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We summarize advances in lithium recognition receptors, focusing on their use as
active reagents in circular processes such as liquid–liquid extraction, an
established industrial process that is advantageous due to its large processing
capacity and high selectivity. High-performance systems are required, given the
increasing demand for effective separation processes for the recovery of valuable
substances from spent lithium-ion batteries or the exploration of brines. Hence,
the availability of powerful and highly selective receptors is particularly crucial. This
mini-review summarizes the development of active receptors for lithium ion
extraction and covers advances in receptors for both lithium ions and lithium
salts. It discusses various receptor types, ranging from heteroditopic macrocyclic
systems to simple β-diketones. The latter achieve particularly high lithium ion
extraction yields in the presence of phosphine oxides such as trioctylphosphine
oxide. Structural studies employing 4-phosphorylpyrazolone exhibited diverse
coordination modes of lithium and represent clear evidence for the synergistic
role of the co-ligand on a molecular level.
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1 Introduction

Lithium, an s-block element, has attracted extensive commercial interest in recent
decades because it is indispensable in the production of lithium-ion batteries (LIBs) and as a
component of many other commercial goods, such as glasses, ceramics, lubricants, and
pharmaceuticals (Birch, 1999; Donald et al., 2008; Goodenough and Park, 2013; Mjos and
Orvig, 2014; Parikh et al., 2019). LIBs are widely used to reduce reliance on fossil fuels in
transport systems and to mitigate global warming by reducing CO2 emissions; this has led to
a rapid increase in the consumption of the Earth’s lithium resources (Oliveira et al., 2015; Bae
and Kim, 2021). Some projections suggest that global lithium demand will not be met by
2023 without recycling (Sonoc et al., 2015). This is particularly problematic at present, as the
global lithium recovery rate is currently no more than 1% (Swain, 2017). Exploration of
efficient strategies to detect and recover lithium from various sources, such as spent LIBs,
brines, and seawater, will help increase available lithium resources and reduce environmental
impacts, and thereby achieve carbon neutrality and sustainable development.

In recent years, various techniques have been used for lithium separation, including
liquid–liquid extraction (He et al., 2018; Cui et al., 2019; Zhang et al., 2020; Chen et al., 2021;
Hanada and Goto, 2021; Masmoudi et al., 2021), solid–liquid extraction (He et al., 2016;
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Gohil et al., 2019), adsorption (Wang et al., 2018), and membrane
processes (Guo et al., 2016; Razmjou et al., 2019; Lu et al., 2020; Hou
et al., 2021). This mini-review focuses on liquid–liquid extraction
because of its advantages, such as large processing capacity, high
selectivity and extraction efficiency, easy large-scale operation, and
high potential for industrial lithium separation (Kumar et al., 2019;
Bai et al., 2020). The selective binding of lithium ions by specific
organic receptors has been challenging, and only a small selection of
ligands, such as β-diketones, organophosphorus extractants,
macrocyclic receptors, pyrazolone-based ligands, and ditopic
receptors, has been developed and used in liquid–liquid or
solid–liquid extraction (He et al., 2016; Swain, 2016; He et al.,
2018; Gohil et al., 2019; Zhang et al., 2020; Hanada and Goto,
2021; Masmoudi et al., 2021). This review systematically
summarizes the receptors applied for lithium recognition and
separation. These can be divided into two categories according to
their function: receptors for lithium cations and for lithium salts.

2 Receptors for lithium ions

2.1 β-Diketones

The most common receptors employed for lithium separation
are β-diketones. Benzoyl-1,1,1-trifluoroacetone (HBTA, 1),
4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (HTTA, 2), and
α-acetyl-m-dodecylacetophenone as the major component of
LIX 54 (3) are widely used for lithium extraction (Figure 1)
(Healy, 1968; Nguyen and Lee, 2018; Zhang et al., 2018; Wang
et al., 2019; Zhang et al., 2020; Zhang et al., 2021a; Zhang et al.,
2021; Hanada and Goto, 2021; Masmoudi et al., 2021; Zhang

et al., 2022). Neutral co-ligands, such as trioctylphosphine oxide
(TOPO, 4), tributylphosphine oxide (TBPO, 5), tributylphosphate
(TBP, 6), or mixtures of trialkylphosphine oxides (Cyanex 923, 7)
are also required in the application of β-diketone extraction systems
(Figure 1). These co-ligands can generally saturate the coordination
sphere of lithium ions, and the resulting complexes are less hydrophilic,
which promotes their transfer into the organic phase (Atanassova and
Kurteva, 2016).

Healy (1968) studied the synergistic effect of using HTTA with
various co-ligands (TOPO, TBP, etc.) for extracting alkali metal ions (Li+,
Na+, K+, and Cs+). The results showed much higher extraction ability for
Li+ than for Na+, K+, and Cs+. Slope analyses suggested that the extracted
species can best be described as [M(TTA)S2] (M = Li+, Na+, K+, Cs+; S =
co-ligands). Zhang et al. (2020) introduced deprotonated HBTA using a
2MNaOHsaponification reaction into a kerosene system in the presence
of co-ligand TOPO and achieved 90% lithium extraction by a three-stage
countercurrent. The loaded Li+ was stripped by 6M HCl to obtain a
lithium-rich solution. Pranolo et al. (2015) investigated a synergistic
liquid–liquid extraction system containing LIX 54 and Cyanex 923 in
ShellSol D70 for separating lithium from an aqueous solution containing
a high concentration of sodium. More than 97% of the lithium was
transferred to the organic phase, while less than 3%of the sodiumpresent
was co-extracted at pH 11 in a single extraction stage, demonstrating high
lithium selectivity using the LIX 54 and Cyanex 923 synergistic system.

Ionic liquids (ILs) are considered to be effective reagents or “green
solvents” for metal separation due to advantages such as negligible
vapor pressure, high thermal stability, and tunable molecular structures
(Sun et al., 2012). Various ILs have been extensively studied in recent
years for the extraction of lithium (Shi et al., 2017a; Shi et al., 2017b; Cui
et al., 2019; Wang et al., 2020; Bai et al., 2021; Cai et al., 2021; Zhang
et al., 2021c; Hanada and Goto, 2021; Yu et al., 2021; Ole et al., 2022).

FIGURE 1
Molecular structures of β-diketone derivatives and commonly used neutral co-ligands.
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Wang et al. (2020) investigated synergistic extraction systems
containing diketonate-based ionic liquid extractants and a
trialkylphosphine oxide—presumably Cyanex 923—for lithium
separation in the presence of sodium. The ILs combined different
deprotonated β-diketone anions, such as [BTA]− or [TTA]−, with
trialkylmethylammonium ([A336]+) cation. Experiments showed that
83% of lithium can be extracted with the mixture of [A336][TTA] (8,
Figure 2) and the phosphine oxide from a basic aqueous solution (pH =
10.2), which was higher than that of HTTA (72%) (Wang et al., 2020).

Hanada and Goto (2021) investigated a new synergistic deep
eutectic solvent (DES) system containing a β-diketone (HBTA or
HTTA) and a neutral extractant such as TOPO. Therefore, HBTA
can act as a hydrogen bond donor (HBD) and TOPO as a hydrogen
bond acceptor (HBA), and their mixture exhibited a high extraction
power for lithium ions and good selectivity for lithium ions over
sodium and potassium ions.

Overall, the various studies employing the β-diketones HTTA
and HBTA showed a high binding affinity and selectivity for lithium
ions over other alkali metal ions. However, there are still some issues
that need to be addressed. For example, the β-diketones generally
require saponification pretreatment that employs a strong base such
as NaOH, or they need a very basic aqueous solution (pH > 11) for
effective extraction of lithium ions. Consequently, a large amount of
base is consumed, and it also results in the severe corrosion of
equipment. Moreover, it is reported that β-diketones tend to have
high dissolution in aqueous solutions under basic conditions, which
may lead to loss of ligands (Xu et al., 2021). Nevertheless, high
partition coefficients (D) of lithium and separation factors (ß) of
lithium toward sodium, potassium, and cesium are obtained, as
summarized and compared with other receptors in Table 1.

2.2 Organophosphorus extractants

Acidic organophosphorus compounds such as di-(2-ethylhexyl)
phosphoric acid (D2EHPA, 9) (Hano et al., 1992; Song et al., 2020;
Meng et al., 2021;Mahmoudi et al., 2022), 2-ethylhexyl phosphonic acid
mono-2-ethylhexyl ester (PC-88A, 10) (Hano et al., 1992; Zushi et al.,
2000; Virolainen et al., 2017), di(2-ethylhexyl) phosphinic acid (P227,
11) (L et al., 2022), and bis(2,4,4-trimethylpentyl) phosphinic acid
(Cyanex 272, 12) (Swain et al., 2010; Nguyen and Lee, 2018; Lu et al.,
2021) were also probed for the extraction of lithium ions (Figure 3).
Their application generally required the presence of neutral co-ligands

such as TOPO, TBP, or Cyanex 923 (Hano et al., 1992; Lu et al., 2021;
Meng et al., 2021). The synergistic effect provided by these co-ligands is
the same as the mechanism mentioned earlier. Hano et al. (1992)
studied the extraction of lithium ions using D2EHPA or PC-
88A from alkali and alkaline earth metal ions (Li+, Na+, K+,
Mg2+, and Ca2+). Both extractants exhibited higher selectivity
for Li+ over Na+ and K+, but much higher extraction powers
were observed for the divalent cations Mg2+ and Ca2+. An
apparent synergistic effect was observed for lithium ion
extraction after the addition of TBP as co-ligand. Shi et al.
(2020) employed a saponified D2EHPA–kerosene system to
remove Ca2+ and Mg2+ from Li+ concentrated solution. The
process they proposed can remove 99% of Ca2+ and 98% of Mg2+

in a three-stage extraction, while the loss of Li+ was
approximately 5% (Shi et al., 2020). Liu et al. (2022) found
that 11 exhibited a superior separation ability of Ca2+ and Mg2+

from Li+. In a multi-element system, Ca2+ and Mg2+ were
removed quantitatively, while only 0.7% Li+ was extracted.
The purity of Li+ in aqueous solutions can reach more than
99% in the simulated system. Liu et al. (2022) investigated the
efficiency of lithium ion extraction in the presence of Co2+ using
the Cyanex272/TBP/kerosene system. The experiments showed
that Co2+ was extracted almost quantitatively at a pH of 5.5,
whereas at a lower pH no transfer of Li+ into the organic phase
was observed. This pH was thus sufficient to separate the two
metal ions. However, at a pH of 8, no more than 40% of the Li+

was extracted, and further increasing the pH did not result in
higher extraction yields (Lu et al., 2021). These findings
demonstrated that D2EHPA, PC-88A, P227, and Cyanex
272 have a much stronger coordination ability for divalent

FIGURE 2
Molecular structure of ionic liquid [A336][TTA] (8) for lithium
extraction.

TABLE 1 Distribution coefficients of lithium and separation factors of lithium over sodium, potassium, cesium, and magnesium for different receptors.

Receptor Solvent DLi βLi/Na βLi/K βLi/Cs βLi/Mg Ref.

HTTA–TBP Benzene 3 >500 >104 >104 - 26

LIX 54–Cyanex 923 ShellSol D70 31 1,575 - - - 34

[A336]TTA–Cyanex 923 - ~ 17 310.8 - - - 36

HTTA–TOPO - 44.4 2000 - - - 12

[N4444][D2EHPA] Toluene ~ 3.7 ~ 6 ~ 12 ~ 19 - 38

TBP-[Bmim]3PW12O40 Dimethyl phthalate 2.2 ~ 20 ~ 110 - 283.1 67

4-Phosphorylpyrazolone 21 CHCl3 3.3 761 618 81 - 76

Calix[4]arenes 32 CH2Cl2 1.8 1.3 2.2 36 - 102

DLi: distribution coefficient; β: separation factor.
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cations than monovalent lithium ions. Thus, organophosphorus
compounds can be employed as strong chelating reagents to
remove divalent cations from a solution containing mono- and
divalent cations under acidic conditions.

D2EHPA-based ILs including tetrabutylammonium bis(2-
ethylhexyl)-phosphate (13, [N4444][D2EHPA]) and tetraoctyl-
ammonium bis(2-ethylhexyl)-phosphate (14, [N8888][D2EHPA])
(Figure 4) were synthesized by Shi et al. (2017b). Comparative
studies with D2EHPA showed their suitability for extracting lithium
ions in the absence of additional hydrochloric acid.While up to 90% of
the Li+ present was transferred to the organic phase by 13, D2EHPA
showed only negligible extraction activity. In addition, these
experiments revealed that increasing the length of the alkyl chain of
the used ammonium cation led to a decrease in their extraction ability.
The authors attributed this to an increase in steric hindrance. Probing
the lithium distribution ratio dependence on the IL concentration
suggested the formation of 1:1 complexes, where one molecule of IL
formed a complex with a single lithium ion during the extraction
process. Competitive studies involving alkali metal ions showed a
preferred extraction of Li+ over Na+, K+, Rb+, and Cs+ (Shi et al., 2017b).

2.3 TBP/FeCl3 system

The TBP/FeCl3 extraction system is very commonly used for the
separation of Li+ from a high concentration of Mg2+ (Zhou et al.,
2012; Su et al., 2020a; Li and Binnemans, 2021a; Li and Binnemans,
2021b; Su et al., 2022; Sun et al., 2022). The typical extraction
mechanism can be explained by Eqs 1−3 (Shi et al., 2019a):

Extraction Li+ aq( ) + FeCl4[ ]− aq( ) + nTBP org( ) ↔ LiFeCl4 · nTBP org( )
(1)

Stripping LiFeCl4 · nTBP org( ) +HCl aq( ) ↔ HFeCl4 · nTBP org( )
+LiCl aq( ) (2)

Saponification HFeCl4 · nTBP org( ) +NaOH aq( ) ↔ NaFeCl4

· nTBP org( ) +H2O aq( ) (3)

These equations show that FeCl3 is a necessary source for forming
an anionic species in the presence of a large excess of Cl−. Li+ can be
transferred to the organic phase as a counterion to neutralize the
complex of [FeCl4]

- and TBP. A very high concentration of Cl− (> 6M)
is required to form [FeCl4]

- in this system. In addition, a high HCl
concentration is commonly required in the stripping process to prevent
the loss of Fe3+ (Shi et al., 2019b; Su et al., 2020b). NaOH orMg(OH)2 is
usually utilized as a saponification agent to neutralize the proton in the
organic phase after stripping (Zhou et al., 2020). The binding affinity of
TBP toward cations followed the order H+ > Li+ > Na+ > Mg2+ ≈ K+

(Zhou et al., 2020); therefore, Na+ can be replaced by Li+ in the reuse
cycle of extraction. Shi et al. (2019b) investigated the separation of Li+

from Mg2+ using a TBP/kerosene–FeCl3 system. With a TBP
concentration of 75%, a molar ratio of 1.3/1 of Fe/Li, and an acid
concentration of 0.01 mol/L in brine, 68% of lithium was extracted in a
single stage. Subsequently, the loaded Li+ phase was stripped with 6M
HCl, and the organic phase was regenerated with 2 MNaOH (Shi et al.,
2019b). Zhou et al. (2020) used HCl+MgCl2, HCl+NaCl, Mg(OH)2, or
MgCO3 as washing, stripping, and regeneration reagents, respectively.
Li+ extraction of about 65% was achieved, and the separation factor

FIGURE 3
Molecular structures of organophosphorus extractant representatives.

FIGURE 4
Molecular structures of ionic liquids [N4444][D2EHPA] (13) and
[N8888][D2EHPA] (14) for lithium extraction.
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between Li+ and Mg2+ was 350 after a single-stage extraction (Zhou
et al., 2020). Despite the high separation factor, there are two main
problems to be solved in the TBP/kerosene–FeCl3 system: first, the easy
formation of a third phase and, second, the difficult removal of loaded
Li+ from the organic phase (Zhou et al., 2021).

To avoid the use of a high concentration of HCl in the stripping
process, Su et al. (2020c) introduced PC-88A (10) into the
TBP/kerosene organic phase. Slope analysis revealed that Li+ is
extracted in the form of [Li·2TBP·FeCl4], indicating that 10 was
not involved in the coordination during the Li+ extraction process.
However, 10 can coordinate Fe3+ in the form of [FeCl2(10-H)·(10)·
2TBP] once the loaded organic phase is washed by H2O.
Consequently, Li+ was stripped from the extracted species by
H2O instead of HCl solution, which dramatically increased the
stripping efficiency more sustainably (Su et al., 2020c).

Based on the advantages of ILs, attempts have been made in recent
years to replace FeCl3 with an IL to provide an anion for the extraction
of lithium ions. Wang et al. (2019) introduced 1-butyl-3-
methylimidazolium phosphotungstate ([Bmim]3PW12O40) as a co-
extraction reagent in the TBP system. The experiments showed that
selectivity under optimized conditions follows the order Li+ >Na+ > K+

≈Mg2+. Proton NMR spectroscopy analysis demonstrated that Li+ was
extracted by a cation exchange mechanism: one [Bmim]+ cation was
transferred to the aqueous phase for each Li+ extracted into the organic
phase (Wang et al., 2019). Li et al. (2021) synthesized 1-butyl-3-
methylimidazolium tetraphenylboron ([Bmin]BPh4) and prepared
the organic phase in CH2BrCl solvent containing TBP and ([Bmin]

BPh4). After a four-stage cross-flow extraction, 99% of Li+ was
extracted. The loaded Li+ was completely removed using 2.0 mol/L
Na2CO3 solution as the stripping agent, and the organic phase was
reused directly without a regeneration process (Li et al., 2021). In order
to avoid the loss of valuable IL cations such as [Bmim]+ during lithium
ion extraction, Zhou et al. (2021) introduced sodium
hexafluorophosphate (NaPF6) as a co-extraction reagent. The
experiments showed that NaPF6 exhibits comparable efficiency as
[Bmim][PF6] for lithium ion extraction (79%) from magnesium ion-
rich solution by TBP. In addition, the studies revealed a more efficient
stripping of Li+ from the loaded organic phase by HCl than by Na2CO3.
However, Na2CO3 is also a potential stripping reagent since the Li

+ can
be stripped as Li2CO3 in the aqueous solution, and the organic phase
can be directly reused for the next cycle (Zhou et al., 2021).

2.4 Pyrazolone-based receptors

Acylpyrazolones, which are members of the β-diketone family,
are widely used for the coordination of various metal ions (Figure 5)
(Marchetti et al., 2005; Marchetti et al., 2015; Taydakov et al., 2020).
Jensen et al. (1959) reported an improved method for synthesizing
1-phenyl-3-methyl-4-acyl-pyrazolones-5 and its use for the
extraction of metal ions. Thereafter, acylpyrazolones have been
used extensively as effective chelating reagents for various
applications, such as the determination of metals in trace
amounts; in coordination studies with various metal ions
including transition metals, lanthanoids, and actinoids; and in
the separation of metals (Marchetti et al., 2005; Marchetti et al.,
2015; Taydakov et al., 2020). Bukowsky et al. (1992) synthesized two
acylpyrazolone derivatives by the condensation reactions of 1-
phenyl-3-methylpyrazol-5-one with the corresponding acid
chlorides based on the method of Jensen et al. (1959).
Liquid–liquid extraction studies employing 1-phenyl-3-methy1-4-
stearoylpyrazol-5-one (15) or 1-phenyl-3-methy1-4-lauroylpyrazol-
5-one (16) in a pH range of 4–7 showed high extraction of Mg2+ and
Ca2+, whereas the determined distribution rate for Li+ was low. By
adding TOPO, the authors observed a significant increase in the
extraction of Li+. Therefore, the high separation factors for the
alkaline earth metal ions were drastically diminished. However,
other alkali metal ions were extracted to only a minor extent.

In addition, much higher extraction of Li+ than of Na+, K+, and Cs+

was observedwhen1-phenyl-3-methy1-4-benzoylpyrazol-5-one (17) and

FIGURE 5
Molecular structures of acylpyrazolone derivatives used for lithium separation and their tautomeric forms.

FIGURE 6
Molecular structure of 4-diphenylphosphinoyl pyrazolone (18).
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a phosphine oxide were used as an extractant and co-ligand, respectively
(Bukowsky et al., 1992). Li et al. employed 17 and Cyanex 923 (7) to
remove magnesium ions from lithium ion-rich brine. All Mg2+ from a
synthetic solution containing 24 g/L Li+ and 0.24 g/L Mg2+ was removed,
while only 0.6% Li+ was co-extracted. The slope analyses showed that
Mg2+ was extracted as [Mg(17)2(7)2], while Li

+ was extracted as amixture
of [Li(17)x(7)2] (x = 1, 2) (Li and Binnemans, 2020).

Based on the results obtained, it appears that higher binding
affinity or extraction enhancement of acylpyrazolones toward metal
cations can be obtained when phosphine oxides or phosphate esters
are present in the extraction process. Matt et al. (1992) first
introduced a phosphinoyl fragment into the pyrazolone moiety
to synthesize 4-diphenylphosphinoyl pyrazolone (18) and
investigated the binding properties for Fe3+ (Figure 6). However,
very few follow-up studies on the synthesis and application of this
type of P-containing pyrazolone ligands have since been reported.

Consequently, the Weigand group developed a series of new
4-phosphorylpyrazolone receptors by inserting a more tunable and
versatile phosphoryl moiety into the pyrazolone backbone (Figure 7)
(Zhang et al., 2022; Zhang et al., 2023). The lipophilicity of ligands
depends on the properties of substituents in positions R1 and R2

(Figure 7). The bite size of the two O-donors of the ligands plays
an important role in metal ion binding and selectivity and is highly
tunable by the substituents at the R2 position. As shown in Figure 7, the
bite size can be characterized by the distance between two O-donors

(O···O). Herein, we have listed the O···O distance for each receptor in
Table 2. Moreover, the electronic properties of the ligands are strongly
influenced by the substituents at the R3 position (Figure 7). Zhang et al.
(2022) synthesized different 4-phosphorylpyrazolone derivatives 19–21
by altering substituents at the R2 positions, while the substituents at the
R1 and R3 positions were fixed with an isopropyl and a nitro group,
respectively. X-ray crystallographic analysis of free ligands and their
tetrabutylammonium salts revealed that the bite size between the
chelating O-donor atoms of the phosphoryl and azole moieties is
highly influenced by the R2 substituents, in which the smallest O···O
distance is obtained in 21. Of the substituents studied, the phenyl group
has a higher steric requirement and exhibits the smallest bite size
between the chelating O-donor atoms. The ligands were successfully
used to coordinate with lithium cation and various co-ligands (4, 5, and
6). The lithium complexes involved exhibited diverse coordination
modes, such as dimer and trimer, which represent the first clear
evidence for the synergistic role of these co-ligands on a molecular
level (Figure 8). Sophisticated solution studies employing 1H, 31P, and
7Li NMR exhibit reversible interconversion between dimeric and
trimeric species. Furthermore, mass spectrometry and liquid–liquid
extraction studies also provide evidence for the presence of such
multinuclear lithium complexes in solution. The highest Li+

extraction (78%) was obtained for 21 in a single element
liquid–liquid extraction experiment at pH 8.2, which reflects the
influence of bite size on lithium ion capture. Multi-element
extraction studies confirm that 19–21 represent a new class of
receptors that selectively extracted Li+ from high concentrations of
Na+, K+, andCs+ undermild conditions (pH= 8.3). Hence, up to 77% of
Li+ was transferred into the organic phase, whereas 6% of Cs+ was
extracted, while Na+ and K+ were extracted in trace amounts (< 1%).

As an extension of this study, theWeigand group furthermodified
the 4-phosphorylpyrazolone receptors and synthesized derivatives
22–25 by changing R3 substituents (Figure 7) (Zhang et al.,
2023). Electron-neutral (R3 = H, 22), electron-donating (R3 =
Me, 23), and electron-withdrawing (R3 = Cl, 24; R3 = CF3, 25)
substituents were introduced to the R3 position, as the acid
dissociation properties of this type of ligand are strongly
influenced by the electronic nature of such groups (Zhang et al.,
2023). Receptors 22–25 proved to be soluble in nonpolar solvents
such as n-octane than 19–21, which is beneficial for real-world
applications. Currently, kerosene (mainly composed of alkanes), as
a nonpolar solvent, is the most common diluent for metal ion
extraction in industry due to its low toxicity and cost. Therefore,
the good solubility of receptors 22–25 in n-octane (C8H18)
provides a good hint of their industrial application.

X-ray crystallographic analysis of magnesium and calcium
complexes shed light on the coordination behavior of these metals,
particularly for the co-ligands 4 and 5 involved complexes. Single-
element liquid–liquid extraction experiments using an aqueous phase
at a pH of 5 showed that the highest Li+ extraction (77%) was observed
for 25, in which a strong electron-withdrawing group CF3 was
introduced to the R3 position. Multi-element (including Li+, Na+,
K+, Mg2+, and Ca2+) extraction experiments demonstrated that the
phase transfer of Mg2+ and Ca2+ is much higher than Li+ at equilibrium
pH 4.2. Mg2+ and Ca2+ were extracted quantitatively, while only 29% of
Li+ was extracted and no Na+ and K+ were transferred into the organic
phase using 25. Interestingly, a stepwise liquid–liquid extraction of

FIGURE 7
Molecular structure of 4-phosphorylpyrazolone receptors.

TABLE 2 O · · · O distance obtained from the molecular structures of 4-
phosphorylpyrazolone derivatives 19–25 (Zhang et al., 2022; Zhang et al., 2023).

Receptor O · · · O (Å)

19 3.0748(17)

20 3.0109(11)

21 2.5614(12)

22 2.6044(16)

23 2.5695(11)

24 2.5764(19)

25 2.5940(14)
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Ca2+, Mg2+, and Li+ by pH regulation in an acidic pH range was
achieved: the majority of Ca2+ (64%) was removed at pH 2 and most
Mg2+ (93%) was extracted at pH 3, while all Ca2+ was already removed
following several reiterations of the first step. The required pH (> 4.2)
for the effective Li+ extraction (> 50%) is obviously higher than that
observed for the extraction of Mg2+ and Ca2+. At equilibrium pH 6,
94% of Li+ was extracted and less than 4% of Na+ and K+ extractions
were observed. The findings of the Weigand group demonstrated that
4-phosphorylpyrazolones can be employed as pH-regulated receptors
for the stepwise separation of Ca2+, Mg2+, and Li+ from the alkali and
alkaline earthmetals (Zhang et al., 2023), which is probablymost easily
realized by using standard devices such as amixer-settlers, in which the
pH is adjusted before eachmixer. The study indicated a way to separate
lithium ion from acidic brine or spent LIB leaching solutions. This
supports a more environmentally friendly future supply of lithium.

2.5 Macrocyclic receptors

Macrocyclic receptors, particularly crown-4 derivatives, are another
type of widely studied ligands for selective lithium ion recognition

(Tagne kuate et al., 2010; TSE et al., 2021; Kim et al., 2022a; Gomez-
Vega et al., 2022; Munasinghe et al., 2022; Yang et al., 2022). Charles
J. Pedersen was the first to synthesize a series of crown ethers and study
their coordination behavior with various metal salts (Pedersen, 1967).
He shared the 1987 Nobel Prize in chemistry with Donald J. Cram and
Jean-Marie Lehn for the development of supramolecular chemistry
(Pedersen, 1967; Lehn, 1988). His detailed studies on the coordination
behavior of crown ethers containing five to ten oxygen atomswith some
alkali, alkaline earth, and lanthanoid metal ions such as Li+, Na+, K+,
Rb+, Cs+, Ca2+, Sr2+, Ba2+, La3+, and Ce3+ provided very valuable clues for
later extensive studies (Pedersen, 1967; Gokel et al., 2004a; Ge et al.,
2009; Nisola et al., 2020; Yan et al., 2020; Docker et al., 2022). According
to the “hard and soft acid and base” (HSAB) theory, the oxygen atoms of
polyethers are hard bases that can form stable complexes with hard
Lewis acids such as alkali metal ions Li+, Na+, and K+ through
electrostatic interactions (Pearson, 1963; Gokel et al., 2004b; Sambe
et al., 2021). The coordinated cations are generally located in the center
of the crowns and, in some cases, sandwich structures are observed if the
cation is too large to fit in the cavity (Sambe et al., 2021). Therefore, the
size of the cavity of the crown ether is crucial for selective binding with
different metal ions, and this parameter can be tuned by adjusting the

FIGURE 8
Molecular structures of (A) [Li2(21-H)2(5)2] · 2CH2Cl2, (B) [Li2(21-H)2(6)2], and (C) [Li3(21-H)3(4)] · 0.67C5H12, including a schematic drawing of their
coordination mode (hydrogen atoms and solvents are omitted for clarity, and ellipsoids are drawn at the 50% probability level).

FIGURE 9
Molecular structures of 12-crown-4 and 14-crown-4 derivatives.
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oxygen atoms by introducing suitable substituents (Liu et al., 2019). It is
known that 12- to 14-membered crown ether rings (cavity size in the
range of 1.2–1.8 Å), such as 12-crown-4 (12C4, 26) (Figure 9), show the
most selective preference for lithium ions (Pedersen, 1967; Olsher et al.,
1991; Ali et al., 2018; Luo et al., 2018). There has been much effort to
improve the selectivity of crown ethers toward coordination of the
lithium cation by maintaining the overall cavity size; modification of
those have also led to isotope separation of 6Li and 7Li (Cui et al., 2021).
Kobiro and colleagues (Kazuya et al., 1988; Kobiro, 1996) and Buchanan

et al. (1988) have already investigated the influence on extraction by
modified 14-crown-4 ethers in the last century, using the dibenzo-
derivative 27 and the dicyclohexyl derivative 28 (Figure 9).
Furthermore, incorporation of bulky decalin units in 29 strongly
enhanced the extraction power toward Li+ due to an increase in the
lipophilicity of the corresponding lithium complexes in organic
medium. The latter showed quantitative extraction of lithium
picrate into chloroform at a receptor-to-cation ratio of 10:1, but
20% Na+ was also extracted under these conditions (Kobiro,
1996). In contrast, using the mono-substituted decalino-14-
crown-4 ether 30, the Li+ extractions decreased to 81%, but
the Li+/Na+ selectivity improved, as only 5% of Na+ was
transferred into the organic phase. Furthermore, for the larger
alkali metals K+, Rb+, and Cs+, extraction yields below 1% were
observed, proving the receptor to be highly selective for Li+.

Gohil et al. (2019) synthesized the macrocyclic ionophore 31
(Figure 10), which selectively bound Li+ in the presence of other
alkali and alkaline earth metal ions. Single crystals suitable for X-ray
analysis confirmed that up to two metal centers are coordinated by
the ligand. Competitive solid–liquid extraction experiments revealed
that up to 69% of 31 was loaded by LiCl, whereas less than 5% of
NaCl, KCl, MgCl2, and CaCl2 were loaded to the receptor in
nitrobenzene if the salt mixtures were present in 50 times molar
excess. Liquid–liquid extractions employing the same solvent
showed a loading of the receptor of 26% when 1 M LiCl was
used as the aqueous phase. The loading of Li+ marginally
increased to 27% if NaCl, KCl, MgCl2, and CaCl2 were also
present, while their loading was negligible (Gohil et al., 2019).

FIGURE 10
Molecular structure of the macrocyclic ionophore 31.

FIGURE 11
Molecular structures of the calix[4]arene derivatives.
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Calix[4]arene bearing different substituents at the lower rim
(32–34; Figure 11) have been synthesized and employed for lithium
ion extraction (Yaftian et al., 1997; Lukin and Vysotsky, 2001).
Yaftian et al. (1997) studied the hybrid diamide-di(phosphine oxide)
(32) functionalized calix[4]arenes for the recognition, extraction, and
transport of alkali metal picrates. The authors found an extraction order
of Li>Na>K>Rb>Cs, with no pronounced selectivity observed (65%
Li+, 58% Na+, 45% K+, 20% Rb+, and 5% Cs+ extraction). Lukin and

Vysotsky (2001) found that a calix[4]-arene derivative with four
phosphoryl groups on the lower rim, such as diethoxyphosphoryl in
33, showed high lithium ion extraction and selectivity over other alkali
metal ions.

Otho and colleagues studied p-t-octylcalix[4]arene derivatives
for the extraction of lithium ions (Sadamatsu et al., 2016; Steven
kurniawan et al., 2019; Kurniawan et al., 2021). A series of
derivatives with propyl or acetic acid groups were therefore

FIGURE 12
Ion-pair receptors for lithium salt extraction, with a schematic drawing of their recognition of the metal ion and the anion in 35 and 36.
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synthesized and investigated for the extraction of alkali metal
ions (Sadamatsu et al., 2016). The authors observed that only
monoacetic acid calix[4]arene 34 exhibited lithium ion selectivity
over sodium ions. The same group studied 34 extensively in a
microreactor system for the selective extraction of lithium ions
from alkali and alkaline earth metal ions (Steven kurniawan et al.,
2019). The kinetics of lithium extraction was significantly
improved to 2.0 s compared to 24 h in a batch system.
Recently, they developed a new concept regarding the fluid
dynamics of lithium ion extraction employing 34 in T-type
microreactor systems; they observed that the larger specific
surface area, shorter diffusion distance, and the faster vortex

velocity in the organic droplets dramatically enhanced the
extraction kinetics (Kurniawan et al., 2021).

3 Receptors for lithium salts

In the last few decades, a number of researchers have developed
ion-pair receptors for the recognition of metal salts. Here, the
receptor provides both a cation and an anion recognition site
and offers the promise of strongly binding ion pairs or pairs of
ions as the result of direct or indirect cooperative interactions
between co-bound ions (Kim and Sessler, 2010). Mahoney et al.
(2004a) studied the macro-bicyclic receptor 35 (Figure 12) for the
recognition and extraction of LiCl and LiBr. While the chloride and
bromide salts of sodium and potassium were isolated as contact ion
pairs (Mahoney et al., 2004b), X-ray analysis of suitable single
crystals of both lithium salts revealed their coordination as
water-separated ion pairs. Competitive solid–liquid extraction
studies showed a high selectivity of 35 for Li+ over Na+ and K+.
When used as both chloride and bromide salts, more than 90% of the
complex formed in the organic phase was identified as the respective
Li+ complex, which was attributed by the authors to the unusually
high solubility of the associated lithium ion pairs in organic solvents
(Mahoney et al., 2004a).

The Sessler group synthesized calix[4]pyrrole with hemisphere
band (36) that functions as a lithium salt ion pair receptor; they
demonstrated that this receptor can achieve high selectivity for
lithium salts over the corresponding sodium and potassium salts
under solid–liquid and liquid–liquid conditions (He et al., 2016).
They also synthesized 37 and 38 and further enriched the library of
ditopic ion-pair receptors that are capable of extracting LiCl from
NaCl and KCl mixtures under solid–liquid and liquid–liquid
extraction conditions (He et al., 2018). In solid–liquid extraction
experiments, good selectivity of LiCl over NaCl and KCl was
obtained for both receptors. In liquid–liquid extraction studies
with 37, the reverse order was observed: KCl > NaCl > LiCl. In
contrast, the authors observed for 38 no evidence of co-extraction of
NaCl and KCl when LiCl was extracted; they concluded that there
was pronounced selectivity toward LiCl. However, a drawback is
that very high concentrations of LiCl (10 M LiCl) were required in
the aqueous phase, and only 15% loading of the receptor was
observed.

Further to this, Hong et al. (2020) synthesized triazole-
bearing strapped calix[4]pyrrole 39 and studied its interaction
with LiCl by 1H NMR and X-ray crystallography. The latter
confirmed that the anion was bound to the calix[4]pyrrole
unit through multiple hydrogen bonds. However, the crystal
structure exhibited binding of Li+ to triazole nitrogen and the
coordination of water. Nevertheless, a series of liquid–liquid and
solid–liquid extraction studies demonstrated the successful
transfer of LiCl into the organic phase. In addition, the
authors did not detect any changes when comparative studies
were performed with a mixture of LiCl, NaCl, and KCl; they
concluded that NaCl and KCl were not co-extracted. This
observation was confirmed in experiments with bromide salts.
Again, the formation of host guest complexes was observed only
for LiBr (Hong et al., 2020).

FIGURE 14
Ion-pair receptors for lithium salt extraction in the Beer group.

FIGURE 13
Heteroditopic calix[4]arene receptor for lithium salt extraction.
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Based on lead work using calix[4]arenes as receptors for the
extraction of lithium ions (Yaftian et al., 1997; Lukin and
Vysotsky, 2001; Sadamatsu et al., 2016; Steven kurniawan
et al., 2019; Kurniawan et al., 2021), the heteroditopic system
40 (Figure 13) was also developed (Kim et al., 2022b). The
amidoindole groups on the upper rim provided H-bond
donors for the interaction with the anion, while ether O-
donor were provided in the lower rim for the coordination of
the metal ion. Proton NMR studies provided evidence for the
ion pair binding modes for LiCl and showed a high selectivity
among the competitive alkali metal chloride salts NaCl, KCl,
RbCl, and CsCl. Crystallographic analyses of the LiCl complex
revealed that the lithium cation was coordinated with the carbonyl
oxygen atoms of the amide groups, while the chloride anion was
hydrogen-bonded to the indolyl NH protons. Thus, coordination of
the metal salt within the calix[4]arene cavity was not observed, even
when binding occurred as a contact ion pair complex. Solid–liquid
extraction studies showed that 40 can extract LiCl or LiBr into
chloroform.

The Beer group synthesized a series of heteroditopic
macrocyclic receptors 41–43 (Figure 14) to investigate lithium
halide recognition by employing halogen (41) and
chalcogen bonding (42) (Tse et al., 2021). The calculated
constants for 1:1 binding of I− using 1H NMR data obtained in
CDCl3/CD3CN (1:1) are of Ka = 1236 M-1 (41), 622 M-1 (42), and
121 M-1 (43), illustrating a significantly stronger contribution of
the iodo-triazole motifs compared to the chalcogen bonding
motives as the hydrogen bonding host. Furthermore, the
studies revealed that Li+ was coordinated by the
phenanthroline moiety, while binding of the anion occurred in
the vicinity of the halogen bonding site. Preliminary solid–liquid
extraction studies showed that this type of receptor can be used as
solid–liquid extractants for solubilizing solid lithium halide salts
in organic media (Tse et al., 2021).

In general, the macrocyclic receptors bearing a rigid cavity for
the complexation of metal ions or ion pairs have achieved a good
selectivity of lithium salts over other alkali metal salts. However, the
effective extraction of Li+ in the presence of Mg2+ with a similar ionic
hydration radius is rarely reported and remains difficult (Xu et al.,
2021).

4 Conclusion

The highly selective recognition and separation of lithium ions
from alkali and alkaline earth metal ions are of great importance. In
this review, we systematically summarized receptors that are
employed in liquid–liquid and solid–liquid extractions. Cation
receptors, such as β-diketones, organophosphorus extractants,
macrocyclic receptors, and pyrazolone- and 4-phosphoryl-
pyrazolone-based ligands, are widely employed for the
recognition and extraction of lithium ions from aqueous solution.
The β-diketone receptors have shown good selectivity for Li+ in
alkali metal ion mixtures (Li+, Na+, K+, Rb+, and Cs+), but they
preferentially extract alkaline earth metal ions (Mg2+ and Ca2+) when
they are present. In addition, this type of extractant generally requires
basic conditions, which not only increase the consumption of base but
also can lead to extractant loss. Future studies may focus on the

structural modulation of the molecules, such as the introduction of
hydrophobic groups. Acidic organophosphorus receptors exhibited a
stronger binding affinity toward alkaline earthmetal ions than lithium
ions and are therefore suitable for the removal of magnesium or
calcium ions. The neutral organophosphorus TBP/FeCl3 extraction
system showed high Li+/Mg2+ selectivity but relies on a high
concentration of chloride ions, and TBP tends to be lost during
the extraction process. In the future, it will be necessary to further
develop more efficient co-extraction systems to reduce the
dependence on chloride ions and extractant loss. Some
macrocyclic molecules have both Li+/Na+ and Li+/Mg2+

selectivity, but the synthesis is complicated. As a new type of
lithium receptor, 4-phosphorylpyrazolones have a high
selectivity for lithium ions and have been applied to the
recovery of lithium ions from simulated acidic brines at acid
pH. Nevertheless, this mini-review provides an overview of active
reagents used for lithium ion extraction in recent decades, which
will help researchers form a clear understanding of functional
groups for lithium ion binding. This will also be further incentive
for developing more advanced receptors for lithium ion recovery
from both primary sources, such as brines, and end-of-life
products, such as spent lithium-ion batteries.
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