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Introduction: Water scarcity and water pollution are two major issues in India.
Circular economy-based wastewater treatment technology provides the most
sustainable solutions for solving these issues. In this paper, a novel multi-objective
decentralized controller (MODC) is proposed for benchmarking a multi-input
multi-output (MIMO) activated sludge wastewater treatment plant (WWTP) to
achieve maximum effluent quality with minimum cost. WWTPs with conventional
control schemes consume more energy to achieve the desired effluent quality.

Methods: In this study, a MIMO model is developed for the activated sludge
process (ASP) from a physics-based model, and relative gain array (RGA) analysis
are carried out to determine the interaction between the loops to identify a
suitable control scheme for the MIMO process. In addition, a multi-objective
decentralized control problem is formulated to achieve the conflicting multiple
objectives of improving effluent quality and minimizing operational costs by
efficient usage of energy.

Results and discussion: The desired quality and cost reduction are verified by
comparing the integral square error (ISE) and control effort (CE) values of a closed-
loop WWTP. A multi-objective evolutionary algorithm (MOEA), namely, the non-
dominated sorting genetic algorithm (NSGA)-II, successfully solves the multi-
objective control problem. NSGA-II provides several optimal solutions in the
Pareto front. In order to demonstrate the feasibility of the proposed controller,
three optimal solutions are selected from the Pareto-optimal front, and their
closed-loop performances are evaluated qualitatively and quantitatively for both
servo and regulatory operations. Improving the quality of effluent enhances active
sludge production, which in turn increases the methane production in the
anaerobic digester.
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1 Introduction

Wastewater treatment plays a major role in developing countries like India due to water
scarcity and environmental pollution. The population rise in major cities leads to more water
consumption and wastewater discharge into natural water bodies. According to the Central
Ground Water Authority, Government of India report, an average individual utilizes 150–200 L
of water per day. Only 10 L is consumed for cooking and drinking; 40 L per day is spent on
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washing dishes, washing clothes, and floor cleaning; and the remaining
85 L is utilized for toilet flushing and bathing. In general, the 80 L of
wastewater used for washing and bathing could be reused for gardening,
toilet flushing, and other useful applications with proper treatment.
Many cities in India have centralized wastewater treatment plants
(WWTPs) with conventional treatment techniques. However, most
of them are less effective because they require underground pipe lining,
pumping stations, and extensive maintenance. In contrast, a WWTP
with advanced technologies would improve the quality of water and
reduce maintenance costs (Grobelak et al., 2019). These technologies
could lead to the design of decentralized WWTPs that deploy
sophisticated techniques closer to the water generation point to
enable more effective reuse of water. Two types of treatment plants,
namely, sewage treatment plants (STPs) and effluent treatment plants
(ETPs), are used to treat sewage and industrial wastewater, respectively
(Negi et al., 2022). In a WWTP, wastewater undergoes three stages:
primary treatment, secondary treatment, and tertiary treatment.

Generally, untreated sewage has biological oxygen demand (BOD)
and total solid substrate (TSS) values in the range of 250–350 mg/L and
150–200 mg/L, respectively. The characteristics of the effluent are
predominantly influenced by its levels of BOD and TSS. A
considerable proportion of sewage treatment plants (STPs) yield
effluent containing BOD concentrations lower than 20 mg/L and
TSS concentrations lower than 10 mg/L. In order to improve the
quality of effluent, ETP requires conventional biological wastewater
treatment techniques like the activated sludge process (ASP) to control
dissolved oxygen concentration and substrate concentration in the
effluent. The ASP is an effective secondary treatment process that
uses an aeration tank and a sludge-settling tank. Organic matter in the
sewage is digested by aerobic bacteria in the aeration tank. Aerobic
bacteria within the aeration tank facilitate the digestion of organic
substances present in sewage. Ensuring the growth of these aerobic
bacteria necessitates an effective control system. According to Malaysia
(2011), there’s a notable need for advanced control strategies to enhance
or uphold the effluent quality of wastewater treatment plants
(WWTPs). As a result, the processes of modeling, control variable
selection, and designing control structures assume crucial importance in
the pursuit of optimizing control objectives.

Hodasz et al. (2016) developed a linear model to estimate the
unmeasured process parameters of an activated sludge model
(ASM1). They also suggested that good control of a WWTP
leads to better water quality and an efficient use of energy.
Castro-Amoedo et al. (2022) presented an overview of energy
potentials present in a WWTP and demonstrated the concepts
for local energy supply based on integrated perspectives. The
control of dissolved oxygen levels in WWTPs has considerably
reduced the energy required for aeration purposes in aerobic-
activated sludge plants. de Araujo et al. (2013) discussed the
application of sensitivity analysis for the selection of economic
controlled variables for the optimal operation of a WWTP.
Samuelsson et al. (2005) analyzed the cross coupling between
loops in a bioreactor model using the relative gain array (RGA)
and Hankel interaction index array (HIIA) methods. In addition,
they compared the performances of a decentralized control scheme
and a multivariable control scheme. Vilanova and Alfaro (2009)
proposed a multi-loop decentralized control strategy for the control
of a WWTP based on an ASP. Vinayak and Narayanan (2017)
attempted a centralized nonlinear state feedback proportional

integral (PI) controller for an ASP and compared its performance
with a centralized linear state feedback controller. Nor’Azlan et al.
(2017) developed a centralized controller for a linear system using
the Davison, Penttinen–Koivo, and Maciejowski methods. They
have also tuned the centralized controller parameters using single
objective optimization techniques, such as a genetic algorithm (GA),
particle swarm optimization (PSO), and the bat algorithm. Holenda
et al. (2007, 2008) applied a model predictive controller for an
activated sludge wastewater treatment process to control the
dissolved oxygen level in the reactor and optimize the effluent
quality and aeration energy cost against the number of aeration
cycles required per day using a GA. Sweetapple et al. (2014)
demonstrated the potential of multi-objective optimization of
WWTP control strategies for the reduction of greenhouse gas
emissions. Chen et al. (2014) optimized benchmark simulation
model 1 (BSM1) parameters to achieve the percentage of effluent
violation (PEV), overall cost index (OCI), total volume (TV), and
total solid substrate (TSS) using a non-dominated sorting genetic
algorithm (NSGA)-II.

A multi-objective optimization is a valuable tool in control
engineering for controller design and process optimization. Hu
et al. (2014) proposed a multi-objective nonlinear PID controller
parameter for greenhouse systems to minimize cost and maximize
performance using NSGA-II. Tian et al. (2023) recently proposed
that the installation position parameters of a submersible mixer can
be optimized using multi-input multi-output (MIMO) for improved
performance.

Compromising the performance and cost becomes a critical
issue in WWTP. In recent years, applications of multi-objective
optimization have played a major role in WWTP for control and
process optimization. Reynoso-Meza and Carreño-Alvarado (2019)
designed a multi-objective controller for a multivariable active
sludge process with nitrification and denitrification. Qiao and
Zhang (2018) developed a multi-objective control scheme for the
Benchmark Simulation Model 1 (BSM1) MIMO process. Ghimire
et al. (2021) reviewed two routes for developing more sustainable
and circular economy-based wastewater treatment systems and
challenges in those approaches. Kaur (2023) applied multi-
objective optimization to improve the quality of WWTP effluent
based on a data-driven model. The ASP utilizes suspended growth
microorganisms to effectively remove organic matter and nutrients
from wastewater, but it demands substantial energy and land
resources and generates sludge. Trickling filters, in contrast,
employ attached growth microorganisms and offer simpler
operations with lower energy requirements but may not
efficiently remove nutrients and face potential media clogging
issues. Membrane bioreactors (MBRs) combine biological
treatment with membrane filtration, producing high-quality
effluent with reduced sludge, yet they come with higher capital
and operational costs and are susceptible to membrane fouling.
Sequential batch reactors (SBRs) feature flexible operation and good
nutrient removal but may cause variations due to intermittent
operation and require longer treatment time. Constructed
wetlands provide an eco-friendly and aesthetically pleasing
approach with low operating costs but necessitate larger land areas
and may not be suitable for high-strength industrial wastewater.
Advanced oxidation processes (AOPs) utilize chemical reactions to
effectively remove recalcitrant pollutants without producing sludge,
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but their high cost and potential secondary waste generation remain
drawbacks. Ultimately, the choice of the wastewater treatment model
depends on the specific characteristics of thewastewater, treatment goals,
available resources, and environmental considerations. Often, a
combination of different treatment processes is adopted to optimize
efficiency and achieve the desired effluent quality.

Much literature has been reported on circular-economy-based
wastewater treatments (Neczaj and Grosser, 2018; Spreafico, 2022;
Zhang and Liu, 2022). These studies have reported on circular
economics in WWTPs and challenges, barriers that prevent the
implementation of circular economics, and analysis and design for
circular economics.

To our knowledge, using a multi-objective decentralized
controller (MODC) for WWTP with ASM1 to control effluent
substrate concentration and DO concentration by maximizing
effluent quality and minimizing production cost has not yet been
explored. MIMO systems allow for better control performance by
considering multiple variables simultaneously. They can take into
account cross-coupling effects between inputs and outputs, which
often exist in interconnected processes. By controlling multiple
variables concurrently, MIMO models can achieve tighter control
and improved overall system stability. The main aim of this paper is
to design a multi-objective decentralized PI controller for an ASP to
achieve the conflicting multi-objectives of maximizing the
performance of effluent quality and minimizing the production cost.

The main contributions of the proposed work are i) identifying
inputs and outputs and developing an ASM1model for aWWTP, ii)
identification of a suitable controller (centralized/decentralized) for
a MIMO process, iii) multi-objective control problem formulation
for a decentralized controller, and iv) design of a circular economy-
based MODC for WWTP using NSGA-II.

The paper is organized as follows: the modeling of benchmark
ASP is described in Section 2. RGA analysis and multi-objective
problem formulation are elucidated in Section 3. The design of the
proposedMODC is discussed in Section 4. Section 5 presents closed-
loop simulation studies of ASP. The concluding remarks are
presented at the end.

2 Modeling of activated sludge process

2.1 Benchmark ASP

Secondary treatment plays a major role in treating wastewater in
STPs. Secondary treatment consists of an aerobic bioreactor for
aeration purposes and a settling tank, which is used to settle the
sludge at the bottom while effluent is collected at the top of the tank.
The schematic diagram of the ASP is given in Figure 1.

The aerator is taken to be a well-stirred tank for complete mixing in
which microorganisms start reacting with organic pollutants in the

FIGURE 1
Schematic diagram of activated sludge process.

TABLE 1 Steady-state operating points.

Variable Steady-state value Unit

Biomass (X) 565.5 [mg/L]

Substrate (s) 42.35 [mg/L]

Dissolved oxygen (DO) 6.442 [mg/L]

Recycled biomass (Xr) 1244 [mg/L]

Dissolved oxygen concentration (DOi) 0.5 [mg/L]

Influent substrate (Sin) 765 [mg/L]

Model constant (K0) 0.46 —

Affinity constant (Ks) 181 —

Saturation constant (KDO) 0.2 —

Ratio of waste flow to influent flow (β) 0.015 —

Ratio of recycled flow to influent flow (r) 0.8 —

Oxygen mass transfer coefficient (α) 0.017 —

Biomass production factor (γ) 0.54 —

Air flow rate (W) 340 [m3/ℎ]

Dilution rate (D) 0.0638 [ℎ−1]

Biomass growth rate (μmax) 0.229 [ℎ−1]
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wastewater. Six major groups of microorganisms, namely, bacteria,
protozoa, metazoa, filamentous bacteria, algae, and fungi, are
generally found in the aeration basin of the ASP. Microorganisms
take the organic pollutants as food material and start growing; they
collide to form sludge. Then, the suspendedmicroorganisms are given to
the settling tank (gravitational settling tank). In order to maintain the
microorganism level in the tank, a part of the concentrated biomass is
recycled back to the bioreactor, and the remaining material is removed
from the settling tank. This study assumes that there is no
microorganism growth in the settling tank.

2.2 Modeling of ASP

Modeling and control of an ASP is more complex due to biological
reactions and variations in the influent characteristics. The
ASM1 model is developed from the real-time ASP under the
following assumptions: i) complete mixing takes place in the
aeration tank, ii) the substrate concentration of influent wastewater
is constant, iii) all reactions take place only in the aeration basin, and iv)

no reaction takes place in the settling tank. Hence, the concentration of
substrate in the aerobic bioreactor is the same as the concentration of
substrate in the settling tank. Hodasz et al. (2016) reported the dynamic
model of the ASP, which is given in Eqs 1–5.

Mass balance equation of biomass in aeration tank:

dX t( )
dt

� μ t( ) −D t( ) 1 + r t( )( )X t( ) + r t( )D t( )Xr t( ) − bX t( ).
(1)

Mass balance equation of substrate present in aeration tank:

dS t( )
dt

� −µ t( )
Y

X t( ) −D t( )(1 + r t( )S t( ) +D t( )Sin t( ). (2)

Mass balance equation of dissolved oxygen concentration:

dDO t( )
dt

� −K0
µ t( )
Y

X t( ) −D t( ) 1 + r t( )( )DO t( ) +D t( )DOi

+ αW t( ) DOmax −DO t( )[ ]. (3)

Mass balance equation in the activated sludge in the settling
tank:

dXr t( )
dt

� D t( ) 1 + r t( )( )X t( ) −D t( ) β + r t( )( )Xr t( ). (4)

Biomass growth rate in aeration tank:

µ � µmax
S t( )

Ks + S t( )
DO t( )

KDO +DO t( ), (5)

where X(t), S(t), DO(t), Xr(t) are the state variables. In the
ASP, the dilution rate (D) and the air flow rate W(t) are taken as
manipulated variables to control the substrate (S) and dissolved
oxygen (DO), and the biomass production factor (Y) is taken to be
the disturbance variable.

The transfer function plays a pivotal role in wastewater treatment
plant and significantly impacts its performance. It represents the
relationship between input variables, such as influent characteristics
or control actions, and the corresponding output variables, usually
effluent quality or process variables. Understanding the transfer
function allows process engineers and operators to gain insight into
the dynamic behavior of the WWTP and its response to changes in
influent conditions or operational parameters. With this knowledge,
they can design effective control strategies, optimize process conditions,
and enhance treatment efficiency. Additionally, transfer functions are
vital for process modeling and simulation, aiding in predicting system
behavior under different scenarios and facilitating process optimization.
They also play a crucial role in control system design and performance
evaluation, enabling the WWTP to achieve stable operation, comply
with regulatory standards, and consistently deliver high-quality effluent
while minimizing environmental impact.

The transfer function model for MIMO is developed by
linearizing the dynamic equations given in Eq. 1–4 around the
steady-state operating points tabulated in Table 1 (Hodasz et al.,
2016). The transfer function model is presented in Eq. 6:

S s( );DO s( )[ ] � G11 G12; G21 G22[ ] D s( );W s( )[ ], (6)
where

G11 s( ) � S s( )
D s( ) � 688.8s3 + 4261s2 + 680.9s + 0.4246

s4 + 7.651s3 + 7.277s2 + 1.136s + 0.01056
,

FIGURE 2
Flow chart of NSGA-II.

TABLE 2 Parameters of NSGA-II.

Point Process loop KC Ki

K1 LOOP 1 0.4833 0.9666

LOOP 2 120.8256 241.6513

K2 LOOP 1 0.2534 0.5068

LOOP 2 63.3575 126.7151

K3 LOOP 1 0.0796 0.1593

LOOP 2 19.9158 39.8316
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G12 s( ) � S s( )
W s( ) � −0.01268s2 − 0.002405s − 2.457*10

−5

s4 + 7.651s3 + 7.277s2 + 1.136s + 0.01056
,

G21 s( ) � DO s( )
D s( ) � −11.1s3 − 278.7s2 − 52.54s − 0.5329

s4 + 7.651s3 + 7.277s2 + 1.136s + 0.01056
,

G22 s( ) � DO s( )
W s( ) � −0.06151s3 + 0.06734s2 + 0.01078s + 0.0001004

s4 + 7.651s3 + 7.277s2 + 1.136s + 0.01056
.

The aforementioned transfer function model is used for RGA
analysis to identify a suitable control scheme for the ASP in the
subsequent section.

3 Identification of control strategy and
multi-objective control problem
formulation

In this section, RGA analysis is applied to the WWTP transfer
function model, and the multi-objective control problem
formulation is discussed.

3.1 RGA analysis

RGA is used to determine the best input (u)–output (y) pairing
for multivariable systems. It quantifies the change in steady-state
gain between an input–output pair that occurs when other control
loops are closed. It provides a measure of steady-state interactions
from gain. The relative gain between input j and output i is given by
Eq. 7:

λij �
∂yi/∂uj( )

u

∂yi/∂uj( )
y

, (7)

where(∂yi/∂uj)u is the open-loop gain with all other control loops
open, and(∂yi/∂uj)y is the closed-loop gain with all other control
loops closed.

The ASP is a 2 × 2 system; its RGA structure is presented in
Eq. 8:

∧ � λ11 λ12; λ21 λ22[ ] � 1

1 − K12K21
K22K11

1

1 − K11K22
K12K21

;
1

1 − K11K22
K12K21

1

1 − K12K21
K22K11

⎡⎣ ⎤⎦.
(8)

The steady-state gain matrix of the ASP is computed from Eq. 6
given in Eq. 9:

K11 K12 ;K21 K22[ ] � 40.20833 − 0.00232670;−50.4640 0.0095075[ ].
(9)

Using the gain matrix given in Eq. 9, the RGA matrix is
developed using Eq. 10:

λ11 λ12 ; λ21 λ22[ ] � 1.443293 − 0.443293 ;−0.443293 1.443293[ ].
(10)

FIGURE 3
Pareto optimal front of NSGA-II.

TABLE 3 Controller parameters for the selected three points.

Point Process loop KC Ki

K1 LOOP 1 0.4833 0.9666

LOOP 2 120.8256 241.6513

K2 LOOP 1 0.2534 0.5068

LOOP 2 63.3575 126.7151

K3 LOOP 1 0.0796 0.1593

LOOP 2 19.9158 39.8316
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From the obtained RGA matrix, it is recommended that u1 be
paired with y1 and u2 be paired with y2. The obtained RGA
matrix shows that there is a minimum interaction between the
process loops. Hence, a decentralized control scheme is
preferred for an ASP. Muntean et al. (2015) also carried out
RGA analysis for the WWTP process with recycled sludge flow
to influent flow and aeration rate from the bioreactor as
manipulated variables and used the substrate and dissolved
oxygen as controlled variables and reported that a
decentralized control scheme is more suitable for the WWTP
process with the identified model due to fewer interactions
between the loops.

3.2 Decentralized PI controller

As stated earlier, the interaction between inputs and outputs
is weak; hence, a decentralized control architecture with a PI
controller is proposed. The decentralized control is given in
Eq. 11:

Gc s( ) � Gc11 s( ) 0
0 Gc22 s( )[ ], (11)

where Gc11(s) � Kc1 + Ki1
s and

Gc22 s( ) � Kc2 + Ki2

s
.

FIGURE 4
Servo response of Activated Sludge Process (A) Substrate (B) Dissolved oxygen.
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To tune the PI controller parameters, a multi-objective control
problem is formulated in the next subsection.

3.3 Multi-objective problem
formulation (MOO)

The multi-objective control problem is formulated by
identifying the PI control structure to improve the quality of
effluent by minimizing the integral square error (ISE) and
reducing production costs by minimizing control effort (CE). The

FIGURE 5
Variations in manipulated variables under servo operation (A) Dilution rate (B) Airflow rate.

TABLE 4 Performance measures of MODC.

Point Servo Regulatory

Operation Operation

ISE CE ISE CE

K1 0.0715 1.978×106 0.0878 1.19×106

K2 0.0817 9.947×105 0.1026 5.979×105

K3 0.09451 2.558×105 0.1152 1.56×105
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conflicting objective functions of the multi-objective control
problem are given in Equations (12) and (13):

min f1 ISE( ) � ∫∞

0
α1e1( 2 + α2e2

2) dt
� f KC1, Ki1, KC2, Ki2, α1, β1, α2, β2( ), (12)

min f2 CE( ) � ∫∞

0
β1c1( 2 + β2c2

2) dt
� f KC1, Ki1, KC2, Ki2, α1, β1, α2, β2( ). (13)

The aforementioned two objective functions are optimized using
eight decision variables. KC1 and Ki1 are proportional gain and
integral gain of the substrate (loop 1), respectively.KC2 and Ki2 are
proportional gain and integral gain of dissolved oxygen (loop 2),

respectively.α1 and α2 are weighting factors for loop 1 and loop 2,
respectively.β1 and β2 are weighting factors for loop 1 and loop 2,
respectively.e1 and e2 are errors in loop 1 and loop 2, respectively.c1
and c2 are control efforts of loop 1 and loop 2, respectively.

4 Design of a multi-objective
decentralized controller

Multi-objective optimization involves more than one
objective function, and the functions must be optimized
simultaneously. The multi-objective control problem is
commonly solved by evolutionary algorithms (EAs). The
primary reason for using EAs is their ability to find multiple
Pareto-optimal solutions in one single simulation run. Deb

FIGURE 6
Regulatory response of activated sludge process (A) Substrate (B) Dissolved oxygen.
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et al. (2002) reported the performance comparisons of various
multi-objective evolutionary algorithms (MOEAs) such as a
niched Pareto genetic algorithm (NPGA), a Pareto-archived
evolution strategy (PAES), a strength Pareto evolutionary
algorithm (SPEA) and a non-dominant sort genetic
algorithm-II (NSGA-II) for different test problems. Most
EAs have been successfully applied for design optimization
and controller optimization over the past two decades.
However, NSGA-II outperforms other EAs for most multi-
objective problems. It can provide a better spread of solutions
and better convergence near the true Pareto-optimal front. In
this paper, NSGA-II is selected to solve the multi-objective
control problem of ASP.

4.1 Non-dominant sort genetic algorithm-II

Deb et al. (2002) proposed NSGA-II, which alleviates the difficulty
of NSGA. The important features of NSGA-II are as follows:

• NSGA-II is based upon a GA.
• It is an extended version of NSGA.
• It overcomes the difficulties faced in NSGA, which are
complexity, lack of elitism, and choosing the optimal
parameter for the sharing parameter.

• The main aim of NSGA-II is to preserve elitism and diversity.
• NSGA-II gives a Pareto-optimal front, which consists of a set
of optimal solutions for conflicting objective functions.

FIGURE 7
Variations in manipulated variables under regulatory operation (A) Dilution rate (B) Airflow rate.
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The algorithm and detailed implementation procedure of
NSGA-II are found in Kalyanmoy Deb (2002). The flowchart of
NSGA-II is shown in Figure 2.

4.2 Implementation of NSGA-II

The parameters of NSGA-II used for execution are given in
Table 2. The Pareto-optimal front provides the optimal solutions
for the conflicting objective functions, and it is shown in
Figure 3.

To study the trade-off between the performance and cost of
production, three controller parameters at points K1, K2, and
K3 are selected from the Pareto-optimal front and are tabulated
in Table 3.

5 Closed-loop simulation studies
of ASP

5.1 Servo response

The ASP is simulated using the set of differential equations given
in the modeling section. Then, the closed-loop servo responses are
obtained for the selected controllers and qualitatively compared in
Figure 4, and associated manipulated variables are shown in
Figure 5. For quantitative comparison, the performance measures
are given in Table 4.

The servo responses with controller gains at the K1 point do not
provide significant variation in the substrate concentration.
However, the responses show the variation in the dissolved
oxygen concentration in the effluent. From Figures 4B,5B, it is
observed that the process with controller gains at the K1 point takes
less retention time and settles very quickly at the steady-state value
due to large CE (refer Table 4). It is observed from Table 4 that
controller gains at the K1 point give a much smaller integral square
error. Hence, in order to improve the performance, the closed-loop
system must compromise on CE.

The process with controller gains at the K2 point gives the trade-
off between the performance and CE (refer Table 4). The retention
time of the process with controller gains at the K2 point shown in
Figures 4B, 5B is larger than the controller gains at the K1 point;
meanwhile, it takes a smaller CE than a process with controller gains
at the K1 point.

The closed-loop servo response with controller gains at K3

shown in Figures 4B, 5B exhibited a longer retention time than
other controllers. The controller gains at the K3 point have less CE
(refer Table 4). At the same time, it should compromise on the
performance of the system.

5.2 Regulatory response

To study the regulatory operation of the ASP, biomass
production factor (Y) is selected as a disturbance and is changed
from 0.54 to 0.594 at the tenth hour. The simulated regulatory
responses of loop 1 and loop 2 are shown in Figure 6, and the
corresponding manipulated variables are shown in Figure 7. The

quantitative comparison of the regulatory operation with various
controllers is tabulated in Table 4.

It is found from Figures 6A, B that the effect of disturbance
on substrate concentration and dilution rate is less than the
effect on dissolved oxygen concentration and air flow rate. In
quantitative comparison, it is noted that the CE required for
regulatory operation is less than the CE required by the servo
operation. However, the ISEs provided by the regulatory
operation are larger than those of the servo operation. Hence,
minimization of CE will affect the performance of the process.
Meanwhile, minimization of CE reduces the production cost of
freshwater.

The circular economy in wastewater treatment leads to
freshwater, nutrient, and energy recovery from wastewater.
Improvement in effluent water quality leads to the reuse of water
for domestic applications, which will reduce water stress.
Furthermore, nutrients recovered from active sludge can be used
as fertilizers. Energy recovery can also be done by producing biogas
from active sludge.

6 Conclusion

In this work, a novel circular economy-based MODC design
is proposed for the MIMO ASP. The transfer function model is
developed from nonlinear differential equations to select an
appropriate control scheme to control dissolved oxygen
concentration and substrate concentration in the effluent of
the ASP. Then, RGA analysis is performed to determine the
interactions between the loops. From the interaction analysis, it
is concluded that a decentralized controller is the best control
scheme for the ASP due to less interaction between the loops. A
multi-objective control problem is formulated to improve
effluent quality and reduce costs. The multi-objective control
problem is successfully solved by the MOEA NSGA-II. Some of
the conventional wastewater treatment techniques are simple
and have low production costs; however, they require a long
treatment time and result in poor effluent quality. Whereas
sophisticated treatment techniques are more expensive due to
high production costs but can provide good-quality effluent.
The advantage of the proposed multi-objective controller is that
it can provide a number of optimal solutions in the Pareto-
optimal front. The users can select their own solutions
according to the applications from the Pareto-optimal front.
The feasibility of the proposed controller is demonstrated by
selecting three controller parameters from the Pareto-optimal
front, and their closed-loop servo and regulatory performances
are compared qualitatively as well as quantitatively. The
proposed circular economy-based multi-objective controller
will be very useful for the reuse of wastewater, nutrients, and
energy.
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