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Process models are mathematical formulations (essentially a set of equations) that
try to represent the real system/process in a digital or virtual form. These are
derived either based on fundamental physical laws often combined with empirical
assumptions or learned based on data. The former has been existing for several
decades in chemical and process engineering while the latter has recently
received a lot of attention with the emergence of several artificial intelligence/
machine learning techniques. Hybridmodeling is an emergingmodeling paradigm
that explores the synergy between existing these two paradigms, taking advantage
of the existing process knowledge (or engineering know-how) and information
disseminated by the collected data. Such an approach is especially suitable for
systems and industries where data generation is significantly resource intensive
while at the same time fundamentally not completely deciphered such as the
processes involved in the biopharmaceutical pipeline. This technology could, in
fact, be the enabler tomeeting the demands and goals of several initiatives such as
Quality by design, Process Analytical tools, and Pharma 4.0. In addition, it can aid in
different process applications throughout process development and Chemistry,
Manufacturing, and Control (CMC) to make it more strategic and efficient. This
article focuses on providing a step-by-step guide to the different considerations to
be made to develop a reliable and applicable hybrid model. In addition, the article
aims at highlighting the need for such tools in the biopharmaceutical industry and
summarizes the works that advocate its implications. Subsequently, the key
qualities of hybrid modeling that make it a key enabler in the
biopharmaceutical industry are elaborated with reference to the literature
demonstrating such qualities.
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1 Introduction

Biopharmaceuticals are a growing class of therapeutic solutions attaining a global market
size of USD 389.6 billion in 2021 and are projected to attain a market size of USD
856.9 billion by 2030. The number of biologics approved by the Food and Drug
Association (FDA) and European Medicine Agencies (EMA) is increasing consistently
with a surge of several different therapeutic modalities beyond the prevalent monoclonal
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antibodies (mAbs), recombinant proteins, and antibody-drug
conjugates (ADCs) (Mullard, 2023). Some such modalities
include mRNA-based vaccines (Sahin et al., 2014; Bhat et al.,
2021; Qin et al., 2022), cell and gene therapies, extracellular
vesicles (EVs) (Murphy et al., 2019; Klyachko et al., 2020;
Bertolino et al., 2022), and living materials (Gilbert and Ellis,
2019; Rodrigo-Navarro et al., 2021), with the latter two still
under development and have not reached the approval phase, yet
(Walsh and Walsh, 2022).

Despite the increasing market sizes and approvals (Walsh, 2018;
Walsh and Walsh, 2022), the development of such biologics is
typically a slow and resource-intensive process taking up to
10–12 years and an investment of at least 2 billion USD
(Narayanan et al., 2021a; Cardillo et al., 2021). Among these
estimated times and costs, process development accounts for a
significant portion taking up to 4 years (30% of the time to
market) and an average investment of ~100 million USD
(Cardillo et al., 2021) making it considerably resource-intensive,
having important consequences in drug manufacturing.
Additionally, the challenges for process development increase
manifold when considering biosimilars where the complexity of
matching drug quality is high in addition to the high time pressure
due to competition.

In this regard, the key tasks associated with biopharmaceutical
process development and Chemistry Manufacturing and Control
(CMC) are: 1) Design and Optimization: To identify the suitable
process parameters to produce a product with the desired quantity
and quality attributes, 2) Scale-Up: To reproduce observations/
attributes achieved in lab scale operations and also at commercial
scale, 3) Monitoring and Control: Maintain the desired state/
trajectory of the process. The different tasks in process
development and CMC with the progression of the
biopharmaceutical lifecycle are schematically represented in
Figure 1 with the corresponding indication of the relevant initiatives.

In a highly multi-dimensional design space, where the
interactions between the governing variables are complex, trial

and error-based or restricted operations enforce sub-optimality
and risk of not meeting quality specifications. In addition, it also
increases the time and cost of development if such activities
originate from an unfavorable region originating from an
inefficient transfer of past learning. Currently, such transfers
are performed as heuristics or conclusions determined based on
observations drawn from particular cases (Narayanan and Love,
2022). For instance, working in a narrow range of pH or
temperature based on previous product lines or using specific
basal and feed media for all the products produced by a given
host. Though the Quality by Design paradigm has come some
way to reuse knowledge, mostly in the form of technical risk
assessments, knowledge transfer is limited and despite the wide
spread of platform processes, to some degree, the process pipeline
needs to be developed from scratch, at least in parts, for every new
molecule.

The increasing number of modalities and varieties within the
same modality requires that the same development steps be
undertaken multiple times. A standardized workflow for carrying
out these steps is required to accelerate the pipeline while reducing
the resources.What we envision through a standardized protocol is a
guideline to the series of steps to be undertaken for each new product
with an unbiased, generalized transfer of learnings from one case to
another.

As a result, we require that all the data and learning acquired
under a certain product are 1) strategically collected through
efficient designs covering the design space, and 2) formalized via
relevant mathematical modeling to capture the overall patterns in
the data (Narayanan and Love, 2022). In addition to the goals of
process development, such formalization of information and
knowledge are inevitable in the digital era where all the process
industries including biopharma are interested in digitalizing their
operation and production, moving towards digital twins and smart
factories (Steinwandter et al., 2019; Narayanan et al., 2020b; Chen
et al., 2020; Gargalo et al., 2020; Sokolov, 2020; Zobel-Roos et al.,
2020; Narayanan et al., 2021d).

FIGURE 1
Schematic representation of the key process development and CMC tasks throughout the biopharmaceutical lifecycle with an indication of the key
initiatives and goals of biopharma and the regulatory agencies.
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To this aim, artificial intelligence/machine learning (AI/ML) are
suitable techniques to learn patterns in data collected from high-
dimensional design spaces with complex non-linear interactions
among different factors (Narayanan et al., 2021a). However, using
AI/ML solely requires good quality data to be collected in a
considerable quantity to be able to develop useful and applicable
models for the intended purposes of biopharmaceutical application.
In contrast, biopharma is a data-limited industry specifically in
terms of actively generated data, where each experiment and
analytics is resource-intensive, thus, limiting the number of
experiments and the corresponding data that can be generated
(von Stosch et al., 2021). In addition, though the
biopharmaceutical industry has a lot of reserves of the so-called
“historical data,” were not collected for the purpose of training an
AI/ML algorithm. Subsequently, they harbor a lot of bias in terms of
the design spaces explored and the information recorded as a result
affecting the overall quality of the pre-existing data in the industry.
These challenges have been described in depth in the following
commentary article (Narayanan and Love, 2022).

However, data is not the only source of information available in
biopharma. This is especially true for process applications where a
basic understanding of the unit operations and some level of
abstraction regarding the physicochemical phenomena at a unit
operation level are available. However, this knowledge is not
complete or sufficient to build a solely knowledge-based model.

Hybrid modeling has recently found increasing interest as it
attains a balance between the purely data-based modeling offered by
AI/ML and purely knowledge-based modeling (mostly less
representative given the existing gaps in understanding the
system). As a result, it presents remarkable qualities, detailed and
summarized in Section 3, that make it suitable for all the process
goals of the biopharmaceutical industry as highlighted in several
works. For instance, (von Stosch et al., 2014; von Stosch et al., 2016),
presents hybrid modeling as a solution for QbD and PAT, (Schubert
et al., 1994a; Galvanauskas et al., 2004; Teixeira et al., 2006), for

process optimization, (Bayer et al., 2021), for scale-up, (Schubert
et al., 1994a; Chen et al., 2000; Galvanauskas et al., 2004; Teixeira
et al., 2007; Ferreira et al., 2014; Narayanan et al., 2020a; Narayanan
et al., 2020b), for process monitoring and control, (Sokolov, 2020;
Narayanan et al., 2021d), for digitalization, and (Sokolov et al., 2021)
for digital twins.

This article focuses on summarizing the different types of hybrid
models that can be developed and subsequently highlighting the
enabling qualities of such models that make them attractive for
different process applications, following which a detailed step-by-
step guideline of conceptual considerations to be made while
developing these are provided.

2 Types of hybrid models

Though not so widely emphasized then, the hybrid modeling
concept was already introduced in 1992 in some seminal works
such as (Psichogios and Ungar, 1992; Schubert et al., 1994a;
Thompson and Kramer, 1994). Traditionally, hybrid modeling
has been categorized to have two architectures: serial and parallel
architectures. As summarized in Figure 2A, the serial architecture
essentially involves modeling fragments of the knowledge-based
models using data-based models. In other words, the knowledge-
based models rely on inputs from data-based modeling. On the
other hand, in a parallel architecture (Figure 2B), both the
knowledge-based and data-driven models are set up
simultaneously and aggregation of the prediction from both is
considered (Thompson and Kramer, 1994).

The knowledge-based models are mathematical representations
of the engineering know-how and process knowledge typically in the
form of system differential-algebraic equations. The data-based
models, on the contrary, are statistical or machine learning
models capable of learning from the patterns in the data instead
of relying on prior knowledge. Figures 2C, D further illustrate this

FIGURE 2
Schematic representation of different architectures of hybrid models, (A) serial and (B) parallel architecture, illustrated with an example (C)- Serial
architecture, (D)- Parallel architecture.
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with a simple example of the case of a bioreactor both of which are
extremely relevant processes in the biopharma industry.

Since its inception, several works have demonstrated the
successful implementation of hybrid models for different types of
bioprocesses with a large fraction of it based on the serial
architecture (von Stosch et al., 2016; Narayanan et al., 2019;
Bayer et al., 2021; Kotidis et al., 2021; Narayanan et al., 2021c;
Narayanan et al., 2021b; Cruz-Bournazou et al., 2022; Narayanan
et al., 2022b; Narayanan et al., 2022a; Nold et al., 2023). The serial
architecture is in particular advantageous owing to the fact that it
constrains and segregates the information learned by the data-based
model. Subsequently, the models learned are more robust even with
fewer data. The parallel architecture on the other hand trains the
data-based model independently of the available knowledge, thus
retaining all the downsides of a pure data-based model. It is here
worth noting that, the current article will focus only on serial
architecture.

Furthermore, the plethora of work on such serial
architecture-based hybrid modeling can be further categorized
mainly along two axes, as schematically illustrated in Figure 3.
The first axis, more commonly exploited in the literature, is the
type of machine learning/statistical algorithm used in data-based
modeling. Several options presented in the literature include
Artificial Neural networks or multi-layer perceptron (ANNs or
MLPs) (Psichogios and Ungar, 1992; Schubert et al., 1994b;
Schubert et al., 1994b; Feyo de Azevedo et al., 1997; Chen
et al., 2000; Teixeira et al., 2006; Von Stosch et al., 2012a;
Narayanan et al., 2019; Bayer et al., 2021; Narayanan et al.,
2021b; Narayanan et al., 2021c; Narayanan et al., 2022b),
Principal Component Regression (PCR) (Okamura et al.,
2022), Partial Least Square regression (PLSR) (Von Stosch

et al., 2011; Von Stosch et al., 2012b; Carvalho et al., 2022),
Tree-based models (Hutter et al., 2017), Gaussian processes
(GPs) (Hutter et al., 2021; Vega-Ramon et al., 2021; Cruz-
Bournazou et al., 2022), and Deep Neural Networks (DNNs)
(Pinto et al., 2022). Subsequently, efforts have also been devoted
to using techniques such as symbolic regression and customized
neural networks as data-based modeling approaches to have
enhanced interpretability compared to the traditional ML
approaches (Narayanan et al., 2022a; Doyle et al., 2023). The
second axis is the extent to which prior knowledge is available
and incorporated into the hybrid model. Conventionally, this was
fixed prior to the development of the hybrid modeling to a pre-
determined extent of knowledge support. In our recent works, we
highlighted this and introduced the concept of the “degree-of-
hybridization” (Narayanan et al., 2021b; Narayanan et al., 2022b)
whereby the determinantal effects of introducing too little or too
much knowledge were emphasized. Subsequently, we illustrated
its implications for two systems of relevance for
biomanufacturing, namely, the cell culture (Narayanan et al.,
2022b) and the chromatographic process (Narayanan et al.,
2021b). To summarize, for a given modeling task at hand, a
family of hybrid models can be developed across these two
dimensions: 1) type of data-based algorithm and 2) extent of
knowledge incorporation.

Hybrid models are at the intersection of purely knowledge-
based models and purely data-based models. As a result, it
alleviates many of the shortcomings faced by these modeling
paradigms individually. The next section describes the qualities
of the hybrid models that make it attractive for different process
applications and summarizes the literature evidences for
the same.

FIGURE 3
Schematic representation of the selection along two key axes to develop hybrid models: (i) type of data-based algorithm and (ii) amount of
knowledge incorporation.
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3 Enabling qualities of hybrid models

Hybrid modeling finds a trade-off between constraining the
relationships between the governing variables while allowing for the
flexibility to learn potentially unknown interactions between them
(Narayanan et al., 2021b; Narayanan et al., 2022b). This is especially
useful when applied to a real system with many influencing factors
that present complex interactions which are only partially
understood. Some of the key qualities of hybrid models that have
been rationalized and also demonstrated quantitatively are
summarized below.

3.1 Better accuracy

A purely knowledge-based model suffers the risk of constraining
too much based on biased assumptions while a purely data-driven
model suffers from the excessive flexibility to learn any (even
arbitrary) relationships based on data. The latter results in the
requirement of a large amount of data to learn a generalized and
representative model of the considered system. Given the ability of
hybrid models to draw a trade-off between constraining and
flexibility, in a limited data set-up such as biopharma, hybrid
models in general shows better accuracy compared to either
knowledge-based or data-based models.

Several hybrid modeling literature in the area of biotechnology
(fermentation and cell culture) have compared their performance to
ANN (Schubert et al., 1994b; Feyo de Azevedo et al., 1997) or
recurrent neural networks (Feyo de Azevedo et al., 1997; Ferid et al.,
2020) with the hybrid models consistently outperforming the other
two. Subsequently, in many of the recent works including ours, the
accuracy of hybrid models has been quantitatively shown to
outperform the current industrial benchmark, PLSR1 (Von
Stosch et al., 2012b; Narayanan et al., 2019; Narayanan et al.,
2021d; Narayanan et al., 2022b). Furthermore, in our hybrid
modeling work for bio chromatographic application, the accuracy
of hybrid models was around 40% better than the typically used
mechanistic model (Lumped kinetic model) for the protein-A
capture step (Narayanan et al., 2021b; Narayanan et al., 2021c;
Narayanan et al., 2021d). Such better prediction accuracy by the
hybrid models correspondingly results in superior performance in
relevant process applications. This has been quantitatively
demonstrated, for instance, for process monitoring and control
by Narayanan et al. (2020a), and von Stosch et al. (2012a)
comparing against PLSR1 and ANN, respectively.

3.2 Lower data requirement

An additional advantage of the hybrid model is its ability to
efficiently model systems where data generation capacity is limited.
In theory, from a parameter estimation standpoint, knowledge-
based models are probably the ones that require the least amount
of data if specific and independent analytics exist for the evaluation
of the different physically relevant parameters. In contrast, to
estimate parameters using macroscopic data, a significantly large
number of experiments might still be required to decorrelate the
different parameters and estimate their value with reasonable

certainty. In addition, a lot of experiments (and maybe more
specialized experiments and analytics) must be performed a
priori to generate and gather the required, detailed, and ideally
unbiased knowledge to develop such a model in the first place. For
most biopharmaceutical systems such unbiased generalized
knowledge for different hosts and therapeutic modalities has not
yet been deciphered. On the other hand, the flexibility offered by
data-driven models requires a lot of data to establish a reliable
model. Subsequently, hybrid models have shown superior predictive
and extrapolation (c.f. Section 4.3) capabilities with much fewer data
compared to their data-driven counterparts (Narayanan et al.,
2022b). In our recent work, data requirements for hybrid models
are compared against the PLSR models as well as the ANN with the
former requiring much fewer data compared to either of the data-
based alternatives (Narayanan et al., 2022b). This is rationalized by
the fact that the knowledge-based part of the hybrid model
constrains or segregates the problem to be learned by the ML (or
data-based) model thus compensating for the reduced data.

In addition, it is worth noting here that the requirement of data
to train a reliable model can be further minimized by using an
appropriate design of experiments. In the industrial setting, it is
standard practice to either perform experiments in a very narrow
sub-region or use a classical design of experiments strategy (most
often factorial designs or response surface models) (Narayanan and
Love, 2022). However, such designs are extremely inefficient in
capturing the non-linear interrelationships between variables (since
they are based on perturbing corners and centers of the design space)
thus resulting in poor representations for the model to learn
(Narayanan and Love, 2022). In this direction, in our recent
work, we have quantitatively demonstrated the reduction in the
amount of data required and the difference in model performance
between using a fractional factorial design as opposed to a uniform
space-filling design such as Latin hypercube sampling [c.f. SI of
(Narayanan et al., 2022b)].

3.3 Extrapolation and process optimization

In addition to improved predictive accuracy and reduced data
burden, hybrid models also outperform their alternatives in
extrapolation. Extrapolation capability is key for process
optimization and the ability of the models necessitated to
robustly predict beyond their training regimes. It is here noted
that extrapolation is implied in terms of “operation” such as a
change of feeding strategies, change of mode of operation, or
expanding the boundaries of process parameters. The strong
knowledge support in such models prevents the models from
learning and subsequently predicting unrealistic behaviors when
used for prediction outside their training region which has been a
classical skepticism around the purely data-driven model. In theory,
the knowledge-based models should be the most efficient in
extrapolation as they are based on physical principles. However,
this is true only if the knowledge-based models are unbiased and do
not rely on empirical assumptions based on a case-specific basis
(which unfortunately is often the case in fields such as bioprocesses).

The superior performance of hybrid models for extrapolation
has been quantitatively demonstrated in the literature (Van Can
et al., 1998; Narayanan et al., 2019; Narayanan et al., 2021b;
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Narayanan et al., 2021c; Narayanan et al., 2021d; Narayanan et al.,
2022a; Narayanan et al., 2022b). Subsequently, these capabilities
have resulted in the successful application of hybrid models for
process applications as highlighted, for instance, by Bayer et al.
(2021) for scale transferability and Teixeira et al., for process
optimization (Schubert et al., 1994a; Galvanauskas et al., 2004;
Teixeira et al., 2006; Ferreira et al., 2014).

3.4 Physically relevant behavior and
interpretability

Finally, hybrid models channel the information learned by the
data-driven models to lumped physical parameters, resulting in
physically relevant behaviors being learned and predicted by the
model. Subsequently, the qualitative trends can be interpreted from
these models. For instance, it has been previously shown how the
imposition of mass balance in a bioreactor model results in the
hybrid model learning biologically consistent glucose consumption
patterns, as opposed to a purely statistical model which fails to learn
such behavior [we refer the readers to (Narayanan et al., 2019) and
(Narayanan et al., 2021d) for figures and in-depth discussions]. In
addition, (Narayanan et al., 2022b), have also demonstrated the
ability to extract other types of lumped kinetic information such as
the glucose consumption rates, maintenance rates, etc., as well from
such hybrid modeling approaches. Similarly, hybrid models for bio-
chromatographic columns have been shown to learn relevant
adsorption equilibrium representations (i.e., isotherms) when
trained only on the breakthrough data (Narayanan et al., 2021b;
Narayanan et al., 2021c). The ability to extract such information
from a hybrid model makes it extremely attractive for process
understanding applications and subsequently to attain the goals
of QbD initiatives.

4 Steps to set up hybrid models

Subsequently, the following section will lay out the key step-by-
step considerations for the development of hybrid models.

4.1 Define the modeling task

Prior to model development, the definition of the modeling task
is key, irrespective of the type of model that is, being developed
(mechanistic, data-driven, or hybrid models) (Bonvin et al., 2016).
This is, in turn, determined by the associated application and
process goals. Once the process goal and the corresponding
modeling task are identified, the next step is to determine the
inputs and outputs of the model.

This is typically determined by the ability to quantify different
relevant variables. For instance, in most biopharmaceutical firms, in
the cell culture (or bioreactor), macroscopic variables such as the
concentration of extracellular metabolites, products, and cells are
quantified in contrast to intracellular quantities such as the ones
obtained through omics techniques. This constrains the inputs and
outputs that can be used for the modeling tasks. In addition, if
historical data is being used, the nature of the available dataset

(missing information, frequency, etc.) determines the capacity of
modeling and also if a reasonably reliable model can be set up, to
begin with (Narayanan and Love, 2022).

Furthermore, which variables can be included as input in a
model and how they are to be introduced may be for different
applications. For instance, process optimization requires a modeling
setup where the entire evolution of a process variable can be
predicted based on just the initial condition. On the other hand,
for process monitoring online or real-time information and
variables can be used in the models.

Once the modeling task is defined and suitable inputs and
outputs are decided, the model development process can
commence. It is here noted that after the input and outputs have
been identified there might be a requirement for certain data pre-
processing such as missing data considerations, and frequency
alignment of data points collected. Typically, for purely data-
driven modeling certain data transformations are also performed
to attain certain distribution or to achieve a certain type of non-
linearity (typically in the linear model). In the case of hybrid
modeling, the existing knowledge fragments often dictate or
compartmentalize the functional form of the primary input,
which might undergo transformations as required within the
knowledge-based/mechanistic framework (Tsopanoglou and
Jiménez del Val, 2021).

4.2 Identifying knowledge fragments and
their mathematical representation

The first step in the development of a hybrid model involves
the identification of the engineering know-how and the process
knowledge available for the system under study. Subsequently,
these knowledge fragments must be organized based on
increasing levels of certainty. For instance, knowledge based
on physical laws (e.g., mass balance, energy balance,
thermodynamics) holds higher validity as compared to
empirical assumptions (e.g., Monod kinetics for cell
metabolism representation, Langmuir isotherm to represent
adsorption) which may be valid for ideal, simple systems but
may not hold try for complex systems.

Once the knowledge fragments are identified and sorted based
on their certainty, their respective mathematical representations/
formulation must be determined. The top level of such framework
typically can be represented through a system of ordinary
differential equations (e.g., to represent homogeneous macro-
kinetic representation of cell cultures), partial differential
equations (e.g., to represent chromatographic process), algebraic
equations (e.g., to represent a system in steady state) or a mixture of
these forms summarized as differential-algebraic equations. Within
these overarching frameworks, other knowledge fragments assume
various functional forms. For instance, linear representation to
account for the proportional dependence of cell growth rate
(nutrient consumption rate, and product production rate) on the
viable cell density. Other manifestations of the knowledge could be
in form of constraints, lower and upper bounds of different input or
target variables, or even channeling the inputs received by data-
based algorithm learning the missing information (discussed below
in Section 3.2).
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It is here noted that the extent of knowledge to be incorporated,
can be pre-determined (as popularly done in literature) or a family
of hybrid models with different fractions of knowledge can be
developed. In the later stage, once the models are trained, a
choice can be made based on the performance of the different
models on a validation set. An alternative option is to ensemble the
prediction from all viable models (ignoring biased models that
would result in poor performance already during the training
phase) via stacking (Bishop, 2006; Hastie et al., 2017).

In the case that a pre-determined extent of knowledge is
incorporated it must be ensured to avoid over-emphasizing the
empirical assumptions-based knowledge fragments since they risk
producing an extremely biased model. Though the flexibility of the
data-based ML model might compensate for the biased or wrong
knowledge enforced, it could lead to wrong interpretations, wrong
extrapolations, and possibly require more data to correct for the
misleading knowledge backbone imposed in the hybrid model.
Thus, it is advised to introduce knowledge, that is representative
of the physical correctness of the model. For instance, species-
specific mass balances to account for the feed inlets and outlets
are absolutely certain and can be incorporated into the knowledge-
based model. Such similar knowledge fragments that aid in the
learning of physically consistent behaviors can be incorporated into
the knowledge-based layer of the hybrid model (Figure 4).

4.3 Identifying missing information and
replacing it with data-based models

Subsequently, the fragments missing a mathematical
representation based on unbiased prior knowledge or physico-
chemical understanding are identified. These fragments are then
modeled using statistical or machine-learning algorithms which

offer a plethora of options from the simplest in the form of
multi-linear regression to a latent space-based algorithm such as
PLSR to complex non-linear models ranging from tree-based
algorithms (XGBoost, Random Forest, etc.) to kernel-based
methods (SVMs, GPs) to neural network-based algorithms (MLP,
DNN) (Bishop, 2006; Hastie et al., 2017).

The choice of the algorithm can be made based on a pre-
determined rationale or a family of hybrid models can be
developed considering the different options of the machine
learning algorithm. Currently, the literature is based on the
former where the machine learning algorithm is fixed a priori,
for instance, based on its ability to flexibly learn the underlying
unknown function. The latter is still a viable option where a single
model can be selected at a later step (i.e., using a validation test to
evaluate the performance of hybrid models developed using
different algorithms.) or all the models can be retained to
perform ensemble modeling via stacking (Bishop, 2006; Hastie
et al., 2017).

4.4 Training hybrid model(s)

Once the knowledge backbone and the algorithm to replace
the missing information are determined, the hybrid modeling
backbone is in place. The next is to train these models to optimize
them for the considered system, from which relevant data is
generated. There can be two approaches to training such hybrid
models. The first involves substituting the parametric form of the
machine learning algorithm into the mathematical formulation
of the knowledge backbone and solving the system of differential-
algebraic equations using appropriate numerical techniques. The
other approach is to reorganize the terms in the hybrid model
formulation such that the entities learned by a machine learning
model can be segregated or collected as a function of all the inputs
to a machine learning model. Subsequently, the hybrid models
can be trained like any typical machine learning model (Bishop,
2006; Hastie et al., 2017). It is here worth noting that when the
choice of the machine learning algorithm is non-parametric (e.g.,
tree-based algorithms or Gaussian processes), the latter approach
is the only possible option since such algorithms lack a
parametric representation.

4.5 Validate hybrid model(s)

The choice of the ML algorithm enforces the need to select
certain hyperparameters dependent on the chosen algorithm. For
instance, the number of layers, the number of hidden nodes in each
layer, and the transfer function are some of the hyperparameters
associated with an ANN; Gaussian processes have the kernel type
and mean function type as the key hyperparameters, and so on and
so forth for other ML algorithms. This requires the use of a
validation set (or an internal test set) to select the relevant
hyperparameter for the given study case.

In addition, the performance of the model on this validation
set(s) can also be used to determine the most suitable ML algorithm
and the key elements of knowledge fragments, in case a series of
choices was retained in Sections 3.2, 3.3.

FIGURE 4
Flowchart representation of the step-by-step conceptual guide
to developing a hybrid model.
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Summarizing, the final hybrid with the optimal corresponding
architecture is chosen in this step which can subsequently be used
for intended applications.

4.6 Apply model

Once the final model is calibrated or developed it is ready to be
used for intended applications. Though this seems straightforward
from a scientific perspective, a number of practical hurdles might
make the application of hybrid models still challenging (Canzani
and Timmer, 2021). However, it can be expected that with the ever-
faster advancement of technologies, these hurdles become
significantly smaller over time.

5 Conclusion

The biopharmaceutical industry is currently faced with the
need to, on the one hand, accelerate process development and
CMC activities for the new therapeutic modalities while on the
other hand thriving to increase the production of an existing
molecule to meet global demands. Additionally, it can benefit
from the reduction in the market price of these therapeutics
making them accessible to a larger population. This can be
realized by enhancing the efficiency of process development
and CMC, subsequently, reducing the development costs and
thus the marketed price.

The growing capacities of mathematical algorithms, especially
derived fromAI andML, have opened up many possibilities that can
be utilized to achieve several of the aforementioned targets of the
industry. A key bottleneck in this regard, however, is the ability of
the biopharma industry to generate a large amount of data to
develop such tools with reliability. The hybrid modeling
paradigm is emerging as a pragmatic solution to enable all ML
benefits while using limited data, especially for process development
and CMC activities.

In this article, the key qualities of hybrid modeling that make
it a suitable approach have been highlighted and summarized.
The major aspects include lower data requirements, better
predictive accuracy, extrapolation capabilities, and
comparative ease of interpretability and physical relevance.
Subsequently, a step-by-step guideline to develop a hybrid
model has been detailed to provide a series of conceptual
checklists to be considered to build a reliable and robust
model for an intended purpose.

Despite the advancements on the algorithmic end to take into
account knowledge to reduce data requirements, the quality of data
collected is still to be ensured. It is required that the paradigm of
experimental design and data generation is modified to justify the
transition for process modeling. The past/current experimental
design strategies rely heavily on one-factor-at-a-time approaches
or performing statistical DoE with a small subset of design variables
which makes it easier for human interpretation. However, in order
for the process models to represent the physical system reliably, the
effect of multivariate interactions must be studied and data must be
collected. In addition, the existing paradigm of decoupling
experimental design/data collection and modeling results in
increased amounts of data points (especially by probing the
unfavorable part of the design spaces). As a result, alternative
approaches such as active learning coupled with iterative
experimental design would be impactful and thus could be the
future direction of research in this area. A more thorough sketch of
these challenges and plausible solutions for the deployment of process
models in the biopharmaceutical industry has been highlighted in the
recent commentary article (Narayanan and Love, 2022).
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