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Single-pass tangential flow filtration (SPTFF) is a crucial technology enabling the
continuous manufacturing of monoclonal antibodies (mAbs). By significantly
increasing the membrane area utilized in the process, SPTFF allows the mAb
process stream to be concentrated up to the desired final target in a single pass
across the membrane surface without the need for recirculation. However, a key
challenge in SPTFF is compensating for flux decline across the membrane due to
concentration polarization and surface fouling phenomena. In continuous
downstream processing, flux decline immediately impacts the continuous
process flowrates. It reduces the concentration factor achievable in a single
pass, thereby reducing the final concentration attained at the outlet of the
SPTFF module. In this work, we develop a deep neural network model to
predict the NWP in real-time without the need to conduct actual NWP
measurements. The developed model incorporates process parameters such
as pressure and feed concentrations through inline sensors and a
spectroscopy-coupled data model (NIR-PLS model). The model determines
the optimal timing for membrane cleaning steps when the normalized water
permeability (NWP) falls below 60%. Using SCADA and PLC, a distributed control
system was developed to integrate the monitoring sensors and control elements,
such as the NIRS sensor for concentration monitoring, the DNN model for NWP
prediction, weighing balances, pressure sensors, pumps, and valves. The model
was tested in real-time, and the NWP was predicted within <5% error in three
independent test cases, successfully enabling control of the SPTFF step in line with
the Quality by Design paradigm.
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1 Introduction

The continuous processing of monoclonal antibodies (mAbs) is an area of rapidly
growing interest in the biopharmaceutical industry. Currently, more than one hundred
mAbs have been approved by the US FDA, and the annual worldwide market for mAbs is
projected to rise to over $180 billion by 2025 (Jabra, Lipinski, and Zydney, 2021). Continuous
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processing has been shown to offer many advantages over
traditional batch-mode manufacturing, including many-fold
lower capital costs, higher throughput, and efficient utilization of
consumables, water and energy. In order to switch from batch to
continuous processing, each of the multiple unit operations involved
in the manufacturing process, including cell culture, dead-end
filtration, chromatography, viral inactivation, and ultrafiltration,
need to be adapted and modified for continuous operation
(Krippl et al., 2021). Continuous operation can be achieved in
cell culture by using perfusion systems that allow continuous
outflow of mAb-containing supernatant from the cell culture
bioreactor over weeks of operation. For chromatography,
continuity is achieved by increasing the number of columns to
two or more operating in parallel. One column is always “loading”
while the other cycles through “non-loading” steps. In the case of
viral inactivation, continuity can be achieved by having two parallel
viral inactivation tanks or switching to continuously flowing
reactors for viral inactivation (Kateja et al., 2016). Finally, in the
case of ultrafiltration, single-pass tangential flow filtration (SPTFF)
has emerged as a critical technology which essentially uses a very
longmembrane to achieve high concentration factors in a single pass
without the need for recirculation of the retentate back into the feed
vessel, thus enabling continuous inline concentration.

Ultrafiltration is an essential and core unit operation as it
directly influences the quality of the final product. While most
ultrafiltration is done in batches, multiple studies have shown that
continuous ultrafiltration (inline or single pass) may be successfully
integrated into the continuous processing train. These single-pass
tangential flow filtration (SPTFF) devices help save space and boost
the efficiency of succeeding operations by eliminating the need for
several pump runs, which may lead to protein aggregation in batch

systems. Several SPTFF modules, created in response to market
demand over the previous several years, are now commercially
available. Single-use systems like Pall’s AllegroTM and Millipore
Sigma’s Mobius® FlexReady Solution for tangential flow filtration
(TFF), as well as Repligen’s TangenXTM SIUSTM and others, are
just a few examples (Thakur et al., 2022). Creating and testing a
cleaning and sanitization cycle is unnecessary since these single-use
systems are already sterile before usage. However, these disposable
systems are primarily intended for batch operations in which the
feed solution is cycled through the module several (repeated) times
to obtain the desired concentration. Several experimental
investigations have been published that demonstrate the efficacy
of SPTFF in producing mAbs (Kaiser et al., 2022).

However, several process control and integration issues must be
addressed before SPTFF technology can be incorporated into
continuous manufacturing units. The SPTFF membrane mass
transfer can be affected by concentration polarization and the
formation of the gel layer on the membrane surface. This leads
to membrane fouling (Figure 1). Membrane fouling seems to be the
most significant disadvantage of membranes, which must be
prevented or reduced (Jerez et al., 2008). Once it begins to
develop, this phenomenon severely compromises the long-term
functionality of membranes (Stoller and Serrão Mendes, 2017).
The effect is evident concerning the change in normalized water
permeability. When the normalized permeability of the membrane
drops below 60%, it can only be recovered by cleaning, which
directly impacts the integration of SPTFF into the continuous
platform.

Few mechanistic methods have been published in the papers to
anticipate concentration polarization, gel layer formation and
fouling parameters (Chew, Aroua, and Hussain, 2017), which can

FIGURE 1
Illustration showing the various causes of membrane fouling.
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be altered and implemented in the continuous processing train with
SPTFF control. More specifically, the reports have also shown the
utilization of the theory of boundary flux to control the fouling
(Stoller and Serrão Mendes, 2017). However, it takes considerable
time and effort to include mechanistic models in the process stream
when they are implemented in real-time.

Artificial intelligence (AI) and deep learning (DL) have had a
significant impact on a variety of fields over the past several decades,
beginning with web search engine optimization, self-driving
systems, computer visions, and optical character recognition
(Srinidhi, Ciga, and Martel, 2021). Recent years have seen the
introduction of deep learning approaches into manufacturing,

FIGURE 2
(A) Process design with single pump (only feed pump design); (B)Quaternary pump used in the second process design; (C) Process design with both
feed pump and permeate pump (1- Solenoid valve 1 and 2—Solenoid valve 2).

FIGURE 3
(A)Calibration of a chemometric model with NIRS spectra for themeasurement of mAb concertation; (B) Aworkflow for the acquisition and analysis
of spectra in real-time using the Result software.
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empowering them with enhanced control architecture and
prediction-based process optimization solely based on historians.
However, the biopharma industry has yet to completely embrace
deep learning-based strategies to migrate to Industry 4.0. Notably,
the use of regression models is not new to the ultrafiltration
procedure, and multiple publications have shown the use of a
multilayer neural network model for predicting flux/total
resistance and rejection during ultrafiltration (Razavi, Mortazavi,
andMousavi, 2003). In the last 2 decades, AI has been demonstrated
to offer an alternate approach for accurately simulating these
membrane processes. The commonly used AI-ML techniques
include artificial neural network (ANN), fuzzy logic, adaptive
neuro-fuzzy inference system (ANFIS), genetic programming,
and support vector machine (Dornier et al., 1995; Kim et al.,
2009; Cho et al., 2010; Madaeni and Kurdian, 2011; Rahmanian
et al., 2011; Rahmanian et al., 2012; Salehi and Razavi, 2012;
Shokrkar et al., 2012; Shokrkar et al., 2012; Fazeli et al., 2013;
Khayet and Cojocaru, 2013; Barello et al., 2014; Rahimzadeh,
Ashtiani, and Okhovat, 2016; Salehi and Razavi, 2016; Adib,
Raisi, and Salari, 2019; Nejad et al., 2019). ANN is the most
often utilized for modelling membrane separation (Jawad,
Hawari, and Javaid Zaidi, 2021). To improve prediction accuracy
and reduce prediction time, however, an enhanced variant of ANN,
known as a deep neural network, was constructed, and this has been
used in this study.

In this paper, a deep-learning regression model is developed and
used to predict the membrane’s NWP at various time points and
process designs. The model was anchored using an inline NIR probe,
DCS, and control software written in Python. The DCS regulates the
pump and plans a cleaning cycle based on the NWP forecast without
disrupting the process stream. This work leverages process analytical

technology (PAT) and ML to enable automated, integrated, and
well-controlled STPFF operation. In line with the US FDA’s PAT
and Quality by Design (QbD) paradigms, the proposed approach
utilizes product and process understanding to adjust process
parameters to consistently meet CQA targets, incorporating
flexibility and robustness without frequent human intervention.

2 Materials and methods

2.1 Materials

The monoclonal antibody (mAb) employed in the research is an
immunoglobulin G1 (IgG1) antibody with a molecular weight of
roughly 150 kDa and a pI of 8.5. The 0.6 g/L mAb concentration in
the shake flasks yielded 3 L of cell culture harvest. Glycine, Tris,
sodium chloride (NaCl), sodium dihydrogen phosphate (NaH2PO4),
disodium hydrogen phosphate (Na2HPO4), and sodium hydroxide
(NaOH) were procured from Merck, India. All materials were of
analytical quality. Deionized water was used to make buffer
solutions.

2.1.1 SPTFF materials
The following steps were taken to obtain the ultrafiltration

experiment material from the harvest cell culture fluid. The
harvest was taken from −20°C thawed at 4°C below freezing,
raised to room temperature, and then filtered at 0.2 μm. Filtered
harvest was placed into a column equilibrated with a 20 mM
phosphate and 150 mM NaCl buffer at pH 7.4 and packed with
MabSelectSureTM resin (GE Healthcare, Sweden). The scattered
components were washed in an equilibration buffer. The product

FIGURE 4
Deep Neural Network architecture.
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was eluted in a glycine HCl buffer of 100 mM concentration at
pH 3.5. After that, 50 mM NaOH and 1 M NaCl were used as
cleaning buffer for flushing the column in situ. Subsequently, the
pHwas held at 3.5 for 1 h before being neutralized to pH 7 using 2 M
Tris buffer, effectively killing any remaining viruses. The sample was
further processed using anion exchange chromatography according
to in-house protocols. For the ultrafiltration studies, a total volume
of 2 L of the final drug material in a glycine Tris buffer of pH 7 with a
total concentration of 8.5 g/L was obtained.

2.2 SPTFF experimental setups

SPTFF was accomplished with a Cadence Inline Concentrator
(ILC) module (Pall Corporation, United States), while diafiltration
was performed with a Cadence Inline Diafiltration (ILD) module
(Pall Corporation, United States). Membranes of regenerated
cellulose with a molecular weight cutoff of 30 kDa were used in
their construction. The ILC module was comprised a total of seven
0.0093 m2 membranes for a combined membrane area of 0.065 m2.
Three parallel membranes were connected in series to two parallel
membranes connected in series to complete the internal staged flow
channel. This 4-in-series design was chosen among the various
Cadence ILC configuration possibilities available by Pall

Corporation, including 7-, 8-, and 9-in series because it has the
smallest total membrane area and is, therefore, best suited for low-
volume applications (Thakur et al., 2022).

In the study, three distinct concentration-specific process
modules were designed. In the first process design (Figure 2A), a
single feed pump, a peristaltic pump, was used to pump feed
material from the tank to the membrane. The retentate and
permeate were then collected in separate containers. To prevent
pressure building in the second design, the peristaltic feed pump was
replaced with a quaternary pump (Figure 2B). Feed and permeate
peristaltic pumps were employed in the final process design
(Figure 2C) to carry feed samples with a high concentration. In
each module, the feed pressure, permeate pressure, retentate
pressure, flow rate, and concertation were recorded every 2 s at a
constant interval. The concentration of the feed is measured using
the NIR-based PAT instrument, which is briefly described in the
following sections.

2.3 NWP experiments

To obtain various outcomes that would be used in the model
development for process monitoring and control, the normalized
water permeability of the membrane was measured at varying times

TABLE 1 DNN model hyperparameters range and hyperparameters used for model development.

Hyperparameters Hyperparameters range Tuned parametric value

Number of dense layers 2–10 3

Input layer - 1

Output layer - 1

Number of leaky layers 2–10 3

Loss MSE MSE

Optimizer ADAM, NADAM, RMSProp and SGD ADAM

Activation function ReLU, Sigmoid, SoftMax and Tanh (for input and dense layers) Linear (for output layer) Input layers: ReLU

Dense layers: ReLU

Linear: Linear

Learning rate 0.1, 0.01, and 0.001 0.01

Epochs 50, 100, 200, and 300 100

Batch size 16, 32, 64, and 128 63

Momentum 0, 0.01 and 0.001 (only for SGD) -

Metrics MAE MAE

Alpha 0.1 0.1

Layer units Input layer—32, 64, 128 and 256 Input layer—256

Dense layers—64, 128 and 512 Dense layer 1–128

Output layer—1 Dense layer 2–128

Dense layer 3–64

Output layer—1

MSE, Mean squared error; ADAM, Adaptive moment estimation; NADAM, Nesterov-adaptive moment estimation; RMSProp, Root mean squared propagation; SGD, Stochastic gradient

descent; ReLU, Rectified linear activation unit; Tanh—Hyperbolic tangential function and MAE, Mean absolute error.
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under different process circumstances. In addition, a large number
of data points are required for a precise model to be developed. The
NWP was measured at 20°C over the transmembrane pressure for a
given membrane and can be expressed as follows:

NWP � Permeate flux LMH( )
TMP × A

× TCF

TMP � Pfeed + Pretentate

2 − Ppermeate

TCF � μwater@ 200C

μwater@250C

Where, TMP is transmembrane pressure, A is membrane area,
TCF is temperature correction factor at 20°C, Pfeed is feed pressure,
Pretentate is permeate pressure, Ppermeate is permeate pressure,
μwater@ 200C is viscosity of water at 20°C and μwater@250C is
viscosity of water at 25°C. Before the process began, the feed and
filtrate flux of the pure water was measured prior to initiating the
ultrafiltration (UF) process, and the resulting flux was adjusted to
100% NWP.

2.4 Near infrared spectroscopy (NIRS)
based PAT

NIRS methods for quantifying analytes are developed by
training a chemometric algorithm with a library of spectra
containing known concentrations within the intended
measurement range. A NIRS calibration library was built for
the mAb in the current buffer of 20 mM phosphate and 100 mM
NaCl at pH 7.4. The library was constructed using an AntarisTM II
FT-NIR Analyzer (Thermo Fisher Scientific, United States). The
spectrum was recorded using a Series 750 Transmission Flow Cell
(Thermo Fisher Scientific, United States). All spectrum
measurements were taken between 4,000 and 1,000 cm−1. The
calibration spectra were acquired in triplicate with a resolution of
2 cm−1 and a mean of 16 scans. In order to compensate for
variations in mAb concentration between 0.5 and 60 g/L, a
system of calibration standards was developed. Initially, 5 mL
of mAb sample at 60 g/L was generated by concentrating the mAb

material. After that, the solution was diluted serially with a buffer
while calibrating spectra were taken at each stage. The dilution
method was designed to achieve a final concentration of 0.5 g/L
by diluting the solution by a factor of 1.0 at each stage.
Additionally, a UV spectrophotometer and a microplate reader
were used to confirm the concentrations of the calibration
standards offline. Using a weight-based dilution method,
samples were adjusted to achieve a UV absorbance value
in the range of 0.5–1. The coefficient of extinction for mAb
was 1.60.

TQ Analyst 9.5 (Thermo Fisher Scientific, United States)
software was used to develop a partial least square (PLS) model
to extract concentration data from NIRS spectra. Figure 3A depicts
the outcomes of calibrating the calibration library and PLS model. A
33-point Savitsky-Golay smoothing filter was implemented after
averaging duplicate spectra. As per the NIRS spectral area, a
calibration model was developed between 4,000 and 11,000 cm−1.
The model was verified using 15 validation standards chosen
randomly from the 90 standards in the library. When using this
model, a correlation coefficient of 0.99 was found. Ten samples were
generated for external validation, and the calibrated model reliably
predicted themAb concentration to be within 0.5 g/L. The calibrated
model was generated as a method file and then put into a real-time
spectral collecting and processing workflow developed with Thermo
Fisher Scientific’s Result software (Figure 3B). The workflow began
with the triggering of the collection of NIRS spectra from the two
sensors at regular one-minute intervals, continued with the
automatic transfer of the spectra to the calibration models, and
concluded with the reporting of the numerical concentration
measurement result in a time-stamped text file accessible via
local area network (LAN) by the central control system.

2.5 Deep neural network (DNN)

The common belief is that simple models are better at achieving
higher interpretability than complex models. This belief can be
attributed to the widespread use of linear and basic decision tree
models in various applications. However, recent advancements in
the field have challenged this belief (Montavon et al., 2018), and
precise interpretation techniques have enabled the understanding of
complex machine learning models, including deep neural networks
(DNNs). In this study, a deep neural network (DNN)-based enabler
that could be incorporated into the forthcoming digitalized
biopharma umbrella is developed. DNN is an artificial neural
network (ANN) that includes multiple dense hidden layers
between the input and output layers (Natarajan et al., 2021).
Incorporating depth (increasing the number of dense layers) in a
network architecture enables the modelling of complex non-linear
relationships. The deep learning model can learn from process
conditions by using multiple hidden layers, leading to the
prediction of target values. The hidden layer consists of neurons
(dense layer units) that execute mathematical operations on input
data. The pivotal hyperparameters in DNNs include the learning
rate, optimizer, activation function, epochs, and batch size.

Activation functions are crucial in neural networks as they
introduce nonlinearity. The nonlinearity of neural networks
enables the development of intricate representations and

TABLE 2 Model evaluation metric scores.

Evaluation metric Score

MSE 0.075

MAE 0.018

Correlation of coefficient 0.945

Adjusted R2 0.942

Multiple R2 0.972

R2 CV 0.926

RMSE 0.275

NRMSE 0.026

AIC −1.753

BIC −9.412
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functions from inputs, which is unattainable with a basic linear
regression model (Parhi and Nowak, 2020). Optimizers are
algorithms that modify neural network attributes, including
weights and learning rate, to minimize losses and enhance
accuracy. The learning rate is a hyperparameter that regulates
the magnitude of model adjustments in response to estimated
errors during weight updates. In addition, the number of batch
size, epochs, dropout layers and leaky layers enhance the model’s
performance. The batch size is a hyperparameter specifying the
number of samples used to update the internal model parameters.
The hyperparameter “epochs” determine how many iterations
the learning algorithm will perform on the training dataset. The
leaky rectified linear unit (ReLU) is employed to enhance model
stability by mitigating the issue of output values of 0 and the
dying ReLU problem that may arise during neural network
training. Several studies (Masum et al., 2021; Pirrung et al.,
2017; Yegnanarayana, 2009; Zou et al., 2009) offer extensive
information on hyperparameters and mathematical insights
into DNN. The DNN model’s hyperparameters were
optimized using the Bayesian optimization (BO) algorithm.
The DNN architecture is depicted in Figure 4.

2.6 Bayesian optimization

A collection of ideal hyperparameters permits performance
enhancement and prevents performance concerns such as
overfitting. As mentioned in the above section, the deep
neural network model parameters were hypertuned using the
go-to optimization algorithm, the Bayesian optimization
algorithm. Probability is a fundamental concept heavily
utilized by statistical and machine learning algorithms, among
other methodologies. It could predict the outcomes of regression
and classification problems. The utilization of conditional
probability, Bayes’ theorem, and the Gaussian distribution
enable the prediction of the likelihood of a specific class or
value based on a given set of inputs. The duo can be utilized
in a technique referred to as Bayesian optimization (BO) to
optimize the hyperparameters of a machine learning model.
Bayesian optimization is a stochastic optimization method

that seeks to minimize an objective black box function on a
global scale (Masum et al., 2021). The global depreciation only
applies to certain constrained sets. The function of the black box
is stated in the equation:

f: X → R

Where, f is the function, X is the domain, and R is the co-
domain (range).

Researchers have elaborated on the mathematical aspects of
Bayesian optimization (Frazier, 2018a; Frazier, 2018b). The BO
framework comprises three essential elements: the surrogate
model, the Bayesian updating process, and the acquisition
function. After each new assessment of the objective function,
the surrogate model is updated using the Bayesian updating
process to ensure that it fits all points of the objective function.
The acquisition function then evaluates the evaluation.

The BO framework comprises three essential components: the
acquisition function, the Bayesian updating process, and the
surrogate model. The Gaussian process is frequently employed as
a surrogate model in Bayesian optimization. This allows it to specify
a prior function that could be used to enhance future predictions of
the goal function during a learning process. Acquisition functions,
on the other hand, are responsible for predicting where within the
search space to collect samples. The “exploration and exploitation”
approach serves as the foundation for the acquisition function. With
the help of this function, the optimizer can use the optimum zone
until a better value is discovered. The goal is to maximize the
acquisition function to identify the location of the following
sample. The upper confidence bound and Thompson’s sampling
are founded on the same conceptual framework. More mathematical
insights on BO are given in published articles (Frazier, 2018a;
Frazier, 2018b).

2.7 Model evaluation criteria

The model performance was evaluated using different
statistical criteria, including coefficient of correlation, variants
of coefficient of correlation, mean absolute error (MAE), mean
squared error (MSE), root mean squared error (RMSE),

FIGURE 5
(A) Training and validation loss plots (B) Training and validation mean absolute error plots.
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normalized root mean squared error (NRMSE), Akaike
information criterion (AIC) and Bayesian information
criterion (BIC) (Nikita et al., 2022; Chhabra et al., 2023).

3 Results and discussion

3.1 Deep neural network model hypertuning

Hyperparameter tuning is a fundamental part of a deep
learning project (Koehrsen, 2018). There are two types of
hyperparameters: structural hyperparameters and optimizer
hyperparameters. The structural hyperparameters in the DNN
are the number of dense layers, layer units, activation function,
leaky layers, and loss function. The optimizer hyperparameters
are the type of optimizer, epochs, batch size and learning rate.
Due to the high computational demands of deep learning models,
conventional hyperparameter optimization methods such as grid
search and random search are frequently inefficient and time-
consuming. Furthermore, these techniques leverage the model’s
prior knowledge gained from previous optimization iterations.
Bayesian optimization employs previous optimizations to
generate a hyperparameter list that is highly optimized and

requires fewer samples to attain optimal performance. This
study’s model was hypertuned using the Gaussian process
(GP) as the surrogate model and expected improvement (EI)
as the acquisition function. The BO algorithm was implemented
in Python using the Spyder integrated development environment
(IDE) for deep neural network (DNN) hyperparameter tuning.
The algorithm was implemented with Python libraries such as
Keras, Bayes-opt, NumPy, Sci-Kit learn, TensorFlow, Pandas,
and SciPy. The initial stage of hypertuning involves developing a
training pipeline for the deep neural network utilizing the dataset
and adjustable hyperparameters. The subsequent stage consists
in formulating an objective function that encapsulates the
training and inference of the network, serving as the Blackbox,
and transforming the inference into an evaluation metric that can
be utilized in the optimization procedure. A reliable signal is
necessary for the solver to assess sampled points. The function is
used in a Bayesian optimization process at a global level. The
Python environment utilizes the Bayes-opt package to process
the aforementioned workflow. The model’s performance was
evaluated using specific hyperparameters through a five-fold
cross-validation technique with fifty iterations. The
hyperparameters range and hypertuned hyperparameters are
shown in Table 1.

FIGURE 6
Workflow of NWP prediction and control design.
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3.2 Deep learning model development

The hypertuned neural network-based deep learning regression
model was developed in Python using TensorFlow, Keras, NumPy,
Pandas, and Sci-Kit learn packages. The study employed the Adam
optimizer, a significant hyperparameter, in developing a deep
learning-based neural network model. The Adam optimizer is a
stochastic gradient descent algorithm that utilizes adaptive
estimation of first- and second-order moments. It is designed to
adapt the learning rate of each parameter by using the first and
second moments, which are approximations of the gradient’s mean
and variance, respectively. It is a widely utilized optimization
algorithm in the field of deep learning due to its notable
effectiveness and efficiency. The Adam optimizer has
demonstrated superior convergence rates compared to alternative
stochastic gradient descent techniques. The other hyperparameters
used in the model development are given in Table 1. The developed
model was trained using eighty percentage of the experimental data
selected randomly, tested using the remaining data sets and cross-

validated (repeated k-fold model cross-validation). During DNN
model training, 20% of the training dataset was used for validation.
The model was built with twelve input parameters that directly/
indirectly influence NWP in some way. The model input parameter
includes experimental module, feed concentration, feed pump flow
rate, volumetric concentration flux (VCF), permeate pump, total
module run time, initial feed pressure, initial retentate pressure,
initial permeate pressure, steady-state feed pressure, steady-state
retentate pressure and steady-state permeate pressure. The neural
net learns from input parameters and predicts the NWP at a given
condition. The model evaluation scores show that the developed
model is precise and robust. The evaluation scores are given in
Table 2.

The loss function is computed over all data items during each
epoch to determine the quantitative loss at the given epoch. To get
further understanding, validation loss is shown with training loss
(Figure 5A). It is observed that the model’s performance in terms of
the loss function and mean absolute error is comparable to training
and validation datasets. The results support the resilience of the
model.

The DNN model was assessed using various statistical measures
such as R2, Adj. R2, Multiple R2, CV R2, MAE, MSE, RMSE, NRMSE,
AIC, and BIC. Statistical criteria were computed for the test dataset.
The evaluation of the frameworks begins with using the coefficient of
determination, including its adjusted R2 and R2 CV variants. The
coefficient of determination is a significant measure that evaluates
the validity of a regression model in terms of its precision and
efficacy. A higher R2 value indicates a better fit of the model to the
data (Quinino et al., 2013; Li et al., 2018). Moreover, it is utilized to
determine the model with the most significant level of conformity to
the data among several models. Furthermore, it is employed to assess
the effectiveness and reliability of a model in predicting future
values. Adjusted R2 is a statistical measure that considers the
existence of multiple predictors instead of the conventional R2

(West et al., 2012). Adjusted R2 metric penalizes models with
ineffective predictors that do not enhance the model’s predictive
capability. When multiple predictors are included in a model, it is
necessary to use Adjusted R2 as a more reliable measure for assessing
the model’s goodness of fit, as opposed to R2. The study’s analysis is
credible due to the high number of predictors, as the adjusted R2

value indicates. The evaluation results indicate that the developed
model demonstrated a high level of accuracy, with R2 and Adjusted
R2 values of 0.945 and 0.942, respectively.

The variants of coefficient of determination, R2 CV and multiple
R2 were utilized for improved precision evaluation. Multiple R2

assesses the suitability of a multivariate regression model
concerning the data (Laud and Ibrahim, 1995). It measures the
percentage of variability in the dependent variable that the
independent variables can explain. Multiple R2 is a valuable
metric for evaluating the predictive ability of complex models.
The model’s real-time reliability was assessed by computing the
cross-validation (CV) R2 value (Cho and Tropsha, 1995). The cross-
validation R2 metric can be used to evaluate a model’s predictive
ability. Cross-validation effectively evaluates the predictive model’s
effectiveness by segregating data into discrete training and testing
sets. The model’s cross-validation score was obtained through
repeated k-fold cross-validation. The R2 CV value was calculated
using Python through a 20-iteration cross-validation method with

TABLE 3 Absolute values for actual NWP, predicted NWP and error percent.

Actual Predicted Error (%)

51.617 51.477 0.270

52.833 53.849 1.923

52.908 58.878 11.285

53.834 53.909 0.139

53.836 53.390 0.829

56.934 58.152 2.139

56.941 57.549 1.068

59.231 56.204 5.111

59.805 58.946 1.436

60.628 72.304 19.258

60.632 62.425 2.957

60.693 62.864 3.577

60.856 64.757 6.409

62.162 59.071 4.973

62.195 61.521 1.084

62.248 66.042 6.096

62.338 63.179 1.348

62.341 64.459 3.398

63.166 61.394 2.804

63.817 63.590 0.356

65.756 65.251 0.768

92.235 91.537 0.757

92.941 92.863 0.084

Average error (%): 3.394

Frontiers in Chemical Engineering frontiersin.org09

Jesubalan et al. 10.3389/fceng.2023.1182817

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2023.1182817


five-fold repetition. Remarkably, the developed DNN model
exhibited high values for multiple R2 and CV R2, precisely
0.972 and 0.926, respectively.

Further evaluation was performed using MAE, MSE, RMSE,
and NRMSE to evaluate the robustness of the model (lower values
are good). The MAE is a significant statistical metric used to
assess model accuracy. MAE is a statistical measure that
calculates the average size of errors in a set of forecasts,
regardless of their direction (Hodson, 2022). This represents
the absolute difference between the expected and actual values.
The MAE is reliable for evaluating precision, as it resists outliers.
MSE and RMSE are commonly used metrics for assessing the
effectiveness of a model (Eğrioğlu et al., 2008; Wang et al., 2016).
However, there are several disadvantages linked to the use of
RMSE. The RMSE metric is highly sensitive to outliers. The
RMSE value can be significantly affected by the presence of a
small number of outliers. RMSE may not account for the varying
significance of errors, as a significant error in one prediction
could have a similar impact to a minor error in another forecast.
Although RMSE is useful for evaluating model accuracy, using it
alongside other metrics is recommended to obtain a
comprehensive understanding of the model’s effectiveness.
The NRMSE is a useful metric for evaluating a model’s
predictive ability as it considers the variability in the observed
values. The importance of this lies in the fact that RMSE ignores
observed data point fluctuations. When the observed values have
a wide range, the RMSE can be high despite the accuracy of the
model’s predictions. NRMSE is considered a superior accuracy
measure as it incorporates the dispersion of observed values. The
NRMSE is a metric utilized to evaluate the precision of a model’s
future outcome predictions (Shcherbakov et al., 2013). The
model demonstrated significant performance in predicting the
NWP of the ultrafiltration membrane, with MAE, MSE,
RMSE, and NRMSE values of 0.018, 0.075, 0.275, and 0.026,
respectively.

Finally, the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) were used to assess the goodness of
fit of the constructed model (lower values are good). The AIC and
BIC are essential for model selection among various alternatives.
BIC and AIC are metrics for assessing the effectiveness of
statistical models (Chakrabarti and Ghosh, 2011). BIC

considers the number of data points used in the model. The
AIC is recommended for smaller datasets, whereas the BIC is
preferable for larger datasets. The model exhibited substantial
accuracy, indicated by its AIC score of −1.753 and BIC score
of −9.412.

Following the model’s assessment, the model is deployed under
various process circumstances and assessed in real time. The
generated model was utilized to create multiple statistical control
strategies that permit real-time process control.

3.3 Real-time process monitoring and
control

As a first step in evaluating the model in real-time, the NWP
values at various runtimes were monitored using the developed
deep learning regression model (Figure 6). The formulation
module was linked to the architecture of the created
distributed control system (DCS), thereby facilitating the
gathering and storage of real-time data for process monitoring
and control. Using RS-232 connections, a programmable logic
controller (PLC) was utilized to gather the process characteristics
from the weighing scales, pressure sensors, and conductivity
sensors. A LAN connection was used to obtain data from the
NIRS framework computer, where the NIR spectral acquisition
procedure is executed. A different Python layer script that
compiles the DNN regression model for the NWP was
constructed. In this study, a multi-membrane ILC
arrangement with a total of seven membranes arranged in a 3-
2-1-1 layout was constructed. The inputs for the Python script are
described in the preceding section. The DNN model was
encapsulated inside the function, and an iteration algorithm
was developed to continually call the DNN model and
compute the NWP value at a predefined interval. The DCS
architecture stored the projected values. The DNN model
exhibits the capability to forecast the NWP value of the
membrane with an average error percentage of 3.394.
However, in specific trials, the percentage of errors exceeded
10. In general, the developed DNNmodel demonstrated solid and
consistent real-time performance. Table 3 presents the absolute
values pertaining to the model predicted, experimental results,
and error percentage. The performance of NWP prediction in
real-time is shown in Figure 7. The graphic combines the
predicted and observed values to get more understanding.

Data from the various sensors were sent to a central database
on a central computer using the PLC, with the central computer
also having the outlined Python script. The Python layer was
utilized to input data, and it also facilitated manual input feeding
for the VCF and module parameters utilized in the current
process. The input feeding process activated the model,
resulting in the forecasting of NWP at different randomized
time intervals/experimental setups. The results are depicted in
Figure 7. The NWP parameter was stored in a list format and
subsequently transmitted to the statistical control layer to
ascertain the optimal control action. The NWP value is read
by the statistical control layer at 5-min intervals to ascertain the
appropriate control action. The statistical control layer comprises
a case selection algorithm to ascertain the suitable control

FIGURE 7
Actual vs. predicted comparison plot.
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measure based on the NWP value. When the NWP drops 60%
below, the pump centralized control action is initiated by the
PLC. The PLC operated according to a logic algorithm designed
for PLC systems. The PLC logic algorithm refers to a prescribed

set of regulations that dictate the operational procedures of a
PLC. The conventional approach for conveying these concepts
involves utilizing a graphical programming language known as
ladder logic. Ladder logic is a visual depiction of the logic gates

FIGURE 8
Overall workflow of the PLC algorithm.

FIGURE 9
Results of model-based prediction in case study 1 for five different cycles with different feed and retentate target concentrations.
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and programming constructs employed to regulate PLC
programmes. The present investigation involved the
development of a programmable logic controller (PLC)
utilizing three fundamental logic operations in ladder logic,
namely, AND, OR, and NOT. The aforementioned gates
amalgamate the inputs to a PLC programme, generating a
solitary output. The control action involved the adjustment of
three pumps (feed, permeate and cleaning buffer) activities and
the solenoid valve switching. The primary adjustment entailed
the cessation of feed pump operation, the actuation of the valve
1 to flow the buffer for cleaning and the actuation of the valve 2 to
channel the retentate into the waste in process modules one and
two. In the third module of the process, the operation of the feed
and permeate pumps was suspended. Additionally, the solenoid
valve 1 was switched to allow for the cleaning buffer to flow, and
the actuation of the valve 2 to channel the retentate into the
waste. Upon completion of the preceding operation, the
programmable logic controller (PLC) activated the cleaning
buffer pump linked to the cleaning buffer tank. The
revolutions per minute (rpm) were predetermined for the
remaining unit activities in the continuous train. The overall
flow of the PLC algorithm is illustrated in Figure 8. To preserve
continuity with the other procedure, the duration of the cleaning
was set at 30 min. Moreover, the membrane undergoes
immediate cleaning whenever the NWP value drops below 60,
restoring the membrane to its initial condition within a 30-min
cleaning cycle. When a new run begins, the PLC will reset all
parameters to zero. The PLC also allows for user customization,
which might be helpful in some circumstances.

Further elucidation regarding control action is expounded upon
in the subsequent subsection through utilization of various case
studies. Furthermore, the case studies serve the purpose of
elucidating the performance of three distinct experimental
configurations, the model’s real-time efficacy, and the suitable
course of control action. The analysis of case studies facilitates
comprehension of the experimental conditions appropriate for
low and high monoclonal antibody concentrations. Furthermore,
the utilization of case studies will aid in selecting a configuration that
can effectively manage high protein concentrations while
minimizing membrane cleaning frequency. Consequently, the
model may be executed before commencing the experiments
(preferably during the batch process), utilizing appropriate
process variable values to identify optimal configuration that can
operate without requiring multiple cleaning cycles. Furthermore,
case studies were employed to demonstrate the intricacies of the
control action. In subsequent periods, it can be integrated into a
continuous process flow to establish suitable scheduling in advance
and oversee the deterioration of NWP in real-time, subsequently
executing requisite control measures.

3.3.1 Case study 1
In the first instance (Figure 2A), the control technique was

implemented in the first process design. Five distinct trials were
performed to document the performance of the model and
control layer. The trials were designed randomly with different
concentrations, module run time, flowrate and VCF (Figure 9).
During the first trial, the model predicted an NWP value of 78,
which was more than 60 and hence did not trigger a control

FIGURE 10
Results of model-based prediction in case study 2 for five different cycles with different feed and retentate target concentrations.
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action. In subsequent trials, the NWP was less than 60 in the fifth
trial, and the PLC initiated the control method upon obtaining
this result. The control strategy directed the PLC to disable the
feed pump, thereby eliciting the activation of solenoid valve 1,
which in turn facilitated the transition to the valve flows cleaning
buffer. Furthermore, the control strategy prompted solenoid
valve 2 to switch to the valve sends the retentate to waste, and
subsequently activate the cleaning buffer pump. Insights into the
effectiveness of the SPTFF ILC module are provided, as well as
confirmation of the successful execution of the control action.
When the duration of the operation ran longer (about 36.6 h), the
NWP, for instance, was lower than 60. The NWP was also lower
when the flowrate, VCF, and feed concentration were optimal.
Module 1 can operate for 36.6 h at a VCF of around 1.7, a 20 mL/
min flowrate, and a feed concentration of 33 g/L before requiring
cleaning. Running the higher feed concentration of 41.7 g/L for
16.6 h at a feed flow rate of 20 mL/min and VCF of 2.3 causes a
rapid decrease in the NWP value.

3.3.2 Case study 2
In the second scenario, the peristaltic feed pump was

replaced with a quaternary pump, and the module’s control
action was examined. Using quaternary pumps reduces the
extent of protein exposure to mechanical stresses and air.
Maintaining protein sample integrity and stability is aided by

a sealed flow path and the lack of squeezing mechanisms, such as
those found in peristaltic pumps. This reduces the likelihood of
denaturation or aggregation. Furthermore, quaternary pumps
can offer enhanced accuracy in regulating flow compared to
peristaltic pumps. Accurate control of flow rate is crucial with
proteins, as minor alterations in this parameter can significantly
impact the outcomes of experimental investigations. Like the
preceding example, five trials were done to assess the model’s
real-time performance using process design 2 (Figure 10). The
illustration depicts the statistical control action trigger for
process design 2 (Figure 2). Nonetheless, upon analyzing the
outcomes of the quaternary pump-based process design, just a
few noteworthy observations were uncovered. The most
significant difference is that process design 2 requires
cleaning at a higher frequency than process design 1. The
validity of the aforementioned assertion was determined by
comparing the NWP of the membrane in process designs
1 and 2 when the concentration was 33 mg/mL and all other
process parameters was kept constant (VCF is high, which is
2.7). The process design necessitated cleaning at a much shorter
frequency than the previous design. The first process design can
operate for 36.8 h without intermediate cleaning, whereas the
second design can only operate for 16 h before requiring
intermediate cleaning. However, one may argue that VCF is
high for the second process design (around 15% greater). The

FIGURE 11
Results of model-based prediction in case study 3 for five different cycles with different feed and retentate target concentrations. The results
demonstrate that the module can function for 28 h at a high concentration and flow rate without requiring any interim cleaning, thereby enabling the
design of the process to cope with the other two modules in terms of concentration, feed flow rate, and overall run time. In addition, Process Design 3 is
the most optimal since it allows for a high operating flow rate within a reasonable total run time. The user can choose the three architectures
presented here according to their needs. The developed DNN model’s efficacy across all scenarios was demonstrated with the help of case studies.
Process Design 3 is preferable for a continuous process since it is easier to deploy in real-time and apply control strategies.
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alternative is to optimize module one in order to get the same
VCF with a little reduction in overall run time.

3.3.3 Case study 3
In the third instance (Figure 2C), both the feed and permeate

pumps were used to operate with a more extensive concentration
range. As specified, five trials with various combinations of process
parameter values were utilized to assess the effectiveness of the
proposed statistical control approach (Figure 11). In the first three
trials, the NWP value was more than 60%, with respective values of
90.087%, 61.772%, and 63.538%. The PLC did not activate the
control strategy because the NWP value sent by DCS was more
than 60 percent. To verify the control action, which is the central
plot of the research, parameter combinations with the highest intent
were chosen to get the NWP below 60%. The recommended
combination effectively reduced the NWP, with trials 4 and
5 achieving NWP reductions of 56.238 and 57.354, respectively.
In a fraction of a second, the NWP values were saved in the DCS and
sent to the mainframe. The PLC initiated the control operation upon
receiving the signal from the DCS. Following the activation of the
control action, the PLC deactivated the feed pump and permeate
pump, thereby inducing the initiation of solenoid valve 1, which
subsequently facilitated the transition to the valve flows cleaning
buffer. Additionally, the control methodology prompted solenoid
valve 2 to transition to the valve that conveys the retentate to waste,
and subsequently activate the cleaning buffer pump. PLC let the
cleaning buffer pump operate for 30 min to return the membrane to
its starting condition. Except for the effective execution of the
control strategy for process design 3, few notable findings were
made. Compared to using a single pump, either peristatic or
quaternary, the efficiency of using both the feed and permeate
pumps is much greater. The NWP of trial three was 61 after 21 h
of operation with a feed concentration of 20 mL/min, a feed flowrate
of 30 mL/min, a permeate flowrate of 27.7 mL/min, and a VCF of 13.
Even though the overall runtime was lengthy in the first two cases,
the operation flowrate was slower. In the third case, however,
installing a permeate pump enables a more significant flow rate,
which is challenging to maintain in the other two circumstances.
During the fifth trial, the NWP was 56, the feed flow rate was 30 mL/
min, the permeate flow rate was 19 mL/min, the feed concentration
was 26 mg/mL, the VCF was 2.7, and the total run time was 28 h.

4 Conclusion

A deep neural network model has been developed to predict
the NWP in real-time in single-pass tangential flow filtration of
mAbs. The model utilizes process parameters, including pressure
and feed concentrations via inline sensors and a spectroscopy-
coupled data model, and is used to schedule membrane cleaning
steps at the optimal time when the NWP drops below 60%. Using
SCADA and PLC, a distributed control system has been
developed to integrate the monitoring sensors and control
elements, such as the NIRS sensor for concentration
monitoring, the DNN model for NWP prediction, weighing
balances, pressure sensors, pumps, and valves. The model was
tested in real-time, and the NWP was predicted within <5% error
in three independent test cases. In general, a reduction in flux can

aid in comprehending the contemporaneous decrease in NWP.
Nevertheless, determining the absolute drop via a primary
calibration curve of flux versus NWP is challenging. The
decline of NWP is contingent upon additional variables such
as feed flowrate and feed concentration. A mere calibration
remedy would not yield precise results. Utilizing the deep
learning methodology enables the comprehensive
consideration of all pertinent variables that may exert a direct
or indirect impact on the NWP. Thus, the constructed framework
was utilized to forecast accurate NWP during the process without
interrupting the process to conduct NWP measurement
experiments. This work leverages PAT and DL to enable
automated, integrated, and well-controlled STPFF operations.
The approach is consistent with the US FDA’s guidance on
Quality by Design (QbD), as it utilizes product and process
understanding to adjust process parameters to consistently
meet CQA targets in biopharmaceutical manufacturing
processes in the final formulation step.
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