthesis and
biological methods (Wang et al., 2022). Chemical synthesis faces
challenges of efficiency, cost, precursor availability, and
environmental concerns (Hansske and Robins, 1985; Aman et al.,
2000), making it unsuitable for industrial applications. Biological
methods mainly involve using naturally cordycepin-synthesizing

microorganisms or artificially constructed microbial cell factories
through solid or liquid fermentation (Duan X. et al., 2023). Fungi
with natural cordycepin biosynthesis pathways include C. militaris
(Xia et al., 2017), Ophiocordyceps sinensis (Xiang et al., 2014),
Cordyceps kyushuensis (Zhao et al., 2019), Cordyceps cicadae (Liu
et al., 2018), Aspergillus nidulans (Xia et al., 2017), and Irpex lacteus
(Liu et al., 2022). These fungi employ various fermentation
techniques, such as solid-state fermentation, static fermentation,
and submerged fermentation. Previous review articles have analyzed
the evolutionary relationships among these fungi and compared
their yields (Wang et al., 2022; Duan X. et al., 2023). Currently,
extraction from C. militaris fruiting bodies or fermentation broth
remains the primary source of cordycepin.

Although C. militaris exhibits the highest fermentation yield
among known natural cordycepin hosts (Duan X. et al., 2023), its
long fermentation cycle results in low production intensity. Solid
and surface fermentation typically require 45–60 days, and
submerged liquid fermentation takes at least 15–20 days (Yang
et al., 2020). Additionally, the strains are highly unstable, facing
issues such as strain degeneration (e.g., abnormal color change,
failure to form fruiting bodies) (Lou et al., 2019) during fruiting

TABLE 1 Summary of cordycepin production in microbial cell factories and C. militaris.

Genetic background Genetic modification Cordycepin yield
& productivity

Fermentation strategy Deamination of
cordycepin

S. cerevisiae BY4741 (Wang
et al., 2024)

Δado1; ura3::PGK1p- EA-ADH1t-
TEF1p-EA2-CYC1t; HO:: pTHD3-
ADE4 -tADH1; HO:: pTHD3-cpdBN-
tADH

725.16 mg/L &
5.03 mg/(L·h)

Fed-batch fermentation with
pH optimization at 5.5

Not observed

S. cerevisiae S288c (Huo et al.,
2021)

Episomal vector pYES2-Kan, TDH3p-
ScCNS1-CYC1t, TEF1p-ScCNS2-
ADH1t

137.27 mg/L &
0.95 mg/(L·h)

Fed-batch fermentation supplemented
with 5mmol/L Cu2+ and 1.0 g/L adenine

Not observed

Komagataella phaffii GS115
(Tan et al., 2023)

AOX1::AOX1p-CNS1- RPS25At
-FLD1p-CNS2-AOX1t

2.68 ± 0.04 g/L
&15.95 mg/(L·h)

Flask fermentation with optimization of
adenine/methanol concentration

Yes, under weakly alkaline
pH at 7.0 or 8.0

Yarrowia lipolytica YlCor-18
(Song et al., 2023)

Po1f-Δku70, rDNA::up-TEFp-
CmCns1-XPR2t-TEFp CmCns2 LIP2t-
URA3-rDNA down, rDNA::up-TEFp-
NK-XPR2t-TEFp PGK-LIP2t-LEU2-
rDNA down

4,362.54 mg/L (213.85 mg/
g) & 26.0 mg/L/h

Fed-batch fermentation supplemented
with 1.0 g/L of adenine

Not observed

Yarrowia lipolytica YLC22
(Duan et al., 2022)

Po1f-ΔKu70, URA3, rDNA::FBAp-
Cns2-XPR2t, TEFp-Cns1-LIP2t, LEU2,
rDNA::TEFp-Cns3NK-2A-ADE4-2A-
ADE12-LIP2t

3,249.58 mg/L
(3,588.59 mg/L from
glucose)

A mixture of molasses and glucose as
substrate in flask fermentation

Not observed

Yarrowia lipolytica YL-D05
(Duan et al., 2023a)

Po1f-ΔKu70, URA3, rDNA::FBAp-
Cns2-XPR2t, TEFp-Cns1-LIP2t, LEU2,
rDNA::TEFp-GLK1-2A-PGM1-LIP2t

2,286.04 mg/L (120 h) &
27.34 mg/L/h (72 h)

Flask fermentation with agro-industrial
residues as substrate plus optimization
of carbon source, nitrogen source, C/N
ratio, and initial pH

Not observed

Aspergillus oryzae (Jeennor
et al., 2023)

PyrG::AnPgpdA-Cns2-AnTrpC-
AoPgpdA-Cns1-AoTrpC

1,129.29 ± 19.17 mg/L &
564.64 ± 9.59 mg/L/d

Submerged fermentation supplemented
with adenine

Yes

C. militaris mutant G81-3
(Masuda et al., 2011)

The mutant obtained by high-energy
proton beam irradiation

8,600 mg/L & 11.94 mg/
L/h

Surface liquid culture supplemented
with adenosine

Not observed

C. militaris mutant GYS60
(Zhang et al., 2020)

The mutant obtained by
multifunctional plasma mutation
system

7,882.70 mg/L & 21.90 mg/
L/h

Submerged liquid culture Not observed

Recombinant C. militaris CM-
adss-5 (Zhang et al., 2023)

Over-expressing genes encoding
adenylosuccinate synthase,
adenylosuccinate lyase, and 5′-
nucleotidase genes

2,581.96 ± 21.07 mg/L &
8.97 mg/L/h

Submerged liquid culture under
optimized culture conditions

Not observed
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body cultivation and complex environmental responses during
liquid fermentation. Factors like light, temperature, oxygen
supply, redox state, and metal ions significantly affect yield,
leading to substantial batch-to-batch variation (Zhao et al., 2020;
Wang et al., 2022). Consequently, with the development of synthetic
biology, alternative microbial cell factories such as Saccharomyces
cerevisiae (Huo et al., 2021; Wang et al., 2024), unconventional
yeasts Komagataella phaffii (Tan et al., 2023) and Yarrowia lipolytica
(Duan et al., 2022; Song et al., 2023), and Aspergillus oryzae
(Jeennor et al., 2023) have been developed in recent years for

cordycepin production (Table 1). Some of these engineered
strains surpass natural producers in terms of production
intensity and give simpler downstream purification due to
their defined culture media. Given the toxicity of cordycepin
to host cells, improving cell tolerance to cordycepin stress and
elucidating its underlying mechanisms are crucial for
constructing efficient cell factories.

This review will compare and analyze the characteristics and
advantages of different chassis cells cordycepin factories, discuss key
targets affecting cordycepin yield based on elucidated biosynthetic

FIGURE 1
The metabolic pathways related to the biosynthesis of cordycepin in Cordyceps militaris and engineered microorganisms. GSH, glutathione; GS-
CH2-OH, S-(Hydroxymethyl)glutathione; GS-CHO, S-Formylglutathione; HCOOH, Formate; CO2, Carbon dioxide; DHA, Dihydroxyacetone; DHAP,
Dihydroxyacetone phosphate; GAP, Glyceraldehyde 3-phosphate; Xu5P, xylulose-5-phosphate; Ru5P, Ribulose 5-phosphate; R5P, Ribose 5-phosphate;
XOL, Xylitol; XUL, D-Xylulose; XUL5P, D-Xylulose 5-phosphate; RL5P, D-Ribulose 5-phosphate; 6PG, 6-Phospho gluconate; GL6P, Glucono-1,5-
lactone 6-phosphate; G6P, Glucose 6-phosphate; F6P, Fructose 6-phosphate; FBP, Fructose-1,6-bisphosphatase I; E4P, Erythrose 4-phosphate; S7P,
Sedoheptulose 7-phosphate; 1,3-BPG, Glycerate 1,3-diphosphate; 3-PGA, 3-phosphoglycerate; 2-PGA, 2-phosphoglycerate; PEP,
Phosphoenolpyruvate; ICIT, Isocitrate; αKG, 2-Ketoglutaric acid; SUC, Succinate; FUM, Fumarate; MAL, Malate; OAA, Oxaloacetate; PRPP, 5-
Phosphoribosyl diphosphate; 5PR, 5-Phosphoribosylamine; AICAR, 5′-Phospho-ribosyl-5-amino-4-imidazole carboxamide; FAICAR, 5′-
Phosphoribosyl-5-formamido-4-imidazolecarboxamide; IMP, Inosine 5′-phosphate; XMP, Xanthosine 5′-phosphate; GMP, Guanosine 5′-phosphate;
GDP, Guanosine 5′-diphosphate; GTP, Guanosine 5′-triphosphate; dGDP, 2′-Deoxyguanosine 5′-diphosphate; dGTP, 2′-Deoxyguanosine 5′-
triphosphate; dGMP, 2′-Deoxyguanosine 5′-monophosphate; 2′-dG, 2′-Deoxyguanosine; AMP, Adenosine 5′-monophosphate; ADP, Adenosine 5′-
diphosphate; ATP, Adenosine 5′-triphosphate; dADP, 2′-Deoxyadenosine 5′-diphosphate; dATP, 2′-Deoxyadenosine 5′-triphosphate; dAMP, 2′-
Deoxyadenosine 5′-monophosphate; 2′-dX, 2′-Deoxyadenosine; 3′-dADP, 3′-Deoxyadenosine 5′-diphosphate; 3′-dAMP, 3′-Deoxyadenosine 5′-
monophosphate; 3′-AMP, 3′-Adenylic acid; 2′-C-3′ -dA, 2′-carbonyl-3′ -deoxyadenosine; CNS1, Oxidordeuctase involved of cordycepin biosynthesis;
CNS2, Metal dependent phosphohydrolase involved of cordycepin biosynthesis; 2′-3′-cAMP, 2′,3′-cyclic adenosine monophosphate; NK/Cns3,
Cns3 contains an N-terminal nucleoside/nucleotide kinase; HisG/Cns3, Cns3 contains a C-terminal HisG family of ATP phosphoribosyltransferases;
Cns4, Transporter proteins of Pentostatin; CoMP, Cordycepin monophosphate; CoDP, Cordycepin diphosphate; CoTP, Cordycepin triphosphate.
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pathways, and propose feasible tools and strategies for simultaneously
enhancing stress tolerance to cordycepin and the yield.

2 Biosynthesis pathways of cordycepin

The genome of C. militaris was sequenced in 2011 (Zheng et al.,
2011). Subsequently, Xia et al. (2017) identified the key gene cluster
responsible for cordycepin biosynthesis through comparative
genomic analysis with A. nidulans. In their work, this gene
cluster, designated as Cns1-4, proved pivotal in the biosynthetic
pathway of cordycepin (Figure 1), whereas 3′-AMP serves as the
substrate of dephosphorylation by Cns2, a metal-dependent
phosphohydrolase, to form 2′-carbonyl-3′-deoxyadenosine (2′-C-
3′-dA). This intermediate is then converted to cordycepin through a
redox reaction catalyzed by Cns1, an oxidoreductase, and 3′-AMP
can be produced from adenosine via the nucleotide kinase domain
(NK) at the N-terminus of Cns3 or from 2′,3′-cAMP, a product of
mRNA degradation that is ubiquitously present in various cells
(Wongsa et al., 2020). Therefore, theoretically, the overexpression of
Cns1 and Cns2 in a host cell can utilize endogenous 3′-AMP to
achieve heterologous cordycepin production. The C-terminal HisG
domain of Cns3 catalyzes the conversion of adenosine to pentostatin
(PTN), an adenosine deaminase inhibitor that prevents the
deamination and subsequent inactivation of cordycepin. Cns4, an
ABC transporter, exports PTN extracellularly. This mechanism
ensures that when intracellular concentrations of cordycepin
become excessively high, cordycepin can be converted to the
non-toxic 3′-deoxyinosine (3′-dI) form, thereby protecting the
cells. This system is referred to as the Protector-Protégé feedback
mechanism. Additionally, Xia et al. (2017) also found that Cns1 and
Cns2 could form a functional protein complex localized to lipid
droplets. Later, similar gene clusters with analogous functions to
Cns1-4 were also identified in C. kyushuensis (designated as ck1-4)
(Zhao et al., 2019) and C. cicadae (Liu et al., 2018).

In contrast, no similar gene clusters have been identified in O.
sinensis (Xia et al., 2017). Transcriptomic analysis suggests that O.
sinensis may rely on an alternative reductive metabolic pathway for
cordycepin biosynthesis (Xiang et al., 2014) (lower right corner in
Figure 1): AMP is converted to ADP by adenylate kinase (ADEK),
then reduced to 3′-dADP by ribonucleotide reductase (NRDJ),
followed by dephosphorylation to 3′-dAMP by ADEK, and
finally converted to cordycepin through a dephosphorylation
reaction catalyzed by 5′-nucleotidase (NT5E). However,
conclusive experimental evidence is still lacking.

3 Natural cordycepin-producing
fungus Cordyceps militaris

Despite the development of various microbial chassis cells as
cordycepin-producing cell factories, some already achieving high
production levels, C. militaris remains irreplaceable for cordycepin
production for several reasons. Firstly, C. militaris demonstrates
excellent biosafety, can be artificially cultivated (Kontogiannatos
et al., 2021), and has a broad substrate spectrum, utilizing not only
silkworm pupae, but also rice, barley, and xylose (Wongsa et al.,
2020) as carbon sources. In countries like China, it has a long history

of use as both food and medicine (Cui, 2015), leading to high social
acceptance. Notably, as early as 2009 C. militaris was announced as a
kind of safe food by Chinese government, providing regulatory
support for the application and promotion of cordycepin products
from C. militaris, a benefit that cordycepin products from yeast cell
factories currently lack. Additionally, in 2016, the CRISPR-edited,
browning-resistant Agaricus bisporus was approved by the US
Department of Agriculture (USDA) (Waltz, 2016), suggesting
that other mushrooms, including C. militaris, could potentially
receive authorization for genetic editing in the future.

Secondly, C. militaris contains various bioactive molecules such
as cordyceps polysaccharides, D-mannitol, N6-(2-hydroxyethyl)-
adenosine (HEA), and carotenoids, etc. (Wu et al., 2021).
Cordycepin, its signature active substance, can synergize with
these compounds to target multiple sites, enhancing health and
therapeutic effects. Cordycepin is also a key indicator for grading the
quality of C. militaris fruiting bodies in China. Therefore, breeding
C. militaris strains to increase cordycepin yield is of importance.

However, due to the lack of genetic editing tools, previous
research mainly focused on optimizing fermentation strategies
(solid, static, and submerged fermentation) for C. militaris, as
reviewed previously by Wang et al. (2022). Recently, with the
complete elucidation of the C. militaris genome and advances in
molecular biology techniques, breeding methods for C. militaris
have diversified. These methods now include the development of
gene editing toolkit (Chen et al., 2018; Chen et al., 2022; Meng et al.,
2022) and metabolic pathway optimization (Zhang et al., 2022),
genome shuffling (Wang et al., 2017), and multi-omics approaches
to identify key metabolic nodes.

Chen et al. (2022) successfully developed the CRISPR-Cas9-
TRAMA system, achieving precise multiple gene editing and large
DNA fragment deletions. Unlike exogenously synthesized gRNA,
this system synthesizes gRNA endogenously using tRNA and PtrpC
promoters. The polyethylene glycol-mediated transformation
(PMT) was found superior to Agrobacterium tumefaciens-
mediated transformation (ATMT) for genetic transformation.
The plasmid includes the AMA1 sequence (Meng et al., 2022)
from A. nidulans Glasgow strains, making it an episomal plasmid
that can be eliminated by selective removal in the culture medium.
The study also found that C. militaris can repair DNA through non-
homologous end joining (NHEJ) or homology-directed repair
(HDR). Future efforts to enhance genetic editing and metabolic
modification in C. militaris should focus on elucidating key
components influencing NHEJ and HDR, identifying neutral sites
for gene (cluster) integration and expression, discovering efficient
constitutive or inducible promoters (Lyu et al., 2022) (including AI-
predicted promoters), and developing abundant selection markers
(Lou et al., 2021) with more efficient transformation/
screening methods.

Genome shuffling (Biot-Pelletier and Martin, 2014), combined
with traditional physical (such as plasma, proton beam irradiation or
UV) or chemical (such as nitrosoguanidine) mutagenesis (Masuda
et al., 2011; Zhang et al., 2020), and adaptive laboratory evolution
(ALE) (Mavrommati et al., 2022) remain effective breeding
methods, though they often yield uncertain results and require
substantial labor. Current methods for detecting cordycepin
primarily rely on HPLC or thin-layer chromatography. There is a
lack of colorimetric or fluorescent labeling methods for high-
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throughput screening. Breakthroughs in this area could significantly
enhance the efficiency of both rational and non-rational genetic
engineering. One solution is to identify endogenous promoters able
to linearly respond to cordycepin concentration as biosensors,
converting different cordycepin yields into phenotypes such as
growth rate variations which could easily be recognized. Besides,
Omics research plays a crucial role in exploring cordycepin
biosynthesis pathways, identifying key enzyme genes and
metabolic nodes (Chen et al., 2020; Zhang et al., 2023; Chai
et al., 2024).

4 Yeast cell factories for biosynthesis of
cordycepin

4.1 S. cerevisiae, the first heterologous
cordycepin expression platform

Cordycepin was first biosynthesized in the model organism S.
cerevisiae, establishing the initial yeast cell factory for heterologous
cordycepin expression (Xia et al., 2017; Huo et al., 2021). It was
demonstrated that expressing only Cns1 and Cns2 is sufficient for
cordycepin heterologous expression, while the yield was merely
137.27 mg/L even after fermentation optimization (Huo et al.,
2021). By overexpressing the cpdB gene (3′-cyclic-nucleotide 2′-
phosphodiesterase/3′-nucleotidase) from Escherichia coli, which
converts 2′, 3′-cAMP to 3′-AMP, cordycepin concentration was
significantly increased (Wang et al., 2024). This indicates that 3′-
AMP in S. cerevisiae is similarly to that in Cordyceps fungi, derived
via RNA degradation pathways, and that Cns3 is not necessary for
heterologous cordycepin production. This finding has also been
validated in other yeast cell factories.

Subsequently, Wang et al. (2024) improved cordycepin yield to
725.16 mg/L through rational metabolic engineering. Their study
specifically compared the catalytic efficiency of Cns1/2 homologs
from the marine fugus Emericellopsis atlantica and found that
codon-optimized EA1/2 from the marine fungus increased
cordycepin titer by 18.6% compared to Cns1/2, which
underscores the importance of enzyme activity in the yeast host
for cordycepin yield and the potential for mining potential sources
of cordycepin synthesis genes from microorganisms in unique
environments or through enzyme evolution and screening.

In metabolic engineering, enhancing the pentose phosphate
pathway and purine synthesis pathway genes, including ZWF1
(glucose-6-phosphate dehydrogenase), PRS4 (ribose phosphate
diphosphokinase), and ADE4 (amidophosphoribosyl transferase),
significantly increased cordycepin yield (Wang et al., 2024).
Overexpressing Cns1-2 in S. cerevisiae also upregulated these
genes at the transcriptional level (Huo et al., 2021), indicating
that synthesis of PRPP (5′-phosphoribosyl diphosphate) and the
diversion of carbon flux into purine metabolism are critical nodes
for improving cordycepin synthesis, partially consistent with
previous findings in C. militaris (Chen et al., 2020).

Notably, deleting the ADO1 gene significantly increased
cordycepin yield (Wang et al., 2024). One possible explanation is
that this deletion enhances host tolerance to cordycepin stress,
providing a novel approach to increasing cell factory yields,
suggesting the tolerance of the chassis cells to toxic products may

determine yield limits. Cordycepin can be phosphorylated to
cordycepin triphosphate (Hawley et al., 2020), which strongly
inhibits RNA synthesis and causes cellular toxicity (Holbein
et al., 2009). Deleting ADO1 may disrupt adenosine
phosphorylation to AMP, potentially affecting phosphorylation
levels and ratios of cordycepin (Wang et al., 2024). Further
evidence, such as measuring cordycepin phosphorylation levels in
yeast or identifying endogenous enzymes involved in cordycepin
phosphorylation, could validate this hypothesis.

4.2 Non-conventional yeasts: K. phaffii and
Y. lipolytica

Non-conventional yeasts have recently emerged as effective cell
factories for the production of various natural products (Rebello
et al., 2018). Cordycepin-producing cell factories have been
successfully developed in the non-conventional yeasts K. phaffii
(Tan et al., 2023) and Y. lipolytica (Duan et al., 2022; Song et al.,
2023). These systems utilize codon-optimized Cns1 and Cns2 genes
derived from C.militaris, achieving yields of 2.68 g/L in shake flasks
and 4,362.54 mg/L in fermenters, respectively.

In the construction and optimization of the Y. lipolytica
cordycepin cell factory, various molecular biology strategies were
employed (Duan et al., 2022; Duan X. Y. et al., 2023; Song et al.,
2023), including multi-copy integration of the key synthesis
enzymes Cns1-2 at the rDNA locus, promoter optimization, and
different expression methods for key enzymes (linker/2A peptide/
RIAD-RIDD protein scaffold). Typically, exogenous gene
expression in engineered strains using free plasmids results in
unstable yields due to uneven plasmid distribution during cell
division, not mentioning the need for antibiotics to maintain
plasmid presence (Friehs, 2004). In contrast, integration at loci
such as rDNA (Le Dall et al., 1994), delta sequences (Sakai et al.,
1990), or IS elements (Lee et al., 2016) could ensure both the stability
and multi-copy integration.

To optimize metabolic pathways, several genes in Y. lipolytica
were overexpressed including GLK1 (Glucokinase) and
phosphoglucomutases (PGM1) to enhance the pentose phosphate
pathway (PPP) and PRPP production (Duan X. Y. et al., 2023).
Overexpression of adenylate succinate synthase (ADE12) and
adenylosuccinate lyase (ADE13) upregulated the purine synthesis
pathway. Furthermore, the overexpression of 3′-phosphoglycerate
kinase (PGK) and pyruvate kinase (PK) effectively increased
intracellular ATP levels, significantly boosting cordycepin
production (Song et al., 2023). This indicates that PPP, purine
synthesis pathways (affecting precursor supply for cordycepin
synthesis), and ATP supply and consumption are crucial
metabolic targets for cordycepin biosynthesis.

In K. phaffii, a two-stage fermentation process using glycerol/
methanol was employed, with the inducible promoters AOX1p and
FLD1p expressing Cns1 and Cns2 from C. militaris, respectively
(Tan et al., 2023). This approach, achieving inducible expression of
cordycepin in a cell factory for the first time, spatially separated the
cell growth phase (glycerol) from the cordycepin production phase
(methanol), avoiding too early accumulation of cordycepin that
might hinder cell growth. Transcriptome analysis revealed
downregulation of genes related to methanol assimilation and
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dissimilation, peroxisome biogenesis, and the pentose phosphate
pathway, providing targets for further strain improvement. The
broad substrate utilization spectrum of K. phaffii, especially its
ability to utilize methanol as a sole carbon and energy source
(Ata et al., 2021; Zha et al., 2023), positions it competitively in
controlling cordycepin fermentation costs and downstream product
purification.

As in Cordyceps militaris, the yield of cordycepin in yeast cell
factories can also be increased through process engineering
optimization. For example, the addition of adenine has been
shown to significantly enhance cordycepin production in all
reported yeast cell factories, whereas adding adenosine can only
partially increase the yield in the engineered Y. lipolytica (Song et al.,
2023). Furthermore, optimizing the type and concentration of
carbon and nitrogen sources, as well as the C/N ratio, has been
crucial for the engineered Y. lipolytica (Duan X. Y. et al., 2023). In
the case of engineered K. phaffii, the initial pH and methanol
concentration in flask fermentation have significant effects on the
final productivity (Tan et al., 2023).

4.3 Optimization strategies for yeast
cell factories

Based on a comparative analysis of three yeast cell factories, the
following optimization strategies are proposed.

4.3.1 Enhancing host stress tolerance and
establishing high-throughput screening platforms

The superior cordycepin synthesis capabilities in Y. lipolytica
and K. phaffii compared to S. cerevisiae are largely attributed to their
greater tolerance to cordycepin stress. In Y. lipolytica, cordycepin
concentrations up to 3.0 g/L (Duan et al., 2022) did not affect final
biomass, revealing the importance of considering host stress
tolerance when generating toxic products. Techniques of genome
evolution (Huang C. et al., 2022) like Synthetic Chromosome
Rearrangement and Modification by LoxP-mediated Evolution
(SCRaMbLE) (Cheng et al., 2024) can potentially enhance both
cordycepin stress tolerance and production yield. NHEJ-mediated
genomic library construction in Y. lipolytica can also introduce
numerous LoxP sites (Bai et al., 2021). Additionally, adaptive
laboratory evolution (Fernandes et al., 2023) remains effective;
however, mutants with improved cordycepin production ability
lack visible phenotypes or growth-coupled traits, making them
difficult to screen. Therefore, efficient screening methods based
on high-throughput platforms are critical. Traditional methods
relying on HPLC are too laborious and costly to efficiently
identify targets from thousands of (or much more) mutants.

One widely implemented strategy in cell factories is the use of
transcription factor (TF)-based biosensors. For instance, the fatty
acid and phospholipid regulator FapR and its operator fapO from
Bacillus subtilis have been extensively studied and applied in both
prokaryotic and eukaryotic systems as a malonyl-CoA sensor
(Zhang and Shi, 2021). The allosteric conformational changes in
transcription factors (TFs) when binding a specific metabolite leads
to their binding to or dissociation from the operator region, thus
regulating transcription. Endogenous transcription factors that
respond to cordycepin concentration can be identified through

transcriptome data mining of the host cell. Additionally, artificial
transcription factors can be developed using reported cordycepin-
binding receptors (Nakamura et al., 2015). These artificial TFs can
be fused with reporter gene modules (such as fluorescent proteins or
antibiotic resistance genes) to establish intracellular cordycepin
biosensors.

4.3.2 Cordycepin transport and deamination
Adenosine cannot freely permeate biological membranes and its

transport relies on selected protein carriers (Pastor-Anglada and
Perez-Torras, 2018), whereas its structural analogue cordycepin has
been reported to be abundantly present extracellularly in various
existing cell factories, indicating the presence of endogenous
cordycepin transport proteins. Future work should assess
intracellular versus extracellular cordycepin distribution to
identify and enhance expression of potential cordycepin
export proteins.

Deamination is a detoxification mechanism used by cells to
neutralize cordycepin (Chen et al., 2023), but in cell factory
fermentation for cordycepin production, deamination should be
avoided. The deamination issue observed in K. phaffii (Tan et al.,
2023) suggests the presence of endogenous deaminases that
recognize cordycepin, necessitating study on the mechanism and
stringent fermentation control.

4.3.3 Flocculation and fermentation-separation
coupled systems

Given cordycepin’s toxicity, timely removal from the
fermentation broth can alleviate product feedback inhibition and
maintain cell activity. Coupled fermentation-separation systems,
established in C. militaris (Guan et al., 2019), could be adapted
for yeast, especially using self-flocculating yeasts to enhance
efficiency. S. cerevisiae can achieve flocculation through the
function of FLO genes (Verstrepen et al., 2003), and expressing
the FLO1 gene from S. cerevisiae inK. phaffii has shown some degree
of flocculation (Sae-Tang et al., 2023). Flocculation can also increase
cell density, reinforcing high-density fermentation for yield
improvement.

4.3.4 Compartmentalized expression strategies
and host-specific metabolic engineering

In C. militaris, Cns1/2 form complexes localized on lipid
droplets (Xia et al., 2017), a phenomenon also observed in
heterologous expression in S. cerevisiae (Wang et al., 2024).
Although no such information was available for non-
conventional yeasts, compartmentalization can mitigate toxicity
of the product. Y. lipolytica’s natural advantage in lipid
production (Lazar et al., 2018) might partially explain its high
yield if Cns1-2 localizes on lipid droplets. K. phaffii, under
methanol induction, efficiently expands peroxisomes, suggesting a
potential for organelle-targeted enzyme localization via signal
peptide fusion (Ye et al., 2024).

For substrate conversion, similar metabolic modules and key
pathways are followed across host cells, necessitating PPP and
purine synthesis pathway enhancement to improve 3′-AMP
supply. Complex feedback inhibition of enzymes like PRPP
synthetase could be addressed by enzyme mutation or
introducing high-activity enzymes from other species (Huang Z.

Frontiers in Chemical Engineering frontiersin.org06

Li et al. 10.3389/fceng.2024.1446454

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2024.1446454


et al., 2022). ATP supply and consumption also require
consideration. Inducible promoters can temporally separate growth
and production phases. Tailored metabolic pathway optimization
strategies should be designed for different substrates, like
enhancing methanol metabolism in K. phaffii or incorporating
synthetic, more efficient methanol utilization pathways to
supplement with the current Xu-5-P cycle (Antoniewicz, 2019).

5 Other cell factories

Synthetic pathways for cordycepin production have been
successfully engineered in A. oryzae (Jeennor et al., 2023), where
the integration of Cns1-2 from C. militaris under constitutive
promoters resulted in a productivity of 564.64 ± 9.59 mg/L/day
and 98% cordycepin secretion. Similar to C. militaris, supplementation
with adenine, adenosine, or glycine could enhance production, with
adenine being the most effective precursor. This research provides a
food-grade platform for heterologous expression of cordycepin and
accommodates a broader range of carbon sources.

It is noteworthy that the aforementioned hosts predominantly
consist of eukaryotic cells, with limited progress observed in
prokaryotic platforms. Despite advantages in growth rates and
heterologous protein expression at a high titer, the complex
structure of Cns1 hampers its soluble expression in prokaryotic
microbes like E. coli (Xia et al., 2017) and B. subtilis (Duan
et al., 2022).

6 Summary

In conclusion, the advancement of synthetic biology promises
the development of more diverse chassis cells for cordycepin
production, expanding its application scenarios. Non-conventional
yeast cell factories hold great potential for achieving high yields and
offer advantages in separation and purification processes following
fermentation. Investigating the stress mechanisms of cordycepin in
host cells and enhancing stress tolerance through genetic and process
engineering is crucial for yield improvement. The task of establishing
high-throughput screening platforms using biosensing systems for
cordycepin production is urgent. Further research is needed to explore
genetic elements responsible for cordycepin synthesis from broader
sources, with mutation and screening facilitating compatibility with
the chosen chassis cell.
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