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We show hereby that recycling of NdFeB permanent magnets by selective
leaching and precipitation is possible, using an electrolyte as hydrotrope, thus
avoiding the need of any specific extractant molecules. We analyse the yield of
the extractant-free process and show that the non toxic formulation of Sodium
Salicylate and ethylacetate used as diluent and choosing the optimal tie-line in a
ternary phase diagram allows extraction using any type of acid in the aqueous
phase. Iron is well separated from rare earths and the product can be recovered
directly form the fluid used in separation by oxalic acid precipitation.
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1 Introduction

NdFeB permanent magnets have been commercially available since the mid-1980s
(Gutfleisch et al., 2011; Croat et al., 1984; Buschow, 1994; Filippas et al., 2021). With a much
higher magnetic force than magnets of previous generations (ferrite, SmCo), they are
gaining ground due to the increasing importance of miniaturization in many applications
(Yang et al., 2017). The chemical composition of NdFeB magnets varies considerably,
depending on the specific application, but in principle, all NdFeB magnets are composed of
a tetragonal Nd2Fe14B crystal structure (Zhang et al., 1988). They are composed of around
30% Nd, 64% Fe and 0.5% B (Mochizuki et al., 2013; Behera and Parhi, 2016). Surrounded
by an Nd-rich grain boundary, other rare earths found in the grain boundary are Dy, Gd, Pr
and Tb (Binnemans et al., 2013). Other elements, including Al, Co., Cu, Mo, Nb, Ti, V and
Zr, may also be present in trace amounts (<1%). The addition of certain elements is directly
linked to the improvement of certain properties. To this end, small quantities of Dy and Tb
are added to increase the magnet’s intrinsic coercivity and anisotropy, as well as its high-
temperature performance. Gadolinium is added to increase the temperature coefficient,
while Cu and Al are added to improve magnet sintering (Yang et al., 2017). Then, Cobalt is
added to increase the temperature at which the magnet loses its magnetic properties (Riano
and Binnemans, 2015). In addition, nickel-based coatings are used to protect the surface of
NdFeB magnets from corrosion (Li et al., 2009).

After dismantling, hydrogen decrepitation and grinding, Rare Earth Elements (REEs)
recovery from NdFeB magnets can be achieved by hydrometallurgical, pyrometallurgical or
biohydrometallurgical methods (Kumari and Sahu, 2023; Habibzadeh et al., 2023; Chung
et al., 2022; Polyakov and Sibilev, 2015; Emil-Kaya et al., 2022; Zhang et al., 2020;
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Kucuker et al., 2017; Walton et al., 2015; Okabe et al., 2003; Saito
et al., 2003). Processes such as oxidation (Stopic et al., 2022; Emil-
Kaya et al., 2023), carbonylation (Miura et al., 2008; Itoh et al., 2009),
chlorination using NH4Cl (Itoh et al., 2007), molten magnesium
metal technique (Takeda et al., 2006), chemical vapor transport
(Murase et al., 1995) and leaching using a mineral acid (Emil-Kaya
et al., 2022; Uysal et al., 2023; Yang et al., 2017; Borra et al., 2015; Wu
et al., 2014; Yoon et al., 2014; Rabatho et al., 2013) have been
investigated for substantial REEs recovery. However, due to the
drawbacks of pyrometallurgical methods, including high energy
consumption and low selectivity, the hydrometallurgical leaching
was often proposed for rare earth metal extraction. To date, acidic,
alkaline and ammoniacal reagents have been used for REE leaching
from WEEE. Although the use of mineral acids (sulfuric, nitric and
hydrochloric acid), ammonia and NaOH is more common in the
development of hydrometallurgical leaching processes, these
reagents also produce environmentally hazardous and toxic gases
during leaching. Furthermore, the acid- or alkali-based leach
solution generated after leaching is not generally recycled,
resulting in a loss of reagents (Rabatho et al., 2013; Yoon et al.,
2014; Borra et al., 2015). Therefore, due to low energy consumption,
low toxic gas emissions, low waste generation and recyclable nature,
adaptations of green organic reagents are well used for rare earth
metal leaching (Borra et al., 2015). Thus, the leaching of REEs with
various organic and inorganic acids has been studied by many
researchers (Onal et al., 2020; Wu et al., 2014; Yoon et al., 2014;
Borra et al., 2015). Lyman et al. developed a process involving the
recovery of REE by leaching magnetic scrap with H2SO4, followed by
the precipitation of rare earth salts (Lyman and Palmer, 1993). A
kinetic study of neodymium leaching fromNdFeBmagnet waste was
carried out with H2SO4 and almost all (~99.99%) of the amount of
Nd was recovered in the aqueous phase (Yoon et al., 2014). A
comparative study of the leaching of La, Nd and Lu from bauxite
residues was reviewed by Borra et al. Different mineral acids (nitric,
hydrochloric, sulphuric) and organic acids (citric, acetic acid,
methanesulfonic) were investigated with a quantitative
dissolution of Neodymium and Dysprosium with H2SO4 (Borra
et al., 2015).

Since these acids also dissolve high quantities of Fe, particular
attention has been paid to the development of selective processes.
After processing a sulfate mixture with H2SO4 (12–16 M), drying
and high-temperature treatment, the resulting magnet powder is
leached in demineralized water, leading to >95% REE recovery,
while Fe remains in the solid residue as a sulfate salt (Onal et al.,
2017). In 2014, the leaching of NdFeB magnet waste using H2SO4

at different temperatures and concentrations was studied with
optimal conditions operated with a 3 mol.L-1 solution at 70°C in
4 h (Yoon et al., 2014). In 2013, a study using solutions of H2SO4,
HCl, HNO3 and NaOH was conducted Lee et al., 2013). HCl and
H2SO4 showed the best leaching performance. Optimum
conditions were a solid/liquid ratio of 20 g.L-1, a leaching time
of 15 min and concentrations of 3 mol.L-1 HCl and 1.5 mol.L-1 of
H2SO4. As far as we know, most research to date has been carried
out using strong mineral acids for leaching (Gergoric et al., 2017;
Onal et al., 2017; Parhi et al., 2016).

Although the use of mineral acids and their mixtures showed
good performance, there is still the issues of regeneration, release of
toxic gases during the leaching, and the inconvenience of handling a

high-concentration acid in an industrial-scale operation. Ground-
breaking improvements are still needed to satisfy more and more
stringent requirements on the environmental impact of metal
waste leaching.

Therefore, we focus here on leaching using weak organic acids.
Acetic acid has been shown to be effective in leaching precious
metals and rare earths from several sources (Murase et al., 1995;
Behera and Parhi, 2016; Zhu et al., 2013). The kinetics of Nd
extraction from NdFeB waste using this acid has been detailed by
Behera and Parhi, (2016) who showed that acid concentrations
above 0.4 mol.L-1 at 800 rpm, 1% S/L ratio and 308 K was effective
conditions in leaching Nd and Fe. However, in this study, little
attention has been paid to the recovery of other REEs, meaning that
no detailed studies of kinetics or temperature dependence have been
carried out for essential REEs such as Dy and Pr in waste. The
behaviour of other impurities such as Fe, B and Co. during the
leaching process has not been fully addressed either. Based on the
various characteristics of a ternary H2O/NaSal/AcOEt system
previously determined (Figure 1), (El Maangar et al., 2020) we
propose here a new and eco-compatible process for recovering REEs
from NdFeB magnets.

2 Experimental section

2.1 Materials

Ethyl acetate (EA) (N99.9%) and sodium salicylate (NaSal)
(N99.5%) were respectively purchased from Merck (Darmstadt,
Germany) and Sigma Aldrich (Darmstadt, Germany). 70% nitric
acid was bought from Fischer, 62% sulphuric acid and 37% acid
chloride and oxalic acid were purchased from Sigma Aldrich. All
chemicals were used without further purification.

2.2 Phase diagrams, tine-lines

The determination of the existence of a monophasic and
biphasic domains as well as tine-lines in the biphasic in the
ternary water/sodium salicylate/ethyl acetate mixture was
performed using a static and dynamic process, previously
described (El Maangar et al., 2020). As can be seen in Figure 1,
the two domains with the highest solubilities are observed first as
usual near the critical point (red dot), but also in the Prenucleation
cluster region that is close to the S/L phase separation line when 35%
of NaSal as hydrotrope is used.

2.3 Density measurement and tie-line
determination in the miscibility gap

Solution densities were determined using a vibrating tube
density meter (DMA 5000 M, Anton Paar, Austria) at (25 ±
0.005) °C with a nominal precision of ±5·10−6 g.mL-1. Calibration
was performed using air and pure water at 25 °C. At the beginning
and at the end of each day, calibration was checked using pure water
and between each measurement against air (maximum deviation:
±5·10−5 g.mL-1)
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2.4 Leaching experiments

After determining the chemical composition of the waste,
leaching experiments were carried out using the ternary H2O/
NaSal/AcOEt. In order to compare the performance of this new
system with conventional leaching systems, leaching experiments
using strong inorganic acids were also carried out in parallel.
Sulfuric acid, hydrochloric acid and nitric acid were thus studied
at various concentrations. Leaching is carried out in
thermostatically-controlled reactors, with stirring to adjust the
temperature to the needs of each experiment. 10 mL of a ternary
solution of water, NaSal and AcOEt of the desired composition,
or an inorganic acid of the desired concentration for comparison
experiments, is added to the reactor. Once the operating
temperature has been reached, the magnet powder is added to
the solution at the desired S/L ratio. After a pre-defined leaching
time, the leachate is filtered. Metal concentrations in the leachate
are determined using an X-ray fluorescence spectrometer (XRF)
and ICP-OES. The aim of the various tests carried out is to study
the leaching of the different REEs making up NdFeB magnet
powder, namely, Nd, Pr, Dy and Fe, accor ding to different
parameters: (i) the composition of the leaching solution, (ii)
the stirring rate, (iii) the S/L ratio, (iv) the leaching time and (v)
the operating temperature. During the leaching experiments, one
of the parameters was modified while the others were kept
constant. To ensure reproducibility, leaching experiments are
repeated three times, and the experimental error was found to
be ±2%. Leaching efficiency E (%) is defined in Equation 1
as follows:

E %( ) � Amount ofmetal in the lixiviate only

Total amount ofmetal in teh lixiviate and the residue

(1)

2.5 X-ray fluorescence (XRF) measurements

A commercial XRF spectrometer model SPECTRO XEPOS
(AMETEK) is used, and liquid samples are placed in 6 mm
diameter cups, the base of which is made of a 4 μm-thick film of
ProleneTM. ProleneTM is a high X-ray transmission material
marketed by Ethicon Inc. The XRF spectrometer analyzes a series
of eleven cups using a rotating carousel that positions the samples
above the so-called “inverse optics” section. Inverse optics enable the
analysis of liquids, as the area illuminated by the X-rays is flat. In this
instrument, it is possible to place 25 mm diameter analysis cups to
illuminate a larger surface and thus recover a stronger fluorescence
signal, which is useful in the case of highly diluted samples. In order to
prepare for the integration of a measurement on a microfluidic device
and minimize sample volumes, our choice 6 mm diameter cups.

2.6 ICP-OES

Elements-f and iron are measured by ICP-OES (Inductive
Coupled Plasma - Optical Emission Spectroscopy). The
commercial instrument used for this study is a SPECTRO ARCOS
ICP-OES, equipped with a circular detector consisting of 32 linearly
aligned CCDs, each with a resolution of 3,648 pixels covering
wavelengths from 130 to 770 nm. Detector resolution is 8.5 p.m.
from 130 to 340 nmand 15 p.m. from 340 to 770 nm, with an intensity
dynamic range of eight orders of magnitude. The CCDs are read
simultaneously and a complete spectrum is generated in less than
2 seconds. The circular polychromator (Paschen-Runge design,
optical components; MgF2, Zerodur structure) has a focal length
of 750 mm. Thermal excitation is created by a radio-frequency
generator operating at a frequency of 27.12 MHz, with power
adjustable from 0.7 to 1.7 kW with 70% efficiency and 0.1% stability.

FIGURE 1
(A) Solubilizationmap of lanthanum salts in the ternary system consisting of H2O/NaSal/AcOEt. (B)Correspondingmap translated into transfer Gibbs
energy from solid state to the state as dissolved in a ternary fluid based on an hydrotrope (reproduced from El Maangar et al., 2020, with permission).
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3 Results and discussion

3.1 Elemental composition of WEEE

NdFeB magnet powder was used as the NdFeB waste stream
in its original form (as received, particle size <1 mm). The
particles are sieved to the desired size fraction so as to fix the
particle size range throughout the leaching study, unless
otherwise specified. To determine the total elemental
composition, 1 g of NdFeB powder is dissolved in 10 mL aqua
regia (VHCl, conc: VHNO3,conc = 3 : 1) at 80°C ± 1°C for 8 h. The
solution was then filtered through polypropylene filters (0.45 μm,
VWR). No residue was observed on the filter paper after filtration
of the solution. The composition of the prepared solution was
measured using ICP-OES and XRF. The concentrations obtained
are converted into mass percentages of the elements in the
powders. All experiments were carried out in triplicate to
guarantee the statistical reliability of the results.

Table 1 shows the composition of the magnet powder that was
used in the leaching experiments. The most abundant rare earth in
magnet powder is Nd, with around 25% in mass fraction, followed
by Pr with 3.4% and Dy with around 2.4% in mass fraction. The
main constituent of NdFeB powder is Fe, which accounts for around
60% of the waste mass. Other impurities, including Co. and B, were
also found in mass percentages of around 1%, as well as Ni (around
0.4%), which is commonly found in NdFeB coating (Li et al., 2009).
The composition determined here corresponds to the REE content
and other constituent elements of NdFeB magnets found in
industrial fluxes (Binnemans et al., 2013; Yang et al., 2017;

Tunsu et al., 2015). The difference from 100% can be attributed
to experimental errors or un-analysed elements.

3.2 Influence of the composition

In order to determine the optimum operating conditions for
leaching, the first variable studied was the composition of the ternary
H2O/NaSal/AcOEt leaching system. Leaching tests were carried out
at different compositions in the monophasic region of the phase
diagram (see Figure 1), maintaining the leaching step for 5 h at a
temperature of 25°C. The S/L ratio is maintained at 0.2 g of magnet
powder per 10 mL of ternary solution, and the stirring rate at
700 rpm. The starting compositions of the leaching solutions used
are shown in the phase diagram in Figure 2 and summarized in
Supplementary Table S1). Each experiment was performed 3 times
and pH values before and after leaching also measured. Figure 2
shows the variation in leaching yields for Dy, Nd and Fe as a
function of the mass fraction of ethyl acetate in the binary water/
ethyl acetate mixture, α where α is defined in Equation 2 as:

α � wEA

wEA + wwater
(2)

with wEA and wwater are the mass fraction of AcOEt and water in the
ternary mixture.

Leaching tests were carried out on two different dilution lines in
the single-phase region of the system under consideration
(Figure 2B). The composition of the system plays an important
role in the leaching efficiency of REEs from NdFeB powder. Dy and
Nd leaching was maximal for an α value equal to 0.42. This yield
then remained stable for α values between 0.38 and 0.45 on the
dilution line with AcOEt (red dilution line, Figure 2A) and between
0.36 and 0.42 on the dilution line with water (blue dilution line,
Figure 2B). This range of α values, corresponds to the region where
Pre-Nucleation clusters (NPCs) are observed (see Supplementary
Figure S1) (El Maangar et al., 2020). The maximum leaching yield

TABLE 1 Elemental composition, in weight fraction, of NdFeB powder
totally dissolved in aqua regia for 6 h at 80°C ± 1°C and S/L = 0.1 : 10 g.mL-1.

Elements Fe Nd Pr Dy Co. B Ni

Mass fraction (%) 63.54 25.19 3.42 2.48 1.44 0.96 0.4

FIGURE 2
Effect of the composition of the ternary system water/NaSal/EtOAc on the leaching efficiency of Nd, Dy and Fe. Water rich ternary solutions are
shown as blue point in a dilution line, while solvent rich are shown in red. α is defined as classically for classical microemulsions: α is the amount of solvent
(AcOEt) in the total (water plus AcOEt), not taking into account the hydrotrope. The temperature is maintained at 25°C ± 1°C, magnetic stirring at 700 rpm
and the S/L ratio at 1: 50 g.mL-1. (A): dilution line with ethyl acetate. (B) dilution line with water.
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for α = 0.42 corresponds to a mass fraction composition of the
ternary solution of 21% ethyl acetate, 39% sodium salicylate and 40%
water. Regarding the leaching yield of praseodymium, the same
behaviour as for neodymium was observed, with a yield reaching a
maximum value at the same composition. Furthermore, these results
showed that the leaching efficiency of Fe was very low, whatever the
composition of the ternary solution. In Figure 2A, a local efficiency
maximumwas identified in the AcOEt-rich region, which was found
at α = 0.8. It should be noted that this value of α corresponds to the
region close to the critical point where critical fluctuations (CF) are
dominant. Similarly for Figure 2B, on the water-rich side, and at α =
0.14, a local maximum was found. This region corresponds to the
Pre-Ouzo (PO) region where e/h aggregates were identified.

These results are in line with the solubilization regimes previously
identified and reported (El Maangar et al., 2020). The presence of
cohesive aggregates, whether critical pre-nucleation (CPN) or pre-ouzo
(PO), systematically increases the yield of leaching. This can be
understood by applying the “ienaic” decomposition of the molecular
forces involved in the phase transfer, originally designed to understand
LL separation yields, to the case of solid/liquid transitions (Špadina
et al., 2021; Špadina et al., 2022). An interesting result was the selectivity
of dysprosium over neodymium and iron in the CPN region (i.e., α =
0.42), which is not the case in the FC region.

Leaching experiments with strong inorganic acids are carried
out, in order to compare the results obtained with those of the H2O/
NaSal/AcOEt ternary system. Figure 3 shows the results of leaching
NdFeB powder using 2 mol.L-1 HNO3, 2 mol.L-1 H2SO4 and 2 mol.L-1

HCl under the same operating conditions as the experiments
reported in Figure 2. Inorganic acids proved highly effective in
leaching REEs from NdFeB powder. All elements were dissolved in
yields of over 83% after 5 h in all the acids used. Increasing the acid
concentration up to 5 mol.L-1 did not result in a significant increase
in the amount of REE leached. It is important to note that in all
inorganic acids, the addition of NdFeB powder to the leaching
solutions caused an exothermic reaction due to high oxidation
conditions, as well as NO2 off-gassing in the case of HNO3.
Similar effects have been observed in previous work (Yoon et al.,
2014; Gergoric et al., 2018), suggesting roasting to remove this
problem, also leading to lower heat and gas releases during leaching

of REE oxides. In addition to REE, other elements contained in the
NdFeB magnet were also leached using all the above-mentioned
inorganic acids, namely, iron, boron and cobalt. No selectivity was
obtained between the elements, either inter-REEs or between REEs
and other elements (i.e., , B, Co. and Fe).

Based on the determination of the distribution coefficient KDi =
(Cl/Cs)i.V/mwith Cl the concentration of the considered element i in
the leachate of a volume V and Cs the concentration in the solid
residue of mass m after leaching, Figure 4 shows the separation
factor (KDDy/KDi) of the leaching of dysprosium in relation to two
other rare earths in the magnet (Nd and Pr) and iron, for the H2O/
NaSal/AcOEt system and for three inorganic acids. Figure 4A shows
the results for the ternary H2O/NaSal/AcOEt system in three
different compositions. The leaching solution compositions
chosen correspond to the compositions where the overall
maximum in leaching efficiency as well as the two local maxima
were already identified in Figure 2. These three maxima were found,
respectively, in three different regions of the phase diagram FC, CPN
and PO (see Supplementary Figure 1). A very slight selectivity of Dy,
compared to Nd and Pr, was observed in the case of leaching in the
region close to the critical point (FC) as well as in the pre-Ouzo
region (PO). This selectivity increased significantly in the CPN
region, from SFDy/Nd of 1.7 for the PO point to SFDy/Nd of
62.5 for the CPN point. This was linked to the solubilization
mechanisms previously discussed (El Maangar et al., 2020). All
three compositions showed significant iron selectivity (15.6 for FC,
1,535 for CPN and 98.6 for PO).

Figure 4B shows the selectivity results for HNO3, H2SO4 and HCl.
All selectivity coefficients were close to one and no selectivity was
observed for these acids. In this case, the NdFeB powder was simply “
put into solution “These results reinforce the interest in theH2O/NaSal/
AcOEt system for the selective leaching of REEs in energy-as well as
effluent-efficient processes, making it possible to close the REEs life
cycle under favourable conditions in terms of cost and eco-
compatibility. For example, a ternary mass composition of 21%
ethyl acetate, 39% sodium salicylate and 40% water was
recommended for efficient, selective REE recovery from NdFeB
powder. This composition was used for the following experiments.

3.3 Study of the solid/liquid ratio

The S/L ratio is a key parameter in characterizing waste leaching
behaviour. This is the ratio between the mass of the solid to be leached
and that of the liquid (i.e., the leaching solution). The leaching of NdFeB
powder as a function of the S/L ratio in the range from 1:10 to 1:
100 g.mL-1 was thus studied. The volume of the leaching solution was
kept at 10 mL in all cases, and the mass of the NdFeB powder varied.
The powder samples were dissolved in the H2O/NaSal/AcOEt mixture
in a composition of 21% AcOEt, 39% NaSal and 40% H2O for 5 h. The
stirring speed was kept constant at 800 rpm, and the temperature
maintained at 25°C ± 1°C. The leaching efficiencies of Nd, Dy and Fe
with the ternary H2O/NaSal/AcOEt are presented in Figure 5. The
variation of the S/L ratio had significant effects on the leaching
efficiencies of the elements present. Dy leaching increased from
80.3% to 99.7% with the decrease of S/L ratio from 1:10 to 1:
100 g mL-1, respectively. Dy showed maximum effectiveness from
the S/L ratio of 1:50 g.mL-1 which remains almost constant for

FIGURE 3
Effect of acid nature (HNO3, H2SO4 and HCl) on the leaching
efficiency of Nd, Dy, Fe, Pr, Co. and B. The temperature is maintained
at 25°C ± 1°C, magnetic stirring at 700 rpm and the S/L ratio at 1:
50 g.mL-1. The acid concentration is 2 mol.L-1.
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lower S/L ratios. The leaching of Nd was significantly affected by the
variation of the S/L ratio. Nd leaching increased from 20.1% ± 1.38% at
1:10 g.mL-1 to 70.4%± 2.10% at 1:100 g.mL-1. Varying the S/L ratio from
1:10 to 1:60 g mL-1 did not affect the Fe leaching efficiency (~1%).
However, the S/L ratio had a considerable effect on the Fe leaching
efficiency from a ratio of 1:60 g.mL-1. Ironwas leached at 2.3% ± 1.8% at
1: 60 g.mL-1 and at 18.1% ± 2.69% at 1: 100 g.mL-1.

Many studies have shown that decreasing the S/L ratio
increases leaching efficiency, because there is more liquid to
dissolve the metals in the solid (Behera and Parhi, 2016; Onal
et al., 2020). The results obtained correlate with this. The
dissolution of Dy can reach up to 99.7% for the S/L ratio of 1:
100 g mL-1. The results obtained for the leaching of Dy show the
ability to achieve excellent dissolution levels with a ternary
mixture based on hydrotropes, usually observed only upon
leaching with strong inorganic acids. However, the reduction
in the S/L ratio leads to a significant reduction in the selectivity of
Dy relative to Nd as well as relative to Fe. Considering a balance
between leaching efficiency and separation factor (SDy/Nd and
SDy/Fe), an S/L ratio of 1:50 g.mL-1 is an optimum for the design of
new selective leaching process.

3.4 Leaching kinetics

Leaching tests were carried out as a function of time varying
from 1 h to 30 h using the leaching solution with the optimal
composition (i.e., 21% AcOEt, 39% NaSal and 40% H2O) at 25°C ±
1 °C. The stirring rate was kept constant at 800 rpm, and the S/L ratio
was set at 1:50 g mL-1. Each point on the kinetic curve representing
the percentage of REE or Fe is represented as the average of the three
replicas of an experiment. Figure 6 shows the variation in leaching
yield of Nd, Pr, Dy and Fe as a function of leaching time.

As shown in Figure 6, the leaching of Dy in the ternary leaching
solution was rapid compared to that of Nd, Pr and Fe. Indeed, the
leaching yield of Dy reached 94% after 5 h while the leaching yield light
REEs (Nd and Pr) did not exceed 15%. The yield of light REEs then
continued to increase slowly to reach a level of approximately 25% after
24 h. This difference in leaching kinetics accentuated the interest in the
selective leaching of Dy compared to Nd, Pr and Fe obtained with
ternary solutions of water, ethyl acetate and sodium salicylate. The
selective recovery of Dy relative to Nd, Pr and Fe was maximum after
3–5 h. The optimal time to selectively recover Dy from Nd, Pr and Fe
was therefore around 5 h. These tests showed that the Fe remained
almost insoluble despite the increase in the treatment time to 30 h. The
residue obtained after leaching in the ternary solution was enriched in
Nd, Pr and Fe. This residue could therefore be leached for a second time
under conditions favoring the leaching of Nd and Pr in order to
selectively extract Nd and Pr with respect to Fe.

Supplementary Figure S2 in presents the results of the leaching
kinetics of NdFeB powder using the inorganic acids studied
(i.e., HNO3, H2SO4 and HCl) at 2 mol.L-1. Unlike the ternary
leaching system, leaching time did not play a significant role in
the leaching process with these inorganic acids, since most REEs
were completely leached after 1 h and reached a leaching efficiency
of over 90% after 2 h. In addition to REEs, other elements in the
NdFeB magnet were also leached using all the mentioned acids and
without any selectivity.

3.5 Temperature effect

In order to determine the effect of temperature, tests were
carried out between 10°C and 80°C. The composition of the

FIGURE 4
Selectivity coefficient of dysprosium with respect to neodymium, praseodymium and iron. (A) for the H2O/NaSal/AcOEt system at three different
compositions corresponding to the three FC, CPN and PO regimes. (B) for three strong inorganic acids at 2 M: HNO3, H2SO4 and HCl.

FIGURE 5
Dependence of the amount of leached metals versus the S/L
ratio at 25°C ± 1°C, using a composition of 21% AcOEt, 39% NaSal and
40% H2O, with stirring at 800 rpm for 5 h.
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ternary mixture was maintained at 21% AcOEt, 39% NaSal and 40%
H2O and the S/L ratio at 1:50 g.mL-1. Figure 7 represents the leaching
yields as a function of leaching time for four temperatures (20, 40,
60°C and 70°C) and for leaching times ranging from 1 h to 30 h. For a

leaching time equal to 24 h, Figure 7 shows that increasing the
temperature from 20°C to 40°C leads to a significant increase in the
leaching efficiency, especially for neodymium (Figure 7A). An
efficiency gain of around 60% was observed in the case of Nd at

FIGURE 6
Effect of leaching time on the leaching efficiency of Nd, Pr, Dy and Fe. The temperature was maintained at 25°C ± 1°C, magnetic stirring at 800 rpm,
and the S/L ratio at 1: 50 (g.mL-1).

FIGURE 7
Leaching kinetics of (A) Nd, (B) Fe and (C) Dy at different temperatures. The S/L ratio is 1:50 (g.mL-1), the stirring speed was 800 rpm.
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40°C compared to 20°C. Metal leaching reactions are largely
endothermic and therefore, they are favoured by higher
temperatures that shift the equilibrium in favour of dissolution
(Behera and Parhi, 2016; Yoon et al., 2014). The downside is that all
elements (Nd, Pr, Dy, Fe and Co.) follow this trend, so the
dissolution rates of Fe and other unwanted elements also
increased with temperature. In the case of dysprosium, very little
change was observed since the conditions already allowed leaching
greater than 90% at room temperature.

Unlike Nd and Fe, where increasing the temperature from 20°C
to 40°C resulted in an increase in leaching efficiency. The other
elements (Co. and B) were not leached quantitatively. The greatest
increase in efficiency was observed for Nd, where the leaching
efficiency increased from 25% at room temperature to 83% at
40°C ± 1°C. By further increasing the temperature from 40°C to
70°C, an opposite trend was observed, since the efficiency decreased
significantly with increasing temperature. This phenomenon could
be explained by the disappearance of CPN aggregates, responsible
for the efficiency of dissolution in this region of the phase
diagram (Figure 1).

In order to verify this, SWAXS experiments were performed for
the CPN sample at different temperatures. Indeed, as shown in
Figure 8, the characteristic peak of CPN aggregates located at q =
2.5 nm-1 at 20°C disappears by increasing the temperature from 20°C
to 70°C. This disappearance of structuring at elevated temperatures
is likely due to the low boiling point of ethyl acetate at which solvent
structuration fades out. With this destructuration and loss of
volume, the leaching power of the solution decreases and
leaching is less effective.

Although leaching efficiency was optimal at 40°C, the selectivity
between Dy and Nd decreased drastically with increasing
temperature (see Supplementary Figure S3). Praseodymium has a
similar behaviour to Nd. For these reasons, a temperature of 20°C
will be maintained for the selective recovery of Dy with respect to
Nd, Pr and Fe, while for the recovery of Didymium (Nd and Pr), a
temperature of 40°C will be preferred. Furthermore, it should be
noted that Fe remained almost insoluble under these leaching
conditions, regardless of the temperature used.

3.6 Recovery of REE by selective
precipitation from the ternary leach solution

After leaching with the H2O/NaSal/AcOEt formulation, the
corresponding leachate must be re-extracted. Because the starting
materials in the manufacturing of NdFeB magnets are REE oxides,
so the final product of the recycling loop should also be REE oxides.
Oxalic acid (C2H2O4) is used for the precipitation of REEs in most
processes, because it forms very stable complexes with them that are
insoluble in water. These complexes have very low solubility
constants (4.51032 < Ks < 5.1030) (Chung et al., 1998), which
makes it possible to obtain pure oxides after combustion.
Precipitation in the form of hydroxide is another opportunity
which can nevertheless be considered. However, we did not study
it in our case due to the presence of organic substances (sodium
salicylate and ethyl acetate) in the leaching solution (Couillard and
Mercier, 1992; Barbaroux et al., 2011). The use of the H2O/NaSal/
AcOEt ternary solution as a leaching agent induces an increase in the
organic matter content in the leaching solution. However, no
information was available in the literature on the behavior of
REEs precipitation by oxalic acid in the presence of high NaSal
and AcOEt contents. The aim of this study was to explore the
influence of NaSal and AcOEt on the precipitation of REEs by oxalic
acid. For this, preliminary precipitation experiments were carried
out on ternary leaching solutions in a synthetic medium. Metal
speciation has been modified by the addition of oxalic acid to a
solution containing rare earths and NaSal. In this environment, at
least three competing reactions could occur: the complexation
reaction of REEs with NaSal, the deprotonation reaction of oxalic
acid and finally the precipitation reaction of REE oxalates. As the
complexes formed by NaSal and REEs in the H2O/NaSal/AcOEt
ternary were not studied in this work, we did not have information
on speciation in this environment. However, to promote
precipitation, the REE3+ and Ox2- form (i.e., C2O4

2-) is preferred
to form the (Ox)3(REE)2 precipitate which means that conditions
where the pH values are fixed between 4.2 and eight is preferred. To
test the feasibility of precipitation from the ternary leaching solution,
synthetic ternary solutions of H2O/NaSal/AcOEt (H2O: 40%, NaSal:
39% and AcOEt: 21%) containing laboratory grade neodymium
(representative element of NdFeB magnets) at a concentration of
10 mmol.L-1 were prepared. A pH adjustment is carried out with a
1 mol.L-1 nitric acid solution. Then, oxalic acid in stoichiometry with
NaSal was added to the solution at different pH values ranging from
two to 7.

The mixtures were stirred for 2 h, at 800 rpm and at room
temperature. Then, they were centrifuged and the neodymium
content remaining in the ternary solution is measured by XRF
before and after precipitation. The precipitation percentage (% P)
of neodymium was calculated according to the following formula 3:

% P � Nd[ ]initial − Nd[ ]final
Nd[ ]initial × 100 (3)

Where [Nd]initial and [Nd]final are, respectively, the initial and
final concentration of neodymium in the ternary solution before and
after precipitation.

Figure 9 shows the precipitation yield (% P) of neodymium as a
function of the pH of the solution. Total precipitation of neodymium
in the form of oxalates was obtained at a pH range from two to 4 (%

FIGURE 8
SWAXS spectra at different temperatures of the sample with the
following composition: 21% EA, 39% NaSal and 40% water. The
aggregates disappear at high temperature.
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p = 99%). At pH > 4, a significant decrease in the precipitation yield
was observed. This result could be attributed to the complex of
neodymium with the salicylate Ndx(Sal)y, which probably became
predominant. It should be noted that the amount of excess oxalic
acid relative to neodymium greatly influenced the stability of the Nd
oxalate precipitate. The higher this excess, the more the precipitate
appeared at higher pH and the greater the precipitation yield. To
conclude, the precipitation of neodymium in the form of oxalates
was possible at pH values below 4, despite the presence of organic
molecules in the solution resulting from the initial leaching.

The ternary solution generated after precipitation can be reused
for further leaching experiments. However, oxalic acid should not
remain in this phase, as this would decrease the rare earth leaching
percentage due to the formation of rare earth oxalate salts in a
leaching experiment. This can only be avoided if the precipitation
reaction is complete and no oxalic acid is anymore present in the
ternary leaching phase after precipitation. In order to verify this,

precipitation experiments at different amounts of oxalic acid were
carried out at pH = 3. Figure 10 shows the precipitation yield (%P) as
a function of the n(oxalic acid)/n(Nd) ratio. The amount of
neodymium precipitated from the H2O/NaSal/AcOEt solution
increased linearly toward 100% at an oxalic acid/nNd value of
2.2. This means that a significant amount of oxalic acid dissolved
in the solution was still present. This could present an issue in
practice for reusing the leaching phase in a new leaching experiment.
In our case, no precipitation of sodium oxalate was observed for
similar mixtures without metals, proving that the precipitate was
pure. The precipitate obtained could be washed with deionized water
to remove traces of NaSal and AcOEt. Then, it could be calcined at
the temperature necessary to calcine the rare earth oxalates and
obtain rare earth oxides (i.e., between 600°C and 1,000°C) (Jha et al.,
2016; Chi et al., 2000).

3.7 Proposed flowsheet

By integrating the main useful characteristics of the different
parts described previously, a new process combining two selective
leaches followed by oxalic acid precipitation could be applied to
NdFeB magnets, as described in Figure 11. The NdFeB magnet
recycling process includes 10 steps (2 × 5 steps). A first series of steps
makes it possible to separate the dysprosium from the light rare
earths (Nd and Pr) and iron where the solid powder of the NdFeB
magnet is leached (step A) for 3 h at 20°C with stirring at 800 rpm
and at an S/L ratio of 1:50 g.mL-1, using the leaching solution
composed of 21% AcOEt, 39% NaSal and 40% water. The leaching
residue is separated from the leachate by filtration (step B). We thus
obtain a leachate enriched in Dy, with a mass composition of 43.3%
Dy, 39.1% Nd, 12.4% Fe and 5.2% Pr since in these experimental
conditions, 88% of Dy, 8% of Pr and Nd and 1% of Fe were dissolved
from the initial composition of the magnet powder (Table 1).
Unfortunately, approximately 10% of the leach solution was lost
in this process due to liquid absorption into the filter pores and into
the leach residue. Specialized equipment, such as a full bowl
centrifuge, can significantly reduce these losses. Then the leachate
can be precipitated (step C) in the form of oxalates by adding oxalic
acid, after adjusting the pH of the solution to pH = 3. The
precipitation is carried out at 20°C with constant stirring. It is
best to avoid adding excess oxalic acid in this step to avoid
precipitation of rare earths in the following leaching step. After
filtration of the solution resulting from the precipitation step (step
D), the oxalates are then calcined (step E) to recover a dysprosium
enriched oxide at the end of the process. Assuming that all the
elements present precipitate as oxalate, two further sequences of
dissolution/filtration/precipitation of the oxides obtained after
calcination would yield dysprosium at 99.4% purity, with an
overall mass yield of around 68%. The ternary solution can be
reused as a leaching solution for new NdFeB oxide powder. In this
way, rare earth losses in the precipitation stage are also avoided
because the remaining rare earths are reinjected into the
process feed.

The second series of steps makes it possible to separate the Nd
and Pr from the Fe. The solid residue from the first step (step B) of
the process is leached (step A′) in the ternary leaching solution for
5 h, at a temperature of 40°C at an S/L ratio of 1:50 g.mL-1. At the end

FIGURE 9
Concentration of neodymium in the solution after precipitation
(C) and percentage precipitation of neodymium (■), as a function of
pH of a solution containing 10 mmol.L-1 neodymium.

FIGURE 10
Percentage of precipitation (% P) as a function of the molar ratio
of oxalic acid added to the CPN solution containing neodymium. The
CPN phase contains 10mol.L-1 of Nd and inmass fraction: 21% EA, 39%
NaSal and 40% water.
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of the filtration step (step B′), a leachate enriched in Nd and Pr is
obtained of a mass composition of 71.8% Nd, 17.4% Fe, 9.6% Pr and
1.2% Dy. The didymium is then precipitated (step C′) using oxalic
acid and using the same operating conditions as step C. After
filtration (step D′), the didymium oxalates are then calcined (step
E′) to obtain enriched didymium oxide. The solid residue from this
second selective leaching mainly contains Fe in the form of Fe2O3,
which can be used in the production of pigments, for example.

4 Conclusion

The recovery of rare earths from end-of-life materials is beneficial
both economically and environmentally. However, the overall recovery
rate is low due to the lack of an efficient and clean recoverymethod. The
state-of-the-art recovery process, based on hydrometallurgical methods
such as liquid-liquid extraction, is a heavy burden on the environment.
In addition to the emission of volatile solvents and residual gases such as
ammonia, the inorganic acids adopted in full leaching and liquid-liquid
extraction procedures contribute significantly to ozone depletion,
human toxicity potential, marine aquatic ecotoxicity potential,
eutrophication, greenhouse gas emissions and material costs of the
total hydrometallurgical process (Zaimes et al., 2015; Iannicelli-Zubiani
et al., 2017; Norgate and Jahanshahi, 2011). Themethodwe proposed to
test in this work consisted in replacing the acids classically used in
NdFeB magnet leaching processes by more eco-friendly formulations,
such as hydrotrope-based formulations (Kunz et al., 2016; Gaikar and

Sharma, 1986), which on the one hand enable selective leaching (Yoon
et al., 2015; Binnemans and Jones, 2017) and on the other hand dispense
with the subsequent liquid/liquid extraction steps. As the target metals
are selectively dissolved from the solid materials, the liquid-liquid
extraction procedure is not necessary, paving the way for compact
and more eco-compatible processes, drastically reducing the significant
secondary chemical waste (Bandara et al., 2016; Dupont and
Binnemans, 2015). Ternary systems comprising a short-chain
amphiphilic molecule called a “hydrotrope” and two immiscible
fluids are considered powerful solubilization media avoiding the use
of conventional surfactants (Klossek et al., 2012; Fischer et al., 2015;
Schöttl et al., 2014). In this study, we consider the ternary mixture of
water, sodium salicylate (NaSal) and an eco-compatible diluent, ethyl
acetate (AcOEt), as a solubilization system. NaSal is a widely used
electrolyte as a solubilizing agent in the pharmaceutical (Revathi et al.,
2010; Nidhi et al., 2011; Maheshwari, 2006; Maheshwari et al., 2008;
Hersey and Jackson, 1987) and personal care (Merinville et al., 2010;
Elewa and Zouboulis, 2014) industries, notably for solubilizing
hydrophobic dyes, flavors, fragrances or active molecules in water.
For use in hydrometallurgy, (NaSal) offers a number of advantages,
including its ability to complex rare earths and its non-toxicity. AcOEt is
a biobased “green” solvent with a boiling point of 77°C, a flash
point of 4°C and a partial vapour pressure of 10 kPa at room
temperature. It is used as an effective solvent for phenols (Salagoïty-
Auguste and Bertrand, 1984; Bonilla et al., 1999) and also used
in the pharmaceutical industry as a non-toxic solvent (Young
et al., 1979).

FIGURE 11
Schematic of the proposed process for the recycling of NdFeB permanent magnets by selective leaching. Blue arrows: solid flows. Brown arrows:
liquid flows.
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Finally, the compatibility of oxalic acid with the ternary mixture
NaSal/H2O/AcOEt enables the sequential precipitation of rare
earths present in the leaching medium, which can then be
recycled. This may open up a completely new general avenue for
reducing toxic effluents in hydrometallurgy and recycling.
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