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Semiconductor photocatalysis, heterogeneous photo-Fenton and
heterogeneous photocatalytic persulfate activation are light-driven advanced
oxidation processes (AOPs) that have attracted much attention as promising
technologies in wastewater treatment. Nevertheless, their large-scale application
still faces several challenges, including the need to separate the catalyst from the
treated water. In this regard, composite catalysts made up of semiconductor and
magnetic materials have been understood as a potential alternative since the
resulting magnetic photocatalysts can be easily separated from the medium by
applying an external magnetic field. Interestingly, apart from facilitating the
photocatalyst retrieval, the magnetic components could also be involved in
the photocatalytic process. However, while the magnetic separation ability has
been widely highlighted, other functions of the magnetic constituents remain
obscure. This work, which covers the last 6 years of research, provides a
comprehensive review on the magnetically assisted photocatalytic
degradation of organic pollutants from water. Specifically, the magnetic
photocatalysts that are commonly employed for that purpose are presented
and the different roles of their magnetic constituents (roughly grouped as
retrieval assistance, active catalyst, conduction medium or activator) are
discussed. Furthermore, the importance of designing magnetic separators for
attaining the photocatalyst retrieval is also emphasized. Collectively, this study
could supply an avenue for developing magnetic photocatalysts that take
advantage of both roles of magnetic materials, which can contribute to
accomplish a more efficient pollutant degradation.
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1 Introduction

Global development and a better lifestyle come at the price of water pollution, which has
emerged as a serious environmental issue. Particularly, the industrialization, rapid
population growth and several anthropogenic activities (e.g., agriculture) have led to the
discharge of pollutants in aquatic ecosystems, thus degrading the quality of water resources
(Ahmadpour et al., 2020; Arman et al., 2021; Khosravani Goshtasb et al., 2022; Surana et al.,
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2022; Vale et al., 2022). A group of great interest is constituted by the
so-called Contaminants of Emerging Concern (CECs), which
comprise an extensive variety of micropollutants (including
pharmaceuticals, personal care products, biocides, pesticides,
herbicides, etc.); they have been detected in surface, ground and
drinking water (Chávez et al., 2020; Tsaridou and Karabelas, 2021;
Adeola et al., 2022). The adverse impacts that CECs pose on the
environment and human health cause that their presence in water
bodies raises concern worldwide. Hence, there is an urgent need to
develop strategies to remove these pollutants from water (Cheng
et al., 2021; Adeola et al., 2022; Morin-Crini et al., 2022).

Light-driven advanced oxidation processes (AOPs) have gained
great recognition for that purpose; they constitute a family of
technologies that are based on the production of highly reactive
oxygen species, including hydroxyl radicals (•OH) and sulfate
radicals (SO•−

4 ) to convert pollutants into small compounds that
are more easily degradable or biodegradable (Thomas et al., 2021;
Guo et al., 2022). Light-driven AOPs comprise several technologies,
such as photocatalysis, Fenton and Fenton-like processes or
persulfates activation, which have proved their potential for
degrading organic pollutants (Qi et al., 2016; Dewil et al., 2017;
Ahmadpour et al., 2020; Guo et al., 2022). Briefly, semiconductor
photocatalysis relies on the generation of electron-hole (e−/h+) pairs
when the material is exposed to light with energy equal to or greater
than their band gap (Eg). These photogenerated e−/h+ pairs can
migrate to the catalyst’s surface to form oxidizing species (•OH and
superoxide radicals, O•−

2 ) that play a primary role in the degradation
of organic matter (Sonu et al., 2019; Younis and Kim, 2020). Hence,
the selection of photocatalysts will focus on materials with
advantageous properties, such as: (i) visible-light activity, (ii)
photostability, (iii) non-toxicity, (iv) low recombination rate of
e−/h+ pairs, (v) biological and chemical inactivity, and (vi) easy
recovery from the purified water (Bhatkhande et al., 2002;
Behnajady et al., 2012; Bahmani et al., 2020; Bielan et al., 2021).
In other words, the dream photocatalyst should demonstrate both a
high photocatalytic ability under visible light irradiation and its easy
retrievability after use (Mahato et al., 2019; Kamali et al., 2022; Feng
et al., 2023). On the other hand, the heterogeneous Fenton process
involves the production of •OH radicals through the decomposition
of hydrogen peroxide via redox reactions involving iron ions (Fe2+/
Fe3+) at the interface of iron-based catalysts (Thomas et al., 2021;
Radji et al., 2022). The yield of the Fenton process can be improved
applying light, which leads to photo-Fenton process (Jiang Y. et al.,
2022; Machado et al., 2023; Wu et al., 2023). Specifically, the
inclusion of light irradiation boosts the performance of the
Fenton process by increasing the production of •OH radicals
through H2O2 photolysis and accelerating the regeneration of
Fe2+ ions (O’Dowd and Pillai, 2020; Ganiyu et al., 2022; Wu
et al., 2023; Bule Možar et al., 2024). In contrast to
photocatalysis and photo-Fenton, persulfate-based AOPs operate
on the principle of activating persulfates (e.g., peroxymonosulfate,
PMS, or peroxydisulfate, PDS) to produce SO•−

4 radicals. Different
strategies can be pursued for persulfate activation, including,
ultraviolet radiation, e−/h+ pairs from the photocatalyst, or
transition metals based catalysts (Kohantorabi et al., 2021; Guo
et al., 2022; Klu et al., 2022; Moradi et al., 2022; Oyekunle
et al., 2022).

In light of the concise overview of several AOPs previously
mentioned, it is evident that most of the research on the catalytic
degradation of pollutants has been carried out working with solid
semiconductors suspended in the aqueous medium; therefore, after
treatment, the catalysts must be efficiently separated from the liquid
(He et al., 2019; Bielan et al., 2021). Nevertheless, the retrieval and
recycling of the photocatalyst after the degradation process, which
are of paramount importance for making the process cost-effective,
represent an ongoing challenge that needs to be further explored
(Iglesias et al., 2016; Abdel-Wahed et al., 2020; Bielan et al., 2021).
Filtration and centrifugation have been used for the retrieval of the
photocatalyst. However, the high cost and energy consumption of
these additional operations call for the development of more
efficient strategies (Wu et al., 2019; Lendzion-Bielun et al., 2020).
If the photocatalytic material contains constituents of magnetic
character, implementation of magnetic field-based separation
provides a convenient avenue for accomplishing its successful
retrieval (Bielan et al., 2021). Hence, compositing semiconductors
with magnetic materials enables the successful retrieval of the
resulting magnetic photocatalyst by applying external magnetic
fields. Besides the advantageous separation and recovery of the
magnetic photocatalyst, it has been reported that the magnetic
component could participate in the photocatalytic degradation of
pollutants, thus enhancing the photocatalyst’s performance
(Lendzion-Bielun et al., 2020; Moradi et al., 2022). Given that the
magnetic constituent could fulfill several roles (roughly grouped as
retrieval assistance and photocatalytic), recognizing these functions
is of utmost importance for designing and synthesizing more
efficient photocatalysts. In a previous work of our research group
(Gómez-Pastora et al., 2017a), the use of magnetic photocatalysts for
water treatment was outlined and their promising possibilities for
that application were highlighted. However, such study was mainly
focused on the photocatalytic properties of these composites and
their synthesis methods, thus the photocatalytic function of the
magnetic materials was not investigated and the magnetic recovery
of the photocatalyst was slightly addressed.

Motivated by this lack of knowledge, the present work aims at
providing a comprehensive overview about the magnetically assisted
photocatalytic degradation of organic pollutants from water. We
specially focus on two key features of photocatalysis involving
magnetic photocatalysts, namely, unveiling the possible roles of
photocatalyst’s magnetic constituents (coarsely categorized as
retrieval assistance and photocatalytic), and progressing in the
efficient recovery of the photocatalyst after use. Firstly,
photocatalysts whose magnetic component exclusively contributes
to facilitate their retrieval are introduced. The following section
provides insights into the photocatalytic functions that the magnetic
materials could accomplish. Additionally, an overall picture of the
magnetic recovery of the photocatalysts is given, with a special
attention to the promising magnetic separators that could be used
for that purpose. Finally, we close this work highlighting several key
challenges and prospects of the performance and separation of
magnetic photocatalysts. Overall, the present study could pave
the way for the rational design of magnetic photocatalysts that
apart from being easily collected after use demonstrate enhanced
photocatalytic ability by benefiting from the photocatalytic roles of
the magnetic materials.
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TABLE 1 Studies focused on the retrieval assistance role of the magnetic constituents of photocatalysts.

Photocatalyst Magnetic
composite
morphology

Ms
(emu/g)

Eg
(eV)

Substrate Light
source

Performancea

(%)
Ref.

2D/2D TiO2-GO-
ZnFe2O4

GO layers combined with 2D
TiO2 and embedded with

ZnFe2O4

n.s ~2.85 Ibuprofen SSL ~99 Malinowska et al.
(2023)

2D TiO2-GO ~7.5 ~2.9 ~97

ZnFe2O4 ~11 ~1.5 ~60

TiO2/γ-Fe2O3 TiO2 nanoparticles on Fe2O3

edges
n.s n.s Dotarem UVC 29 Alvarez-Aguiñaga

et al. (2022)
TiO2 (−) 39

TiO2/SiO2@Fe3O4 Core (Fe3O4)-interlayer
(SiO2)-shell (TiO2)

Core (Fe3O4)/shell (TiO2)

n.s 1.96 Ketamine SSL 100b Chen et al. (2022)

TiO2/Fe3O4 n.s 32b

TiO2-P25 ~100b

Fe3O4/N-CXTi Core (Fe3O4)/shell (N-CXTi)
Core (Fe3O4)-interlayer
(SiO2)-shell (N-CXTi)

n.s 3.10 Acetaminophen UV ~67.7 do Carmo Batista
et al. (2022)

Fe3O4/SiO2/N-CXTi 3.22 ~99.2

ZnO/γ-Fe2O3/Bentonite γ-Fe2O3 and ZnO co-loaded
on bentonite

n.s n.s Ciprofloxacin SSL 93 Kamali et al. (2022)

ZnO/Bentonite (−) 95

Fe3O4/Bentonite n.s ~45

Fe3O4/BiVO4/CdS CdS on BiVO4 and Fe3O4 n.s n.s Tetracycline Vis 87.37 Xu et al. (2021)

BiVO4 (−) 2.41 56.57

CdS 2.23 23.18

Ag/ZnO/CoFe2O4 CoFe2O4 covered with
Ag/ZnO

n.s 3.21/3.43 Ibuprofen UV ~65 Lenzi et al. (2021)

SL ~21

Ag/ZnO (−) 2.95–3.29 UV ~90

defective Fe3O4@SiO2/d-
TiO2/Pt

Core (Fe3O4)-interlayer
(SiO2)-shell (TiO2)

n.s n.s Carbamazepine UV-Vis ~96 Dudziak et al. (2021)

Vis ~55

Fe3O4@SiO2-TiO2 Core (Fe3O4)-interlayer
(SiO2)-shell (TiO2)

n.s n.s Nitrofurazone UVA ~44 Smułek et al. (2021)

TiO2-P25 (−) ~100

Fe3O4@SiO2/d-TiO2-
Pt/Cu

Core (Fe3O4)-interlayer
(SiO2)-shell (TiO2-Pt/Cu)

n.s n.s Nitrophenol UV-Vis ~88 Bielan et al. (2021)

TiO2 (−) ~9

Fe3O4@SiO2/defective
TiO2-Pt/Cu

Core (Fe3O4)-interlayer
(SiO2)-shell (TiO2-Pt/Cu)

n.s 2.75 Phenol UV-Vis 22 Bielan et al. (2020)

Vis 11

Fe3O4@SiO2/defective
TiO2

(−) n.s UV-Vis 20

Vis 8

defective TiO2 n.s 2.70 UV-Vis 40

Vis 13

MnFe2O4@rGO@TiO2 MnFe2O4 (core), rGO (first
shell), TiO2 (second shell)

33 n.s Ofloxacin SL ~80 Abdel-Wahed et al.
(2020)

MnFe2O4@TiO2 n.s ~46

TiO2 (−) ~62

MnFe2O4 70 ~29

Fe3O4-TiO2 Core (Fe3O4)-shell (TiO2) n.s n.s Phenol UV 70 Lendzion-Bielun
et al. (2020)

TiO2-P25 (−) 100

(Continued on following page)
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2 Roles of the magnetic component of
photocatalysts on the degradation of
organic pollutants

To give an updated picture of the application of magnetic
photocatalysts in water treatment, literature in the field of
magnetic photocatalysts for CECs degradation was surveyed for
the last 6 years (2019–2024). Particularly, studies that use magnetic
photocatalysts for dyes or microplastics degradation, inactivation of

bacteria, or sewage disinfection have not been considered; on the
other hand, works focused on the removal of phenolic compounds
have been included, since they are typically used as model pollutants.
Additionally, only studies that offer valuable insight about magnetic
photocatalysts have been analyzed. The selected studies following
these criteria have been categorized in Tables 1–5 according to the
different roles of the magnetic constituent of the photocatalysts,
which have been schematized in Figure 1. From these Tables, it can
be noted that iron oxides (typically magnetite, Fe3O4) and ferrites

TABLE 1 (Continued) Studies focused on the retrieval assistance role of the magnetic constituents of photocatalysts.

Photocatalyst Magnetic
composite
morphology

Ms
(emu/g)

Eg
(eV)

Substrate Light
source

Performancea

(%)
Ref.

Ag/Fe,N-TiO2/Fe3O4@
SiO2

CuFe2O4 core coated with
WO3 and Ag

6.5 2.68 Ibuprofen,
benzophenone-3

UV ~57 Khan et al. (2019a)

g-C3N4/TiO2/Fe3O4@
SiO2

7.8 n.s ~100

BiOBr@Fe3O4@SiO2 8.5 2.74 >91

BiBr0.9I0.1/Fe3O4@SiO2 8 2.42 >94

BiOBr0.9I0.1/Fe3O4@
SiO2

Fe3O4@SiO2 (core@shell)
distributed in BiOBr0.9I0.1

microstructures

35 (SPM) 2.42 Ibuprofen,
benzophenone-3

Vis >99 Fung et al. (2019)

BiOBr0.9I0.1 (−) n.s >99

N-TiO2@SiO2@Fe3O4 Core (Fe3O4)-interlayer
(SiO2)-shell (N-TiO2)

8.69 (SPM) n.s Ibuprofen,
benzophenone-3,
carbamazepine

Vis >70c Kumar et al. (2019)

Fe3O4/BiOBr/BC BiOBr and Fe3O4 on BC
external surface

5.20 n.s Carbamazepine Vis 95.51 Li S. et al. (2019)

Fe3O4/BiOBr n.s ~70

BiOBr (−) ~90

NiFe2O4/TiO2/SiO2

(TMAC)
NiFe2O4/TiO2/SiO2 (core-

interlayer-shell) on activated
carbon support

6.5 (SPM) n.s Tannic acid UV 98.6 Li Y. et al. (2019)

aThe performance of the different photocatalysts tested in each study are for the same experimental time unless otherwise specified.
bDifferent experimental times for each photocatalyst.
cDifferent experimental times for each contaminant.

FIGURE 1
Schematic representation of the possible roles of the magnetic constituents of photocatalysts.
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(whose general formula is AFe2O4, where A is a divalent metal
cation) are the prime candidates for being used as magnetic
materials in magnetic photocatalysts (Singh et al., 2019;
Belessiotis et al., 2022; Grzegórska et al., 2023). Thereby,

magnetite and ferrites make up the photocatalysts that are
employed in 44% and 48% of the studies surveyed in this work,
respectively, which may substantiate the wide applicability of these
magnetic materials in the synthesis of magnetic photocatalysts. In

FIGURE 3
Schematics of the photocatalytic roles of themagnetic constituents of photocatalysts: (A) active catalyst, (B) conductionmedium, (C) component of
Fenton-like processes, and (D) PS/PMS activator.

FIGURE 2
Images of photocatalysts where the magnetic constituent is located: (A) in the core (transmission electron microscopy, TEM); reprinted with
permission from Dudziak et al. (2021), J. Environ. Chem. Eng (https://creativecommons.org/licenses/by/4.0/). or (B) deposited on the photocatalyst’s
surface (scanning electron microscope, SEM); reprinted with permission from Kamali et al. (2022), Molecules, (Creative Commons Attribution, CC BY,
license https://creativecommons.org/licenses/by/4.0/).
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TABLE 2 Studies focused on the active photocatalyst role of the magnetic constituents of photocatalysts.

Photocatalyst Magnetic
composite
morphology

Ms
(emu/g)

Eg
(eV)

Substrate Light
source

Performancea

(%)
Ref.

NiO/NiFe2O4 NiO is grown on NiFe2O4 n.s n.s 2,4-dichlorophenol Vis ~95 Shaheen et al.
(2024)

NiFe2O4 ~80

Ag-CuFe2O4@rGO Ag-CuFe2O4 on rGO sheets n.s 2.03 4-nitrophenol Vis 88.7 Sangeetha et al.
(2024)

Ag-CuFe2O4 2.27 ~37

CuFe2O4 2.76 14.5

g-C3N4/Fe3O4 Fe3O4 coated on g-C3N4

sheets
~19 1.7 Oxytetracycline UVA 99.8 Mahmoudi

et al. (2024)
g-C3N4 (−) 2.7 38.2

Fe3O4 n.s 2.23 29.5

NiFe2O4/g-C3N4 NiFe2O4 over g-C3N4

nanosheets
n.s ~2.6 2,4-dichlorophenol,

bisphenol A
Vis >40 Muhammad

et al. (2024)
g-C3N4 (−) ~2.81 ~10

TiO2/CuFe2O4/Ag CuFe2O4 particles on TiO2

surface
4.15 1.54 Naproxen UV–Vis 92.56 Osanloo et al.

(2024)
TiO2 (−) 3.16 66.58

CuFe2O4 11.2 1.48 37.8

MnFe2O4@Bi24O31Br10/
Bi5O7I

Core (MnFe2O4)-shell
(Bi24O31Br10/Bi5O7I)

32.40 n.s Levofloxacin, tetracycline,
triclosan

SSL >87 Liu M. et al.
(2024)

MnFe2O4 74.38 1.74 ~35

Fe3O4/ZnIn2S4 Fe3O4 distributed on
ZnIn2S4 surface

52.63 2.19 Gemifloxacin SSL 94.1 Sun et al.
(2024)

ZnIn2S4 (−) 2.43 85.5

Fe3O4 82.25 1.92 10.13

CMCD-TiO2@
Fe3O4@RGO

RGO encapsulated by
nanoparticles

7.83 1.75 Tetracycline Vis 83.3 Liu Z. et al.
(2024)

TiO2@Fe3O4@RGO 9.42 n.s ~70

TiO2@Fe3O4 n.s 2.14 ~62

TiO2 (−) 3.20 ~25

Ba0.5Sr0.5TiO3 Ba0.5Sr0.5TiO3 particles
surrounded by BaFe12O19

(−) 2.91 Tetracycline hydrochloride SSL 53 Han et al.
(2023)

BaFe12O19 48.96 1.29 41

Ba0.5Sr0.5TiO3/
BaFe12O19

4.79 2.57 82

NiFe2O4/Bi/Bi2WO6/
Bi5O7I

Bi and NiFe2O4 on
Bi2WO6/BiOI
microspheres

4.1 n.s Norfloxacin Vis 96.5 Jabbar et al.
(2023)

Bi/Bi2WO6/Bi5O7I (−) ~70

Fe3O4 (−) n.s 0.11 Tetrabromobisphenol A UV ~80 Kisała et al.
(2023)

Fe3O4 nanopowder 1.75 ~82

MnZnFe2O4@Ag3PO4 MnZnFe2O4 surface coated
with Ag3PO4

25.6 2.10 Phenol Vis 100 Huang et al.
(2023)

MnZnFe2O4 n.s 1.89 18.3

Ag3PO4 (−) 2.43 74.9

Sn3O4/SnFe2O4 SnFe2O4 attached on Sn3O4

flowers
10 2.09 Ciprofloxacin Vis 57 Jiang et al.

(2022)
Sn3O4 (−) 2.62 22

SnFe2O4 50 1.9 17

(Continued on following page)
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TABLE 2 (Continued) Studies focused on the active photocatalyst role of the magnetic constituents of photocatalysts.

Photocatalyst Magnetic
composite
morphology

Ms
(emu/g)

Eg
(eV)

Substrate Light
source

Performancea

(%)
Ref.

g-C3N4/NiFe2O4 NiFe2O4 distributed over
g-C3N4 sheets

n.s n.s Cephalexin Vis 99.3 Sharma et al.
(2022)

g-C3N4 (−) 2.66 38.2

NiFe2O4 n.s 2.5 44.3

ZnFe2O4/Bi7O9I3 Core (Bi7O9I3)-shell
(ZnFe2O4)

23.1 1.87 Levofloxacin, sulfadiazine
sodium, tetracycline

Vis >94b Zhao et al.
(2022)

Bi7O9I3 (−) 2.20 >61b

ZnFe2O4 61.1 n.s >72b

Ag3PO4/Fe3O4 Core (Fe3O4)-shell
(Ag3PO4)

n.s n.s Diclofenac sodium UVA ~57 Bortolotto et al.
(2022)

SL ~68

Ag3PO4 (−) 2.45 UVA ~59

SL ~53

Fe3O4 n.s n.s UVA ~1

SL ~0

3D-TiO2/magnetic BC
dots

Magnetic BC dots on 3D-
TiO2 microspheres

30.3 n.s Diazinon SL 98.5 Zahedifar and
Seyedi (2022)

3D-TiO2 (−) ~30

Magnetic BC dots 42.1 ~13.8

Mn0.6Zn0.4Fe2O4@
Zn0.95Mn0.05S

Core (Mn0.6Zn0.4Fe2O4)/
shell (Zn0.95Mn0.05S)

24.6 2.57 Phenol Vis 100 Niu et al.
(2022)

Zn0.95Mn0.05S (−) 2.92 ~58

Mn0.6Zn0.4Fe2O4 n.s 1.90 ~28

ZnFe2O4/Bi
0-Bi2MoO6 Bi0 and ZnFe2O4 on

Bi2MoO6 microspheres
6.45 1.97 Tetracycline hydrochloride Vis 86.32 Wang et al.

(2021)
Bi0- Bi2MoO6 (−) 2.32 ~58

ZnFe2O4 n.s 1.80 ~52

CeO2-TiO2/PANI/
NiFe2O4

TiO2 dispersed on PANI
layers; combined CeO2 and
NiFe2O4 on TiO2/PANI

0.004 (SPM) 1.6 Tetracycline hydrochloride Vis ~60 Xie et al. (2021)

CeO2-TiO2/NiFe2O4 n.s 1.8 ~80

CeO2-TiO2 (−) 2.4 ~60

Fe3O4/TiO2 Fe3O4 coated with TiO2 21 n.s Nitrobenzene UV 74 Kunarti et al.
(2021)

TiO2 (−) n.s 55

Ag-CuFe2O4@WO3 CuFe2O4 core coated with
WO3 and Ag

29.49 2.13 Gemfibrozil, tamoxifen UV ~82 Sayadi et al.
(2021)

CuFe2O4 62.57 n.s ~50

TiO2@ZnFe2O4/Pd Core (ZnFe2O4)-shell
(TiO2/Pd)

27.28 n.s Diclofenac SL 86.1 Ahmadpour
et al. (2020)

TiO2@ZnFe2O4 37.32 ~73

ZnFe2O4 42.57 ~49

CoFe2O4/Ag2MoO4 Ag2MoO4 on CoFe2O4

nanosheets
38.16 2.15–2.60 Benzyl alcohol Vis 82 Ghobadifard

et al. (2020)
CoFe2O4 48.85 1.34 12

Ag2MoO4 (−) 3 42

(Continued on following page)
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the upcoming subsections, the most commonly used magnetic
materials and their possible roles are presented and discussed.
Particularly, the function of the photocatalyst’s magnetic
components in the retrieval assistance is outlined in Section 2.1,
whereas Section 2.2 elaborates on the different photocatalytic roles
that these constituents could perform.

2.1 Improved separation and recovery of
photocatalysts

The primary focus of compositing photocatalysts with magnetic
materials lies in facilitating their recovery after use. Table 1 presents
the surveyed studies that solely exploit the retrieval assistance
function of the photocatalyst’s magnetic constituents. Particularly,
it encompasses studies that either do not demonstrate an
enhancement in the pollutant removal with the inclusion of
magnetic materials in the photocatalyst, or do not point out any
photocatalytic role of the magnetic components.

According to Table 1, Fe3O4 is the predominant magnetic
material used for photocatalyst retrieval in the vast majority of
the research works. More specifically, about 67% of the selected
studies employed Fe3O4 as magnetic source, while ~22% of
works have reported compositing photocatalysts with ferrites.
Additionally, it can be noticed that TiO2 has been extensively
utilized for degrading a wide variety of organic pollutants. This
fact may derive from the appealing features of this
photocatalysts, such as high photocatalytic activity and
chemical stability, environmental friendliness, low-cost,
corrosion resistance, and non-toxicity (Dharma et al., 2022;
Sepahvand et al., 2022). When TiO2 serves as the
photocatalytic component, the composite typically has a core-
shell structure as deduced from Table 1, where the magnetic

material constitutes the core and is encapsulated in a TiO2 shell.
In most of these studies, a silicon dioxide (SiO2) interlayer is
introduced between the magnetic core and TiO2 to prevent their
interaction and assist the stability of the magnetic core (Khan
et al., 2019a; Kumar et al., 2019; Sepahvand et al., 2022). An
example of the core-interlayer-shell structure is shown in
Figure 2A, where the coating of the magnetic core by a SiO2/
TiO2 shell can be distinguished. Alternatively, the magnetic
constituent can be loaded on the material surface. Figure 2B
depicts this configuration, showing Fe3O4 nanoparticles growing
on the surface of bentonite.

It is worth highlighting that for core-shell structures the
thickness of the photocatalysts layer (shell) strongly impacts
the efficiency of the photocatalytic and magnetic recovery
stages. Specifically, the thickness of the photocatalyst layer
should alter the diffusion layer, thus modifying the
photocatalytic activity; moreover, the thicker the photocatalyst
layer the worse magnetization of the material (Abdel-Wahed
et al., 2020). In this regard, it is interesting to note that although
the magnetic photocatalysts can be magnetically retrieved, they
exhibit lower saturation magnetization than pure magnetite or
ferrite, as evidenced in Table 1. Such magnetism reduction of the
composite is caused by the presence of non-magnetic materials
(Xu et al., 2021; Yilmaz et al., 2022). Hence, it is observed
regardless of the type of photocatalytic semiconductor or the
location of the magnetic material in the composite, that is in its
core (for core-shell structures) or on the surface (when magnetic
components are deposited on the material). For instance, Xu et al.
(2021) found that the saturation magnetization (Ms) was
drastically decreased when Fe3O4 (Ms = 85.9 emu/g) was
composited with non-magnetic CdS and BiVO4 in the Fe3O4/
BiVO4/CdS photocatalyst (Ms = 10.3 emu/g). Similarly, Kumar
et al. (2019) reported that the coating of N-TiO2 and SiO2 on

TABLE 2 (Continued) Studies focused on the active photocatalyst role of the magnetic constituents of photocatalysts.

Photocatalyst Magnetic
composite
morphology

Ms
(emu/g)

Eg
(eV)

Substrate Light
source

Performancea

(%)
Ref.

Bi2WO6-FeOx FeOx on Bi2WO6

microspheres
6.7 2 Norfloxacin LISL ~100 Karbasi et al.

(2019)
Bi2WO6 (−) 2.6 ~90

aThe performance of the different photocatalysts tested in each study are for the same experimental time unless otherwise specified.
bDifferent experimental times for each contaminant.

TABLE 3 Studies focused on the conduction medium role of the magnetic constituents of photocatalysts.

Photocatalyst Magnetic composite
morphology

Ms
(emu/g)

Eg
(eV)

Substrate Light
source

Performancea

(%)
Ref.

g-C3N4/BiOBr/Fe3O4 BiOBr distributed on g-C3N4 nanosheets;
Fe3O4 adhered on BiOBr and g-C3N4

~20 2.57 Tetracycline SSL 96 Preeyanghaa
et al. (2022)

g-C3N4/BiOBr (−) 2.84 ~88

CdS/Fe3O4/TiO2 Fe3O4 and CdS integrated with TiO2

particles
2.5 2.84 Ibuprofen Vis 94.2 Zhou et al.

(2020)
CdS/TiO2 (−) 2.76 73.6

aThe performance of the different photocatalysts tested in each study are for the same experimental time.
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Fe3O4 resulted in the considerable reduction of the saturation
magnetization of N-TiO2@SiO2@Fe3O4 (Ms = 8.69 emu/g) in
comparison to pure Fe3O4 (Ms = 43.94 emu/g). Despite the
evidenced magnetism reduction, Xu et al. (2021) demonstrated
the successful retrieval of the photocatalyst by applying an
external magnetic field. Thereby, although the reduction in the
saturation magnetization does not hinder the magnetic
separation of the photocatalyst, it involves an increase in the
time required to fulfill such retrieval (Fuziki et al., 2021).
Regarding the time to accomplish the magnetic recovery of
the catalysts, Kumar et al. (2019) experimentally demonstrated

that after 25 min the separation efficiency under a magnetic field
was 97%, thus supporting the attractive possibilities of the
magnetically facilitated recovery of photocatalysts.

Apart from having magnetic responsiveness, some of the
photocatalysts gathered in Table 1 are also superparamagnetic.
Particularly, Fung et al., 2019 and Kumar et al. (2019)
highlighted the superparamagnetic behavior of their BiOBr0.9I0.1/
Fe3O4@SiO2 and N-TiO2@SiO2@Fe3O4 photocatalysts, respectively.
The superparamagnetic nature is revealed by their S-shaped
magnetization curves, which are distinctive of superparamagnetic
materials (Zimmermann, G. et al., 2003; Abdel-Wahed et al., 2020).

TABLE 4 Studies focused on the synergy between photocatalysis and Fenton-like oxidation due to the magnetic constituents of photocatalysts.

Photocatalyst Magnetic
composite
morphology

Ms
(emu/g)

Eg
(eV)

Substrate Light
source

Performancea

(%)
Ref.

Cd/CdS-ZnFe2O4/α-
Fe2O3

ZnFe2O4/α-Fe2O3

nanoparticles on Cd/CdS
surface

n.s n.s Tetracycline Vis 91.72 Zhu et al. (2024)

Cd/CdS-ZnFe2O4/α-
Fe2O3 (w/o + H2O2)

76.09

CdS/Fe3O4@NGAM/
N-TiO2

Inner (CdS), middle
(Fe3O4), and outer
(N-TiO2) layers of

NGAM

27.67 2.71 Bisphenol A, tetracycline
hydrochloride

Vis 96b Wang et al. (2024b)

CdS@NGAM/N-TiO2 (−) n.s <83b

BC/FeOOH Layer of FeOOH
nanoneedles on BC

n.s n.s Tetracycline Vis 92 Xue et al. (2024)

BC/FeOOH (w/o H2O2) 70

FeOOH n.s 2.04 ~72

FeOOH (w/o H2O2) ~48

Fe₃O₄@PAA/SBA15 n.s n.s n.s Carbamazepine LED ~72 González-Rodríguez
et al. (2024)

Bisphenol A ~92

Estrone, 17a-
ethinylestradiol

~100

Estradiol ~94

Ag/s-(Co3O4/NiFe2O4) NiFe2O4 and Ag loadaded
on Co3O4 particles

8.34 (SPM) n.s Tetracycline Vis ~75 Kumar et al. (2022)

Co3O4/NiFe2O4 14.23 (SPM) ~8

Co3O4 (−) 2.15 ~3

NiFe2O4 n.s 2.20 ~8

CoFe2O4/SiO2/TiO2 Core (CoFe2O4)-
interlayer (SiO2)-shell

(TiO2)

3.52 3.06 2,4-dinitrotoluene UV 88.5 Sepahvand et al.
(2022)

CoFe2O4/TiO2 n.s n.s 70.68

TiO2-P25 (−) 3.2 60.02

WO3/Fe3O4 WO3 on Fe3O4 support 43.2 n.s Thiacloprid SSL 66.1 Banic et al. (2019)

WO3 (−) ~31

Fe3O4 5.4 ~28

Fe3O4/ZnO Fe3O4 and ZnO mixed in
the aggregates

4.3 (SPM) n.s Sulfamethoxazole,
trimethoprim,

erythromycin and
roxithromycin

UVA 100 Fernández et al.
(2019)

aThe performance of the different photocatalysts tested in each study are for the same experimental time unless otherwise specified.
bDifferent experimental times for each contaminant.
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TABLE 5 Studies focused on the coupling between PS/PMS and photocatalysis oxidation.

Photocatalyst Magnetic
composite
morphology

Ms
(emu/g)

Eg
(eV)

Substrate Light
source

+
PS/PMS

Performancea

(%)
Ref.

Co3O4@P-doped
g-C3N4/α-Fe2O3

Co3O4 over P-doped
g-C3N4/α-Fe2O3 surface

~0.021 1.74 Bisphenol-A Vis/PS 99.3 Rangaraj et al.
(2024)

Co3O4@P-doped g-C3N4 (−) 1.82 91

Fe3O4 (−) n.s 2.61 2,4-dichlorophenol Vis/PMS 100 Wang et al.
(2024a)

Vis ~15

MIL-53(Fe) derived
Fe3O4@C

Fe3O4 nanoparticles
interconnected by carbon

networks

37.74 1.3 Salicylic acid UVC/PS 95.45 Priyadarshini
et al. (2024)

UVC 12.35

MOF-derived CoFe2O4/
FeS2

FeS2 distributed around
octahedral MOF-derived

CoFe2O4

~52 n.s Tetracycline Vis/PS 85.4 Hao et al. (2024)

FeS2 (−) 1.22 68

MOF-derived CoFe2O4 n.s 2.52 70

MOF-derived CoFe2O4/
FeS2

~52 n.s Vis 31.4

AgBr/BiOBr/Fe3O4 Fe3O4 on AgBr/BiOBr
surface

4.54 2.88 Carbamazepine Vis/PMS 96.84 Tao et al. (2024)

AgBr/BiOBr (−) 2.90 ~85

Fe3O4 81.64 n.s ~25

CuFe2O4/MnO2 Core (CuFe2O4)-shell
(MnO2)

~4.8 1.44 Tetracycline, 2-
nitrophenol, ceftriaxone

sodium

Vis/PMS >85 Song et al.
(2024)

CuFe2O4 ~12.5 1.60 >68

TiO2/Ti3C2/MnFe2O4 MnFe2O4 in TiO2/Ti3C2 5 2.99 Carbamazepine and
Ibuprofen

SSL/PMS 100b Grzegórska et al.
(2023)

SSL ~100

TiO2/Ti3C2 (−) 3 >96

MnFe2O4 68 1.5 <15

SrTiO3/BaFe12O19 n.s 2.98 3.09 Tetracycline Vis/PMS 96.1 Feng et al.
(2023)

BaFe12O19 n.s n.s 16.3

SrTiO3 (−) 2.84 69

SrTiO3/BaFe12O19 2.98 3.09 Vis 32

BaFe12O19 n.s n.s ~3

SrTiO3 (−) 2.84 19.3

ZnFe2O4/A-MoS2 ZnFe2O4 on A-MoS2
nanosheets

13.49 n.s Carbamazepine Vis <10 Zheng et al.
(2023)

ZnFe2O4/A-MoS2 Vis/PMS 100

ZnFe2O4 75.26 1.75 38.4

A-MoS2 (−) 1.67 43.1

ZnO@CoFe2O4@CNT CoFe2O4 and ZnO deposited
over MWCNT

28 2.3 Cefixime UVC/PMS 100 Tian et al. (2023)

UVC 46

Spinel ferrite@g-C3N4 Spinel ferrite on planar
g-C3N4

32 2.4 Biphenol A UVC/PMS 100 Moradi et al.
(2022)

UVC ~58

g-C3N4 (−) 2.8 ~8

(Continued on following page)
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Specifically, this type of materials exhibits low retentivity, and thus
residual magnetic forces do not exist after removing the external
magnetic field, which enables the quick redispersion of the
photocatalyst once the magnetic field is ceased (Moniriyan et al.,
2021; Xie et al., 2021). Superparamagnetism occurs in ferromagnetic
and ferrimagnetic nanoparticles when their diameter falls below a
critical threshold, which ranges from 3 to 50 nm depending on the
material (Marghussian, 2015; Gómez-Pastora et al., 2017b).
Superparamagnetic materials are attractive for water treatment
applications due to the reversibility of their magnetic
interactions. As a result, in absence of magnetic fields these
materials can be redispersed in the aqueous media. Thereby, the
agglomeration of the photocatalysts, which causes the reduction of
its surface area, is prevented, thus demonstrating the possibility of
being reused (Khan et al., 2019b; Abdel-Wahed et al., 2020; Zhou
et al., 2020).

The features of magnetic photocatalysts outlined throughout
this subsection support the promising prospects of integrating
semiconductors with magnetic materials, since the resulting
composite can be efficiently recovered by magnetic means.
However, when designing magnetic photocatalysts it is crucial to
take into account not only their easy recovery after use but also their
efficiency to degrade the target pollutants. The photocatalyst’s
magnetic constituents could have different effects on the
contaminant removal. Thereby, they could either enhance the
efficiency of photodegradation, which will be comprehensively
discussed in the next section, or negatively affect it. In this
regard, Smułek et al. (2021) and Lendzion-Bielun et al. (2020)
conducted comparative studies on the ability of Fe3O4@SiO2-
TiO2 and Fe3O4-TiO2, respectively, to degrade target
contaminants against TiO2-P25. It is noteworthy that Smułek
et al. (2021) and Lendzion-Bielun et al. (2020) synthesized the
TiO2 of their composites, which could compromise the direct
comparison with TiO2-P25 since they are different materials.
Furthermore, the differences in the performance of the composite
material could be also attributed to a lower catalyst concentration
than that used for pristine catalyst. Despite the challenges for this
comparison, Smułek et al. (2021) reported that while TiO2-P25 was
able to almost completely remove nitrofurazone in 60 min, only 44%
of the pollutant was degraded during the same time period using

Fe3O4@SiO2-TiO2. On the other hand, Lendzion-Bielun et al. (2020)
observed that 100% phenol conversion could be achieved using both
TiO2-P25 and Fe3O4-TiO2. However, the former required 200 min
and the later 300 min for achieving the same degradation. Although
TiO2-P25 demonstrated an efficient performance, Smułek et al.
(2021) and Lendzion-Bielun et al. (2020) concluded that the easy
separation of magnetic photocatalysts from the treated media by
applying magnetic fields supports the interest in their use for
pollutant degradation. Hence, although pristine TiO2 could yield
a higher conversion of the contaminant, its challenging recovery
after use ultimately hinders its practical application.

Overall, the main interest in integrating semiconductors with
magnetic materials lies in enhancing the recovery of the resulting
composite after use. In this context, the attractive potential of the
magnetically assisted photocatalysts recovery overcomes the
possible reduction in degradation efficiency of magnetic
photocatalysts. According to the studies herein surveyed,
Fe3O4 stands out as the predominantly used magnetic material
when the purpose of incorporating magnetic materials into the
photocatalysts is solely to enhance their retrieval. In this regard,
efficient magnetic separation has been demonstrated despite the
lower saturation magnetization of the composite photocatalyst
compared to the pure magnetic materials. Additionally, magnetic
photocatalysts exhibiting a superparamagnetic behavior have
been synthesized, which is especially attractive for the
successful re-use of the photocatalysts after their
magnetic retrieval.

2.2 Enhanced activity of photocatalytic
materials with magnetic components

As it has been widely highlighted in the literature, the introduction
of magnetic components to the photocatalysts make it possible their
easy separation from the treated medium. However, the magnetic
constituents not only play a pivotal role in facilitating the recovery
of the photocatalyst, but they could also be involved in the
photodegradation of contaminants. Recognizing the different
photocatalytic-based roles the magnetic materials that constitute the
composite can play in the process may be of paramount interest for

TABLE 5 (Continued) Studies focused on the coupling between PS/PMS and photocatalysis oxidation.

Photocatalyst Magnetic
composite
morphology

Ms
(emu/g)

Eg
(eV)

Substrate Light
source

+
PS/PMS

Performancea

(%)
Ref.

Fe3O4@CeO2@ BiOI Fe3O4 surface coated with
CeO2 and BiOI

20.2 (SPM) 1.46 Sulfamethoxadole UVA/PMS 97 Kohantorabi
et al. (2021)

UVA ~78

CeO2@BiOI — n.s UVA/PMS ~89

UVA ~80

BiOCl@Fe3O4 n.s n.s n.s Atenolol SSL 38.5 Wu et al. (2019)

SSL/PMS 70.2

aThe performance of the different photocatalysts tested in each study are for the same experimental time unless otherwise specified.
bDifferent experimental times for each contaminant.
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enhancing the efficiency of the degradation of pollutants. Therefore, in
this section, the roughly classified as photocatalytic functions that the
magnetic constituents can fulfill, which include (i) active catalyst, (ii)
conduction medium, (iii) component of Fenton-like processes and (iv)
persulfate (PS)/PMS activator, are presented and discussed. A general
representation of these functions is depicted in Figure 3. It can be noted
that for all roles the magnetic photocatalyst comprises at least one
material of non-magnetic character (i.e., the semiconductor) and a
magnetic material. The magnetic constituent can be involved in the
formation of radicals through two different strategies. On the one hand,
it can generate •OH or O•−

2 radicals when it acts as active catalyst
(Figure 3A), component of Fenton-like process (Figure 3C) or PS/PMS
activator (Figure 3D). Alternatively, themagneticmaterial can also serve
as conduction medium (Figure 3B) of e− between semiconductors; in
this scenario, the semiconductors are the photocatalyst’s constituents
responsible for the generation of radicals. An in-depth description of the
different photocatalytic roles that magnetic materials can exhibit is
provided in the following subsections.

2.2.1 Magnetic constituent as active catalyst
When the magnetic components that constitute the

photocatalyst can be photoexcited to generate e− and h+ in their
conduction (CB) and valence (VB) bands, respectively, and as a
result the degradation efficiency is enhanced, they act as
photocatalysts (Table 2). For instance, Wang et al. (2021), Zhao
et al. (2022) and Ahmadpour et al. (2020) reported that ZnFe2O4 was
able to yield degradation efficiencies exceeding 50% of the target
pollutants; similarly, Sayadi et al., 2021 stated that CuFe2O4 was able
to degrade 47% of gemfibrozil. According to Table 2, which includes
the studies where the magnetic component acts as photocatalyst,
ferrites are extensively used as magnetic materials. This observation
may be in line with the exploitation of ferrite photocatalysts for the
removal of organic pollutants that has been reported in the literature
(Gupta et al., 2020). Particularly, ferrites have garnered interest as
photocatalysts due to their narrow band gap, enabling them to
harness visible light. Additionally, ferrites have a tunable band gap
since depending on the ferrite (e.g., Zn-, Mn-, Co-ferrite, etc.) they
exhibit a different band gap (<2.5 eV) and band positions (Ma and
Liu, 2021; Cheng et al., 2023; Zheng et al., 2024).

Additionally, ferrites can be composited with semiconductor
materials, which results in an improved photocatalytic performance
(Casbeer et al., 2012; Kefeni and Mamba, 2020; Wu and Song, 2023).
In this context, the magnetic materials generally reduce the band gap
and/or inhibit the recombination of the photogenerated e−/h+ pairs
mainly due to the formation of Z- or S-scheme heterojunctions with
the semiconductors. Hence, the photocatalytic activity typically
enhances when magnetic materials are introduced to the
composite and work as photocatalysts. For instance, Wang et al.
(2021) reported that the efficiency to degrade tetracycline
hydrochloride upon visible light irradiation of the ZnFe2O4/Bi

0-
Bi2MoO6 composite they prepared was around 87%, which is
considerably higher than that for pure Bi0-Bi2MoO6 (52%). They
explained that the introduction of ZnFe2O4 decreases the band gap
(from 2.32 eV for Bi0-Bi2MoO6 to 1.97 eV ZnFe2O4/Bi

0-Bi2MoO6),
broadens the spectral absorption range of the photocatalyst, and
results in the formation of a Z-scheme heterojunction to facilitate
the charge separation. Particularly, they suggested that both
Bi2MoO6 and ZnFe2O4 where excited under visible light

irradiation to produce e− and h+. The photogenerated e− of
Bi2MoO6 could migrate to the nano-Bi0 and ZnFe2O4. Hence,
nano-Bi0 and ZnFe2O4 can reduce O2 to O•−

2 , which is involved
in tetracycline degradation. They explained that the h+ of ZnFe2O4

capture the e− of Bi2MoO6 that migrate to ZnFe2O4 surface. Thereby,
the recombination of the own ZnFe2O4’s e

−/h+ pairs is inhibited and
thus, highly reducing e− are retained in ZnFe2O4’s CB. On the other
hand, the h+ of Bi2MoO6 produce

•OH, which also takes part in the
removal of the pollutant. They concluded that the formation of the
Z-scheme heterojunction between ZnFe2O4 and Bi2MoO6 promotes
the separation of the photogenerated e−, which ultimately led to an
enhancement of the catalyst’s activity. Similarly, Sharma et al. (2022)
found that the efficiency in the degradation of cephalexin under
visible light irradiation increased from 38.2% for pristine g-C3N4 to
99.3% for g-C3N4/NiFe2O4, which form a S-scheme heterojunction.
They ascribed this observation to the fact that the compositing of
g-C3N4 and NiFe2O4 reduces recombination, improves visible light
activity and charge migration on the heterojunction. According to
their proposed catalytic mechanism, upon light irradiation the e− of
both g-C3N4 and NiFe2O4 are excited to generate e−/h+ pairs. Then,
the e− of NiFe2O4’s CB can be transferred to the g-C3N4’s VB
through an S-scheme mechanism. Thereby, the protected e− in
g-C3N4 and h+ in NiFe2O4’s VB are involved in the production
of the active species (O•−

2 and •OH radicals) for degrading the target
antibiotic.

2.2.2 Magnetic constituent as conduction medium
The magnetic components can also work as a conduction

medium for the photogenerated e− so that they are effectively
transferred between the semiconductors that constitute the
photocatalytic composite. As noticed from Table 3, only Zhou
et al. (2020) and Preeyanghaa et al. (2022) have raised this role
of the photocatalyst’s magnetic constituent. More specifically, Zhou
et al. (2020) and Preeyanghaa et al. (2022) reported that Fe3O4 can
serve as an electron mediator to foster the building of Z-scheme
heterojunctions. This role stems from the fact that Fe3+ and Fe2+ in
Fe3O4 can act as recombination centers to capture photogenerated
e− and h+ (Zhou et al., 2020). Particularly, Zhou et al. (2020)
indicated that the following reactions could be involved when
Fe3O4 acts as conduction medium:

F3O4 e−( ) + Fe3+ → Fe2+ (1)
F3O4 h+( ) + Fe2+ → Fe3+ (2)

In this context, Preeyanghaa et al. (2022) proposed a
photocatalytic reaction mechanism for g-C3N4/BiOBr/Fe3O4

under simulated solar light irradiation that highlights the role of
Fe3O4 as the conduction medium to transfer the CB e− of BiOBr to
the heterojunction interface; subsequently, these e− are recombined
with the VB h+ of g-C3N4. This way, the recombination of the
photogenerated e−/h+ pairs in BiOBr and g-C3N4 is avoided, thus
leading to the accumulation of h+ in the VB of BiOBr and e− in the
CB of g-C3N4. These accumulated h+ and e− are involved in the
production of •OH and O•−

2 , respectively, which could effectively
degrade the target pollutant, that is, tetracycline (Zhou et al., 2020;
Preeyanghaa et al., 2022). Similarly, Zhou et al. (2020) also pointed
out the role of Fe3O4 as electron mediator in the CdS/Fe3O4/TiO2

composite they prepared. Zhou et al. (2020) explained that Fe3O4
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could boost the formation of the Z-scheme heterojunction, thus
avoiding the recombination of the photogenerated e−/h+ pairs.
Particularly, they suggest that the e− and h+ in the TiO2’s CB and
CdS’s VB, respectively, would be transferred to Fe3O4 and
recombined. Thereby, the h+ on the VB of TiO2 and the e− on
the CB of CdS could be involved in the generation of •OH, which can
oxidize the target pollutant. Although the works by Preeyanghaa
et al. (2022) and Zhou et al. (2020) offer valuable insights, there is a
need for comprehensively elucidating the mechanism underlaying
the conduction medium role of the magnetic constituents, since the
scarcity of research in that field causes that a complete picture about
this role cannot be accurately provided.

2.2.3 Magnetic constituent as element of Fenton-
like processes

The Fe ions that constitute the magnetic materials can be also
involved in Fenton reactions, leading to the synergistic degradation
of contaminants due to photocatalytic and Fenton oxidation.
Combining Fenton reaction with light irradiation results in
photo-Fenton processes, which exhibit higher degradation rate
compared to classical Fenton processes (Jiang Y. et al., 2022;
Machado et al., 2023; Bule Možar et al., 2024). Particularly, light
irradiation enhances the process performance by increasing the
generation of •OH radicals through the decomposition of H2O2

and promoting the regeneration of Fe2+ ions (O’Dowd and Pillai,
2020; Ganiyu et al., 2022; Machado et al., 2023; Wu et al., 2023).
Thereby, the photo-Fenton process involves the following reactions:

Fe2+ +H2O2 → Fe3+ +OH− +OH• (3)
Fe3+ +H2O + hν → Fe2+ +OH• +H+ (4)

H2O2 + hν → 2OH• (5)

Table 4 collects studies that investigate the degradation of
pollutants by coupling semiconductor photocatalysis with the
photo-Fenton process involving the magnetic constituent of the
photocatalysts. It can be noticed that while visible light is typically
used in these systems, UVA irradiation has also been employed as
the light source. Moreover, Fe3O4 is a magnetic material added in the
composite when the Fenton-like process contributes to the
pollutants degradation, together with photocatalysis. Although
Fe3O4 is a traditional Fenton counterpart, photocatalysts
containing ferrites, such as CoFe2O4, can also be involved in this
process for generating ·OH radicals as it has been suggested
(Preeyanghaa et al., 2022; Sepahvand et al., 2022). The use of
magnetic photocatalyst in the photo-Fenton removal of
contaminants was reported by Banic et al. (2019), who
investigated the efficiency for degrading thiacloprid of WO3/
Fe3O4 under simulated solar radiation in the presence and
absence of H2O2. They found that the pollutant removal
increased from 5% (WO3/Fe3O4) to 65% (WO3/Fe3O4/H2O2)
when H2O2 was present. They reasoned that besides the
influence of the coupling effect of WO3 and Fe3O4, the
heterogeneous photo-Fenton process also affects the degradation
efficiency. On a similar note, Sepahvand et al. (2022) proposed that
the magnetic constituent of their CoFe2O4/TiO2/SiO2 photocatalyst
could also take part in the degradation of 2,4-dinitrotoluene.
Particularly, they proposed a mechanism, where apart from the
photogenerated e− and h+ in TiO2, CoFe2O4 could be also involved

in the generation of •OH radicals to degrade the pollutant by the
reaction of their Fe2+ ions with H2O2. However, exploiting the
Fenton-implication role of CoFe2O4 in the photocatalyst
prepared by Sepahvand et al. (2022) may prove challenging due
to its core-interlayer-shell configuration. More specifically, CoFe2O4

is coated by TiO2@SiO2 and constitutes the photocatalyst’s core.
Hence, the photocatalyst’s magnetic constituent in the study of
Sepahvand et al. (2022) is not in contact with H2O2. This fact
contrasts with the work by Banic et al. (2019) where H2O2 was
decomposed on the surface of the iron oxide. On the other hand, it
should be emphasized that some studies presented in Table 4
examine how the solution pH impacts the degradation efficiency
of pollutants. This investigation may derive from the fact that
Fenton’s reactions are reported to be affected by the pH of the
media, and thus, identifying the conditions that yield an optimum
system performance is of utmost importance (Jung et al., 2009; Chen
et al., 2023). For instance, Xue et al. (2024) explored the degradation
of tetracycline using the Biochar/FeOOH photocatalysts at several
pH values in the range from 3 to 11. They found that increasing the
pH resulted in an enhancement of tetracycline degradation (92% for
pH = 9 and 11, and ~82% for pH = 3). Particularly, Xue et al. (2024)
ascribed the diminished degradation efficiency under acidic
conditions to the inhibition of the Fe2+/Fe3+ cycle by H+. Another
key insight from the study by Xue et al. (2024) is ability of the
magnetic component (FeOOH) to degrade the pollutant under light
exposure when it is not composited with the biochar. Specifically,
Xue et al. (2024) reported degradation efficiencies for FeOOH of
48% and 72% in absence and presence of H2O2, respectively. From
Table 4, it can be noted that this ability for removing tetracycline is
comparable to that reported by Kumar et al. (2022), who obtained
75% removal of tetracycline in a photo-Fenton process that uses in
situ generated H2O2 and Ag/s-(Co3O4/NiFe2O4) as photocatalyst.
The similar photodegradation ability of FeOOH compared to other
photocatalysts evidences the potential of FeOOH to be used alone
for the removal of target contaminants.

2.2.4 Magnetic constituent as activator of
persulfate or peroxymonosulfate

The above-mentioned photocatalytic-based roles of the magnetic
materials are related to traditional AOPs relaying on •OH radicals.
However, AOPs based on SO•−

4 radicals have also been considered an
effective oxidation method for the degradation of pollutants from
aqueous matrices (Yu et al., 2020; Li et al., 2022). In particular, SO•−

4

possesses longer half-life (30–40 µs), high redox potential (2.5–3.1 V),
and the possibility of being applied in a wide range of pH (2–11)
compared to •OH radicals. SO•−

4 is produced from the activation of PS
(S2O2−

8 ) or PMS (HSO−
5 ), which is achieved through several strategies,

including, ultraviolet light, transitionmetal ions, metal oxides or e−/h+

pairs from the photocatalyst (Wu et al., 2019; Kohantorabi et al., 2021;
Moradi et al., 2022). Examples of the reactions that take place for the
activation PS or PMS by light (Eqs 6, 7) and e− from the photocatalyst
(Eqs. 8, 9) are given below:

HSO−
5 + hν → SO•−

4 +OH• (6)
SO•−

4 +H2O → SO2−
4 +OH• +H+ (7)

Photocatalyst + hν → e− + h+ (8)
HSO−

5 + e− → SO•−
4 +OH− (9)
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On the other hand, PMS activation through Fe could undergo
reactions 10 and 11, which are analogous for other transition metals
such as Mn and Co (Kohantorabi et al., 2021; Grzegórska et al.,
2023). It is worth pointing out that although these reactions do not
directly involve light they have been here included since transition
metals constitute the photocatalyst, and thus the reactions can occur
in the photocatalytic system.

Fe3+ +HSO−
5 → Fe2+ + SO•−

5 +H+ (10)
Fe2+ +HSO−

5 → Fe3+ + SO•−
4 +OH− (11)

In this context, the activation of PMS or PS coupled to
semiconductor photocatalysis has been reported (Table 5). For
instance Grzegórska et al. (2023), Moradi et al. (2022), and
Kohantorabi et al. (2021) proposed a mechanism for the
photocatalytic degradation of a different contaminant over TiO2/
Ti3C2/MnFe2O4/PMS, SCF/g-C3N4/PS/UVC, Fe3O4/CeO2/BiOI/
UVA/PMS processes, respectively. Particularly, Grzegórska et al.
(2023) posed that PMS could be activated by Mn and Fe in their
system and determined the rate-limiting steps in the PMS activation
process. On the other hand, Moradi et al. (2022), and Kohantorabi
et al. (2021) suggested that apart from the Fe ions, the
photogenerated e− can also activate PS and PMS, respectively, to
generate SO•−

4 radicals. Thereby, Moradi et al. (2022) explained that
PS activation to produce SO•−

4 can be fulfilled by the Fe and Co ions
of SCF, the photogenerated e− in the conduction band of g-C3N4, or
the photolysis of PS via UV light. Additionally, Kohantorabi et al.

(2021) determined that the photogenerated e− as well as Fe2+/Fe3+

and Ce4+/Ce3+ redox cycles can also be involved in the PMS
activation. In view of the studies of Grzegórska et al. (2023),
Moradi et al. (2022) and Kohantorabi et al. (2021), it may be
considered that the magnetic component of the photocatalyst can
also be an activator of PS/PMS through the ions (e.g., Fe ions) that
constitute it. Additionally, it is worth mentioning that both Fe3O4

and ferrites have been employed for preparing photocatalysts to
degrade contaminants via PMS/PS-based AOPs. However, as seen in
Table 5, ferrites have been predominantly used in most of the works
that exploit this function of the photocatalyst’s magnetic
component. This preference may be attributed to the attractive
features of ferrites coupled with the presence of ions (including,
Fe, Mn, Co) that could act as PS/PMS activators (Moradi et al., 2022;
Grzegórska et al., 2023; Tian et al., 2023; Zheng et al., 2024). In this
regard, Song et al. (2024) found that the ferrite CuFe2O4 yielded
degradation efficiencies exceeding 65% for the three contaminants
they investigated (tetracycline, 2-nitrophenol, ceftriaxone sodium)
within the CuFe2O4/PMS/Vis system, which demonstrates that
CuFe2O4 alone exhibits high effectiveness in the degradation of
pollutants. Similarly, Hao et al. (2024) reported 70% tetracycline
removal by the MOF-derived CoFe2O4/PS/Vis system, which also
substantiates the ability of MOF-derived CoFe2O4 for degrading
pollutants. In contrast to what is reported in these works, Feng et al.
(2023) found that BaFe12O19 hardly degrades tetracycline (16.3%)
over the BaFe12O19/PMS/Vis system; they explained that BaFe12O19

weakly activates PMS due to the fast recombination of the

FIGURE 4
Schematic diagram of (A) HGMS, and (B) OGMS with the quadrupole magnetic configuration (Adapted from González-Fernández et al. (2021), Ind.
Eng. Chem. Res. https://creativecommons.org/licenses/by/4.0/). (C) Example of velocity fields predicted by CFD simulations in a serpentine channel;
Reprinted from Saif et al. (2024), Desalination (https://creativecommons.org/licenses/by-nc-nd/4.0/).
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photogenerated charges in the ferrite. On the other hand, it can be
also noted from Table 5 that visible light has been used in most of the
studies for promoting pollutant removal. Additionally, UVC and
UVA light irradiation have been employed to assist the
degradation process.

Collectively, the incorporation of magnetic materials to the
photocatalyst not only benefits the retrieval of the composite
from the treated medium but could also enhance the
photocatalytic degradation of contaminants. Specifically, the
magnetic materials can play different roles, namely, active
catalyst, PS/PMS activator, conduction medium and activation of
Fenton-like oxidation, apart from assisting the magnetic recovery of
the photocatalyst as it has been discussed throughout this section. It
is worth mentioning that the magnetic constituent can exclusively
act as photocatalyst, as proposed, for instance in the works of Huang
et al. (2023), Jiang X. et al. (2022), Wang et al. (2021), and Karbasi
et al. (2019). Alternatively, it can combine this function with its role
as PMS activator or component of the Fenton-like oxidation as
suggested by Tian et al. (2023), Moradi et al. (2022), and Banic et al.
(2019), to name a few.

3 Design of magnetic separators for
photocatalyst recovery

Throughout the previous sections the attractive prospects of
using magnetic photocatalysts for degrading organic pollutants
have been comprehensively outlined. It is noteworthy that
although integrating semiconductors and magnetic
components could enhance the photocatalytic performance,
the primary focus of compositing these materials lies in
facilitating their recovery after use. Nevertheless, from the
numerous works surveyed herein, only a limiting few have
assessed the ability of magnetic photocatalysts for being
magnetically recovered. This preliminary test is typically based
on placing a permanent magnet next to a vial containing a sample
of the suspended magnetic photocatalysts; after a certain time
period, a clear solution, with the particles retained in the vial wall
close to the magnet is obtained (Fung et al., 2019; Wang et al.,
2021; Grzegórska et al., 2023). While this methodology enables
ascertaining whether the photocatalyst can be magnetically
retrieved, the time required for recovering the magnetic
photocatalyst from the entire volume of the medium, which is
crucial for determining the efficiency of the magnetic recovery
stage, is not estimated. On a similar note, the design of magnetic
separators for addressing the recovery of magnetic photocatalysts
remains an area that has received limited attention. Particularly,
only Kumar et al. (2019) and Fernández et al. (2019) have
addressed both the recovery of the composites from the total
volume of the medium and the use of a specific magnetic
separation system to perform such retrieval. Specifically,
Kumar et al. (2019) employed an electromagnetic separation
unit, where the retrieval of the composites due to the action of
the applied electromagnetic field (~200 mT) was accomplished.
Additionally, they also determined the efficiency of the
electromagnetic separation unit for retrieving the composite as
a function of time by measuring the turbidity of supernatant
samples taken at different times. Fernández et al. (2019) utilized a

magnetic photocatalytic reactor to carry out the
photodegradation of the pollutants followed by the magnetic
retrieval of the photocatalysts. The magnetic separation unit
features an alternate polarity magnetic bar, where the
magnetic photocatalyst was trapped after use. Thereby, the
research conducted by Kumar et al. (2019) and Fernández
et al. (2019) provide a more realistic picture about the use of
magnetic photocatalysts by integrating the photocatalytic
degradation step and the subsequent magnetic recovery.

Although magnetic separators have not been typically used in
the studies covered by the present work, the efficiency of several
systems for retrieving magnetic materials has been evidenced in
existing literature. For instance, high gradient magnetic separators
(HGMSs) have been applied in several fields for the separation of
magnetic solids, including wastewater treatment (Baik et al., 2012;
Gómez-Pastora et al., 2017a, Gómez-Pastora et al., 2017b; Kheshti
et al., 2019). Briefly, HGMSs comprise batch filters filled with
ferromagnetic filaments (Figure 4A) and can use different sources
for generating the magnetic field. When an external magnetic field is
applied, these filters trap the magnetic materials, thus obtaining a
clean solution; subsequently, the magnetic materials can be
recovered from the HGMSs by switching off the magnetic field.
Despite the high efficiency provided by HGMSs, they pose several
drawbacks, such as the undesired entrapment of non-magnetic
solids or the possible particle aggregation, which could limit their
practical application (Leong et al., 2016; Gómez-Pastora et al.,
2017b). Another alternative for addressing the retrieval of
magnetic materials consists of the use of open gradient magnetic
separators (OGMSs), which are not based on ferromagnetic
matrices. In OGMSs, magnetic fields are generated by magnets
conveniently arranged around the separator walls. OGMSs
provide high separation efficacy; however, their lower magnetic
gradients compared to HGMSs represent an important drawback.
In this regard, magnetic gradients may be considerably increased by
using powerful magnets in quadrupole configuration, which is one
of the most common magnet arrangements. Particularly, in the
continuous OGMSs with the quadrupole magnet configuration,
magnetic materials and the clean solution are obtained at
different outlets of the system under a magnetic field as shown in
Figure 4B (Gómez-Pastora et al., 2017a; Gómez-Pastora
et al., 2017b).

The design of magnetic separators requires understanding the
physics underlying photocatalysts retrieval. Particularly, magnetic
separation is driven by the magnetic force exerted on magnetic
photocatalysts (Fm), which is described by the following expression
(Furlani, 2006; Furlani, 2010):

Fm � μ0Vp Mp · ∇( )Ha (12)
where, µ0 denotes the permeability of free space, Vp and Mp stand
for the particle volume and magnetization, and Ha represents the
applied magnetic field intensity (Furlani, 2006, Furlani, 2010).

According to the Eq. 12, Fm is proportional to the volume and
saturation magnetization of the photocatalytic particle. Hence,
magnetic recovery is favored for large particles. However,
increasing the particle size causes the reduction of its surface to
volume ratio, thus negatively affecting the efficacy of the
photocatalyst. On the other hand, the higher the particle
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saturation magnetization the greater the Fm that promotes its
retrieval from the treated solution. Nevertheless, the saturation
magnetization decreases when the magnetic constituent is
compound with semiconductors, as it has been previously
discussed (Gómez-Pastora et al., 2017b; Torrejon et al., 2020). In
this context, it becomes evident that a trade-off between the factors
influencing photocatalytic degradation and magnetic separation
should be achieved so that both of them could be optimized.
Additionally, desired magnetic separators will ensure complete
retrieval of photocatalyst while providing high-volumetric
throughput. To design systems that fulfill these requirements,
simulation software could be employed, since they can provide
insight into the magnetic and hydrodynamic conditions in the
separators (Figure 4C). In this regard, computational fluid
dynamics (CFD) techniques enable modeling the separation
process prior to the system fabrication, and their potential for
contributing to the design of magnetic separators have been
already demonstrated. While CFD offers numerous benefits, it is
important to recognize that the computational demand of the
simulations could limit the complexity of the separators to be
simulated (Gómez-Pastora et al., 2017b; González Fernández
et al., 2020; González-Fernández et al., 2021).

4 Further directions and
concluding remarks

Magnetic photocatalysts have gained recognition as potential
agents to assist the photodegradation of organic pollutants.
Thereby, the integration of semiconductors with magnetic
materials enables surmounting a critical challenge in
photocatalysis, namely the post-use recovery of the
photocatalyst. Additionally, magnetic photocatalysts have been
acknowledged for their possibilities to enhance the photocatalytic
performance through different functions. However, despite the
promising prospects of magnetic photocatalysts, there are still
open questions that need to be addressed so that these composites
could be applied in large scale water treatment process. These
issues pertain to the two main steps of photocatalytic processes,
which include the efficient degradation of target pollutants and
the subsequent retrieval of the photocatalyst.

Regarding the pollutants removal step, it is crucial to enhance to
a great extent the photocatalyst’s performance so that the complete
degradation of the target contaminants is efficiently accomplished.
In this context, thorough research is essential to confirm and provide
evidence for the possible functions of the photocatalyst’s magnetic
constituents, since these photocatalytic roles derive from the
photocatalytic mechanism proposed in the surveyed studies.
Additionally, to deepen the understanding of how magnetic
materials contribute to enhance photodegradation, it is necessary
to evaluate the photocatalyst’s effectiveness both with and without
the magnetic components, and compare the performance of
photocatalysts comprising comparable concentrations of magnetic
constituents. The absence of such comparative analysis in many
studies listed in Tables 1–5 limits elucidating the impact of the
magnetic component. The aforementioned insights could have the
potential to significantly improve the photodegradation of
pollutants by exploiting the photocatalytic roles of the magnetic

components. In addition to better understanding the role of the
magnetic component in photocatalysis, improving photocatalytic
efficiency also requires assessing photocatalytic performance under
conditions that closely resemble real environmental scenarios. In
this regard, the lack of correlation of the photocatalysts efficiency in
well-controlled lab conditions and in real-world applications has
been reported to greatly contribute to the scarce use of
photocatalysis in the latter (Bortolotto et al., 2022). Exploring the
photocatalyst’s efficiency in a medium constituted of a mixture of
pollutants, rather than a single one could contribute to bridge the
gap between the experimental and real-world conditions
encountered in photocatalysis. Finally, advancing in the design of
magnetic photocatalysts also requires assessing their performance
for pollutant mineralization and monitoring the potential metal
leaching during their use. Leaching measurements in several studies
revealed a release of metal ions typically lower than 4.6 mg/L,
suggesting that there are no significant safety hazards to the
aquatic environment. However, total organic carbon (TOC)
analysis showed that target contaminants were not fully
mineralized into CO2, but TOC yield of removal lower than 70%
are normally obtained. Despite the importance of conducting
leaching and TOC analyses, they have only been carried out in
some works included in Tables 1–5. Hence, future research should
incorporate these analyses to enhance the performance of novel
magnetic photocatalysts.

Regarding the magnetic retrieval of the photocatalysts, the
practical use of magnetic photocatalysts also requires the
implementation of the magnetic separation stage, as well as its
integration with the previous photocatalytic process. From this
perspective, it is vitally important to demonstrate efficient recovery
of magnetic photocatalysts that extends beyond the small-scale proof-
of-concept assays reported in most studies. Hence, research efforts
should be devoted to the design and optimization of magnetic
separators for addressing the efficient recovery of the magnetic
photocatalysts after use. More specifically, there is an urgent need
for developing magnetic separators that ensure complete
photocatalyst retrieval while providing high-volume throughput.
CFD techniques can guide the enhancement of the systems
performance through the strategic refinement of different features,
including the separator geometry or the applied magnetic fields and
gradients (Gómez-Pastora et al., 2017b; González Fernández et al.,
2020; González-Fernández et al., 2021).

Overall, this study offers a comprehensive overview of the potential
of magnetic photocatalysts for the oxidation of organic pollutants from
aquatic environments. Particularly, we have reviewed articles that cover
the last 6 years of research to underscore the dual role of magnetic
photocatalysts. Thereby, in addition to emphasizing the ease retrieval of
magnetic photocatalysts by applying magnetic fields, a challenge that
has received considerable attention, this study also focuses on the less
examined photocatalytic roles of the photocatalyst’s magnetic
constituents. Additionally, we have highlighted the importance of
further research to advance the use of magnetic photocatalysts as
outstanding materials in real applications. Collectively, this review
envisages great hopes for the exploitation of the magnetically
assisted photocatalysis for degradation of organic pollutants, which
may stimulate further progress on this field and its exploitation for a
broader range of photocatalytic processes beyond the removal of
contaminants.
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Glossary

AOP Advanced oxidation process

CB Conduction band

CECs Contaminant of Emerging Concern

CFD Computational fluid dynamics

e- Electron

Eg Band gap

h+ Hole

Ha Applied magnetic field intensity

HGMSs High gradient magnetic separators

LISL Los intensity solar irradiation

Ms Saturation magnetization

n.s No specified

OGMSs Open gradient magnetic separators

Ag Silver

AgBr Silver bromide

Ag2MoO4 Silver molybdate

A-MoS2 Ammoniated MoS2

Ag3PO4 Silver phosphate

Ba0.5Sr0.5TiO3 Barium strontium titanate

BaFe12O19 Barium ferrite

Bi2MoO6 Bismuth molybdate

Bi2WO6 Bismuth tungstate

BC Biochar

Bi5O7I Bismuth pentoxide iodide

Bi7O9I3 Bismuth-rich oxyhalide

BiOBr Bismuth oxybromide

BiOBrxI1−x; 0 ≤ x ≤ 1 Bismuth oxybromo-iodide

Bi24O31Br10 Bismuth-rich oxyhalides

BiOCl Bismuth oxychloride

BiOI Bismuth oxyiodide

BiVO4 Bismuth vanadate

CdS Cadmium sulfide

CeO2 Cerium (IV) oxide

CMCD Carboxymethyl-β-cyclodextrin

CNT Carbon nanotube

CoFe2O4 Cobalt ferrite

Co3O4 Cobalt oxide

Cu Copper

Cu3ZO Copper-doped zinc oxide

CuFe2O4 Copper ferrite

CuO Copper oxide

d-TiO2 Defective TiO2

Fe Iron

Fe3O4 Magnetite

FeOOH Iron oxide hydroxide

FeS2 Iron disulfide

g-C3N4 Graphitic carbon nitride

GO Graphene oxide

H2O2 Hydrogen peroxide

MIL Materials of Institute Lavoisier

Mn0.6Zn0.4Fe2O4 Manganese zinc ferrite

MnFe2O4 Manganese ferrite

SEM Scanning electron microscope

SL Solar light

SPM Superparamagnetic

SSL Simulated solar light

UV Ultraviolet

TEM Transmission electron microscopy

UVA Ultraviolet-A

UVC Ultraviolet-C

VB Valence band

Vis Visible light

Vp Particle volume

w/o Without

µ0 Permeability of free space

MnO2 Manganese dioxide

MoS2 Molybdenum disulfide

N-CXTi carbon xerogel/titanium dioxide

MOF Metal–organic framework

MWCNT Multi-walled carbon nanotube

NiFe2O4 Nickel ferrite

NGAM Nitrogen-doped graphene aerogel microtube

NiO Nickel oxide

N-TiO2 Nitrogen doped titanium dioxide

•OH Hydroxyl radical

P Phosphorus

PAA Polyacrylic acid

PANI Polyaniline

Pd Palladium

PDS Peroxydisulfate

PMS Peroxymonosulfate

PS Persulfate

Pt Platinum
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SBA15 Type of mesoporous silica

SCF Spinel cobalt ferrite

SiO2 Silicon dioxide

SnFe2O4 Tin ferrite

SO•−
4 Sulfate radical

SrTiO3 Strontium titanate

s-Co3O4/NiFe2O4 Starch functionalized s-Co3O4/NiFe2O4

Ti3C2 Titanium carbide

TiO2 Titanium dioxide

TiO2-P25 Commercial TiO2

TMAC Titania coated magnetic activated carbon

WO3 Tungsten trioxide

Zn0.95Mn0.05S Manganese doped zinc sulfide

ZnFe2O4 Zinc ferrite

ZnO Zinc oxide

ZnIn2S4 Zinc indium sulfide

α-Fe2O3 Hematite

γ-Fe2O3 Maghemite
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