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In this paper, a feasible path-based branch and bound (B&B) algorithm is

proposed to solve mixed-integer nonlinear programming problems with

highly nonconvex nature through integration of the previously proposed

hybrid feasible-path optimisation algorithm and the branch and bound

method. The main advantage of this novel algorithm is that our previously

proposed hybrid steady-state and time-relaxation-based optimisation

algorithm is employed to solve a nonlinear programming (NLP) subproblem

at each node during B&B. The solution from a parent node in B&B is used to

initialize the NLP subproblems at the child nodes to improve computational

efficiency. This approach allows circumventing complex initialisation procedure

and overcoming difficulties in convergence of process simulation. The

capability of the proposed algorithm is illustrated by several process

synthesis and intensification problems using rigorous models.
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1 Introduction

Many optimisation problems in the field of chemical engineering are usually modeled

as mixed-integer nonlinear programming (MINLP) problems. Typical examples include

process synthesis problems, design and scheduling of batch processes, molecular design

and integration of process design and control. MINLP optimisation problems involve

integer or discrete variables in addition to continuous variables. Continuous variables are

used to optimize operating conditions such as input and output flow rates of an individual

unit, unit operating pressure and temperature, reaction conversion, and product

recoveries. Integer variables can be used to make discrete decisions, e.g., selection of
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process equipment or assignment of tasks. It is also possible to

introduce discrete quantities, such as number of trays in a

distillation column (Kronqvist et al., 2018). The coupling of

the integer domain and the continuous domain, as well as their

associated nonlinearities, makes MINLP problems extremely

difficult to solve theoretically, algorithmically and

computationally (Floudas, 2009).

In general, MINLP problems can be divided into two classes -

convex MINLP problems and nonconvex MINLP problems. A

convex MINLP problem is defined as such when the discrete

binaries are relaxed as continuous variables, the resulting NLP

problem is convex (Trespalacios and Grossmann, 2014). A

number of deterministic algorithms for solving convex

MINLP problems have been proposed, primarily based on two

optimisation methods, the branch and bound method and the

MILP decomposition method (Kronqvist and Lundell, 2019).

The main idea of the branch and bound (B&B) method (Gupta

and Ravindran, 1985) is used in most of the existing MINLP

deterministic solvers. B&B builds up a search tree to implicitly

enumerate possible candidate solutions for a given problem,

using pruning rules to eliminate search regions where a better

solution cannot be found (Morrison et al., 2016). When a tree

search is performed, the integer variables are successively fixed at

the corresponding nodes of the tree, yielding relaxed NLP

subproblems. It is only attractive if NLP subproblems are

inexpensive to solve, or only a few of them need to be solved.

In contrast to B&B, the main idea of the MILP decomposition

approaches is to iteratively construct a MILP approximation by

successive linearization of nonlinear constraints without using a

search tree. Algorithms include outer approximation (OA)

(Viswanathan and Grossmann, 1990), the extended cutting

plane method (ECP) (Westerlund and Pettersson, 1995),

extended supporting hyperplane (ESH) (Kronqvist et al.,

2015) and generalised bender decomposition (GBD)

(Geoffrion, 1972). Apart from the above algorithms, Raman

and Grossmann (1994) brought up an alternative

representation of MINLP—Generalised Disjunctive

Programming (GDP), which involves Boolean and continuous

variables that are specified in algebraic constraints, disjunctions

and logic propositions. These GDP problems can be solved by

dedicated solution algorithms such as logic-based OA (Türkay

and Grossmann, 1996) and GDP B&B (Lee and Grossmann,

2000).

Although both types of MINLP problems are NP-hard in

general, nonconvex MINLP problems are typically much harder

to solve than convex MINLP problems (Burer and Letchford,

2012). This is due to nonconvexities of integer variables as well as

nonconvex functions in the objective function and/or constraints

in nonconvex MINLP problems. Even if the integrality

requirements are relaxed, the feasible region may continue to

be nonconvex (KILINÇ and SAHINIDIS, 2017) as nonconvex

constraints are typically required for accurate modeling of many

real-world problems, particularly in chemical engineering. The

nature of nonconvexities implies the potential existence of

multiple local optimal solutions. As a result, a local optimal

solution for nonconvex problems is frequently obtained, whilst

the global optimal solution for convex MINLP problems is

guaranteed. In response to the increased number of

applications, a variety of global optimization algorithms for

nonconvex MINLP problems have been developed, which can

be classified as deterministic or stochastic depending on their

convergence features.

The most common global deterministic method to solve

nonconvex MINLP problems is spatial B&B (McCormick,

1976). It extends the scope of traditional branch and bound

algorithm to solving problems for which the feasible region of

continuous variables is divided and the lower bound and upper

bound are compared for fathoming each subregion. Two major

algorithms derived from spatial B&B make a step forward for

finding the exact solution of nonconvexMINLP problems. One is

the branch and reduce algorithm (Ryoo and Sahinidis, 1996),

while the other is α-branch and bound algorithm (Androulakis

et al., 1995). The branch and reduce algorithm is based on the

idea that convex underestimating NLPs can be constructed for

the nonconvex relaxations by evolutionary subdivision of the

search region. It is commonly conducted on LP relaxations rather

than more complex convex programming relaxations (Burer and

Letchford, 2012). The α-branch and bound algorithm relied on

the idea of modifying the Hessian matrix of the Lagrangian

function in nonconvex NLP problems to yield a convex

relaxation. Although these two methods can theoretically

guarantee global optimality, they are often very computational

demanding, due to the generation of a huge global search tree,

whichmay prevent the method to find an optimal solution within

a reasonable time (Burre et al., 2022). They often fail to find a

feasible solution for large-scale highly nonconvex MINLP

problems.

Different from deterministic methods which requires the

knowledge about the problem structure, stochastic methods

treat the problems to be optimised as a black box. They

include simulated annealing, genetic algorithm, and clustering

methods. Their robustness and ease of implementation make

them commonly adopted to solve difficult optimisation

problems. However, there is no guarantee that such

algorithms can approach optimality. Moreover, stochastic

algorithms require a large number of fitness evaluations due

to the combinatorial nature of sampling multidimensional space,

leading to long computational time. For example, one simulation

run for a pressure swing distillation case (Battisti et al., 2019)

using simulated annealing algorithm can be up to 1 h. Multiple

runs have to be conducted with difference parameters in order to

find the closest proximity to the global optimum. This may get

much worse for solving MINLP problems since the presence of

integer variables results in a combinatorial explosion of solutions.

That is why their use for solving MINLP problems remains

limited (Munawar et al., 2011).
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Concerning the robustness of NLP solvers and the fact that

globally optimising MINLP models for large-scale problems

using the methods described above can be very

computationally expensive, solvers such as DICOPT

(Viswanathan and Grossmann, 1990) and SBB are used to

solve large-scale nonconvex MINLP problems, despite the fact

that these methods rely on convexity assumptions (Grossmann,

2012). In the past few decades, the aforementioned algorithms

have been applied to a wide range of problems in the field of

process systems engineering. Some modified OA methods have

been applied to the simultaneous optimisation of heat integration

network (Yee and Grossmann, 1990), distillation column

synthesis (Farkas et al., 2008), and the optimisation of an

integrated five-level Supply Chain (Amjadian and Gharaei,

2021). Logic based OA algorithm has been applied to the

optimal design of reactive distillation columns (Jackson and

Grossmann, 2001). Branch and bound method has also been

applied to identify energy-efficient distillation configurations for

multicomponent separations (Tumbalam Gooty, 2019) and the

optimal design of catalytic distillation (Liñán et al., 2021).

However, as pointed out by Grossmann (2012), the key of

successfully solving MINLP problems is to solve NLP

subproblems and the convergence of NLP subproblems must

require the supply of good initial points and accurate derivative

information. In other words, the solvers such as DICOPT and

SBB often fail if a good initial point is not supplied.

Another way to improve the convergence of NLP subproblems

is to make systematic use of solutions generated from previous NLP

subproblems, which has been addressed in our previous work (Ma

and Li, 2022). The homotopy continuationmethodwas employed to

improve the convergence and efficiency of solving the NLP

subproblems at each node through constructing a homotopy

path using the solution obtained from its parent node. However,

two specialized initialisation strategies were designed to generate a

feasible solution for the relaxed synthesis problems at the root node,

and this feasible solution was then used to initialise the proposed

homotopy continuation enhanced branch and bound algorithms.

This implies that “good” initial points are required. More

importantly, HCBB method may fail if the homotopy path is

discontinuous. In addition, this HCBB method is difficult to be

used to solve MINLP problems with many constraints implicitly

indicated in a process simulator such as Aspen Custom

Modeller (ACM).

It is not difficult to notice that two of the main applications of

MINLP in chemical engineering are process synthesis and

intensification. Process intensification has been receiving

increased attention because of its potential to obtain process

improvement and meet the increasing demands for sustainable

production (Lutze et al., 2010). The reduction of equipment size,

higher energy efficiency, reduction in capital cost and safer

operation can be achieved in the intensified process unit. In

particular, the diving wall column (DWC) is a practical

implementation of a fully thermally coupled distillation

column in which mixtures of three or more components can

be separated into high purity products (Dejanovic et al., 2010).

The objective of process synthesis is to select the best process

flowsheet among numerous alternatives. The selection of the

optimal configuration for the separation of a multicomponent

mixture is one of the prevailing problems for superstructure

optimisation-based synthesis problems. In the optimisation of

DWC column and distillation sequence synthesis problem, many

methods presented in the literature are based on short-cut

models. They may show good convergence performance and

are less computationally intensive, but the solutions are often

impractical due to the simplified assumptions. Thus, unit

rigorous models are required to be incorporated which leads

to highly nonconvexity and nonlinearities that translate to

pronounced computational difficulties in achieving

convergence by using the existing algorithms.

To overcome the difficulties of the existing optimisation

methods in solving highly nonconvex MINLP problems, we

develop a new solution approach - a feasible path-based

branch and bound algorithm in this paper. Like conventional

branch and bound method, a search tree needs to be created. The

key difference is that a hybrid feasible path-based optimisation

framework is applied for solving the relaxed NLP subproblems at

each node. With this combination, our new proposed MINLP

algorithm possesses the following superiorities:

• No tailor-made initialisation procedure is required. Initial

points can be chosen randomly, and convergence can be

guaranteed.

• It overcomes the convergence difficulties when highly

nonconvex constraints are incorporated in the

mathematical models in the equation-oriented

environment, e.g., thermodynamic equilibrium models

and MESH equations for distillation.

• As the mathematical models are implemented in the

process simulator, which has physical property database,

the calculation of physical properties can be repeatedly

carried out. No simplified assumptions have to be made on

the physical properties such as ideal gas or liquid phase

behaviour. Thus, there is no compromise on the model

accuracy.

Several examples involving DWC optimisation and distillation

sequence synthesis are solved to illustrate the capability of the

proposed new algorithm. The computational results demonstrate

that a similar configuration ofDWCand very close TAC are obtained

for Example 1 compared to the results in the literature. For Examples

2 and 3, at least 15% energy reduction can be achieved, compared to

the results in the literature. For distillation sequence synthesis

problems, the optimum solutions can be found within 1,723 CPU

s for a ternary mixture and 2,470 CPU s for a quaternary mixture.

Note that the main purpose of this work is to demonstrate the

feasibility and superiority of the proposed algorithm by solving
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several examples. Hence, we do not conduct comprehensive

evaluation of the proposed algorithm, which will be our future

publication.

The rest of this paper is structured as follows: The MINLP

problem to be solved is introduced first. The FPBB algorithm is

then be explained in detail. After that, several examples including

dividing wall column optimisation and the synthesis of

distillation sequences are presented to illustrate the

effectiveness of our novel algorithm. Finally, we conclude our

work with some insights and future endeavour.

2 Problem statement

The large-scale highly nonconvex MINLP problem usually

has the following general form:

min
x,y

f(x, y)

s.t.h(x, y) � 0
g(x, y)≤ 0
x ∈ X ⊆ Rn, y ∈ Zsinteger

(P1)

where x is a vector of continuous variables with n dimension, and

y is a set of integer variables; f(x, y) usually represents the

objective function such as total annualised cost (TAC); h(x, y) �
0 are equality constraints such as material and energy balances,

and equilibrium relationships; g(x, y)≤ 0 are inequality

constraints such as product specifications and minimum

temperature difference requirements in the heat exchangers.

When we constrain the set of integer variables to binary

variables without loss of generality (Floudas, 2009), the

original MINLP problem can be formulated as below:

min
x,y

f(x, y)

s.t.h(x, y) � 0
g(x, y)≤ 0
x ∈ X ⊆ Rn, y ∈ {0, 1}s

(P2)

where y now is a vector of 0–1 variables with dimension s, for

instance, existence of a process unit (yi � 1) or nonexistence

(yi � 0). In this paper, f(·), g(·) and h(·) are assumed to be

smooth, twice differentiable and noncovex with respect to x.
The objective of this work is to develop a novel branch and

bound algorithm called feasible path-based branch and bound

algorithm coupled hybrid steady-state and time-relaxation-based

algorithm (denoted as FPBB) to solve the above stated problem P2.

3 Feasible path-based branch and
bound algorithm

The standard nonlinear B&B algorithm (SBB) for an MINLP

problem is a combination of the branch and bound method with a

selectedNLP solver. Since anNLP subproblem is required to solve at

each B&B node, the performance of SBB on the MINLP problems

mainly depends on how to solve the NLP subproblems reliably.

When feasible solutions exist for NLP subproblems, failing to solve

them can severely impede the performance of MINLP algorithms

(Flores-Tlacuahuac and Biegler, 2007). To solve large-scale highly

nonconvex NLP subproblems (e.g., distillation column optimization

based on MESH equations) reliably, we employ the hybrid feasible

path optimisation algorithm developed previously in which an NLP

subproblem is decomposed into two layers, as it has demonstrated

its capabilities for solving large-scale strongly nonconvex nonlinear

optimisation problems. In the sequel, we introduce the feasible path

algorithm in detail.

For clarity, some notations need to be introduced first. The

active nodes set that includes the remaining nodes to be explored

in the B&B is denoted as ζ . During B&B, for example, at node ni,

some of binary variables are fixed, while some remain relaxed.

Before solving the subproblem at the node ni, the fixed set of

binary variables is denoted as yiF, the relaxed set is denoted as y
i
R.

After solving the subproblem.

Solving the subproblem, the fixed set is still the same as yiF,
however, the relaxed set is changed to yi*R with determined

optimal values. ~f
*
i is used to denote the optimal objective

value of the NLP subproblem at node ni, and ~f
ub

is used to

denote the upper bound of the MINLP problem. At a node ni, the

NLP subproblem is then defined as follows,

min
x,yiR

f(x, yiR)

s.t. h(x, yiR) � 0
g(x, yiR)≤ 0
x ∈ X ⊆ Rn, yiR ∈ (0, 1)q

(P3)

Where yiR is the set of relaxed binary variables with a dimension

of q at node ni.

3.1 Hybrid feasible path optimisation
algorithm

In problem P3, equality constrains can be divided to two

groups - one group contains the unit operationmodels (e.g., mass

and energy balances, equilibrium relationships), stream

connections and economic evaluation models, denoted as h1,

while the others are denoted as h2. Then problem P3 is changed

to below form:

min
x,yiR

f(x, yiR)

s.t.h1(x, y
i
R) � 0

h2(x, y
i
R) � 0

g(x, yiR)≤ 0
x ∈ X ⊆ Rn, yiR ∈ {0, 1}q

(P4)

If partitioning continuous variables x in problem P3 into two

sets - independent variables xI and dependent variables xD, and

the dimension of xD is equal to that of h1. As xD can be expressed
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using an implicit function of xI, substituting the implicit function

into problem P4, a feasible path-based MINLP problem can be

derived as:

min
x,yiR

f(x, yiR)

s.t.h1(xI, xD(xI), yiR) � 0
h2(xI, xD(xI), yiR) � 0
g(xI, xD(xI), yiR)≤ 0
x ∈ X ⊆ Rn, yiR ∈ {0, 1}q

(P5)

Since the equality constants h1 can always be satisfied, they

can be eliminated from problem P5. Assuming the dimension of

xD ism, the dimension of h(x, y) in the original MINLP problem

P2 is reduced bym. Then problem P2 (A full space model) can be

translated to the reduced space model P6 in below:

min
xI ,yiR

~f(xI, y
i
R)

s.t. ~h(xI, y
i
R) � 0

~g(xI, y
i
R)≤ 0

xI ∈ Rn−m, yiR ∈ {0, 1}q
(P6)

The advantage of the hybrid feasible path optimisation

algorithm is that at each iteration during the optimisation, the

equality constraints are always satisfied, where less iterations are

required, and convergence can be facilitated compared to the

infeasible path.

3.1.1 PTC modelling approach
The PTC (pseudo-transient continuation)modelling approach is

based on reformulating a subset of the algebraic equations of the unit

model into ordinary differential equations (ODEs) which leads to a

new unit model described by the differential algebraic equations

(DAEs) (Pattison and Baldea, 2014). For example, the original mass

and energy balance equations can be converted into differential mass

and energy balances by prepending a time derivative term in the

appropriate dependent variable such as the accumulated amount

(hold-ups) of mass or energy. The solution from the dynamic

simulation of DAE models by integrating accurately in time

provides a “close” initial guess to the steady-state solution. Then,

when converting to the steady-state simulation, the steady state can

be easily reached. A PTC distillation model from our previous work

(Ma et al., 2017) is adopted for the case studies, which is provided in

the Supplementary Material.

3.1.2 Steady-state and time-relaxation based
algorithm

Our previous proposed hybrid feasible path optimisation

algorithm (Ma et al., 2020) depicted in Figure 1 is employed to

FIGURE 1
Steady state and PTC simulation algorithm.
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solve the NLP subproblem at each node. It is a combination of the

steady-state simulation and the PTC simulation. The main idea

of the hybrid algorithm is that a steady-state simulation is

performed first. Only when it fails, a PTC simulation using

the tolerance-relaxation integration method is then conducted.

This is because the PTC simulation is more time consuming than

the steady-state simulation. The initial values for the decision

variables must result in a converged simulation from which the

hybrid algorithm can start. Once the steady-state simulation is

converged, the derivative information calculated together with

the determined dependent variables through the process

simulation are provided to the gradient-based optimiser in the

outer lever. If the optimal conditions such as KKT (Karush-

Kuhn-Tucker) conditions are satisfied, then the optimal solution

is obtained, and simulation is terminated. Otherwise, the

optimiser will use the provided gradient information and the

values of decision variables to construct quadratic models and

generate the descent direction d. By applying the step length λ to

FIGURE 2
Tolerances relaxation integration method.
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the descent direction d, a new set of decision variables is created

and returned to the process simulator to perform steady-state

simulation.

If the simulation converges, the next iteration can be started.

Otherwise, a PTC simulation will be performed to generate a

converged simulation. However, if the PTC simulation also fails,

step length λ will be reduced. If the PTC simulation is successful,

the merit function will be evaluated based on whether a sufficient

decrease is obtained. If so, next iteration can be started.

Otherwise, step length shall be decreased and steps circled out

in the red rectangle in Figure 1 will be repeated until enough

decrease is obtained or the maximum number of line searches is

met. If the acceptable step length cannot be found within

maximum number of line searches, the last step will be

accepted anyway. Figure 1 illustrates the hybrid steady-state

and PTC simulation algorithm. The detailed steps are

described below:

Step 1: When k � 0, initial values that make steady-state

process simulation converge are given to decision variables x0.

Step 2: Obtain derivative information of the objective

function and constraint functions with respect to decision

variables xk from process simulator.

Step 3: Construct a quadratic programming (QP) problem

and solve to get the descent direction d and estimated Lagrange

multipliers.

Step 4: If the KKT conditions are satisfied, the optimal

solution is found and proceed to the final step. Otherwise go

to next step.

Step 5: Evaluate the merit function Pk with xk and set the step

length λ to 1.

Step 6: A group of trial decision variables ~xk+1 are obtained by
applying the step length λ to the descent direction d, where
~xk+1 � xk + λd.

Step 7: Conduct steady-state simulation using ~xk+1. If

simulation fails, go to next step. Otherwise, proceed to Step 10.

Step 8: Conduct the PTC simulation using the tolerances-

relaxation integration method. If converged, go to Step 10.

Otherwise, go to next step.

FIGURE 3
FPBB branch and bound search tree.
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Step 9: Set the objective function to a large value (e.g.,

1 × 1015) and rewind the values of all dependent variables in

the current simulation to those in the converged simulation

solution (denoted as S0) from last iteration (iteration k − 1).

Step 10: Evaluate new merit function Pk+1. If it achieves a
sufficient decrease compared to Pk, then accept current trial

decision variables as xk+1. Record current simulation solution as

S0. The line search is complete and return to Step 2. If not enough

decrease, reduce the step length by cutting it half and return to

Step 6.

Step 11: Output results.

As the PTC simulation is more time-consuming than the

steady-state simulation, a tolerances-relaxation integration

method which is illustrated in Figure 2 is used in combination

with PTC simulation to save the computational effort. When

the first attempted steady-state simulation with required

tolerance fails, the dynamic simulation using PTC models

shall be conducted with a large integration tolerance in the

beginning. A presumably long enough integration time T is

used to ensure the solution close to the steady-state solution

before the required tolerance is used. Using the solution from

dynamic simulation with a large integration tolerance as

initial points, a steady state simulation with the same large

tolerance is then conducted. If simulation converges, a direct

steady state simulation with required tolerance is performed.

In most cases, the direct steady state simulation is fast and

converged. However, if it fails, dynamic simulations using the

gradual loosen tolerance shall be performed to find a “closer”

solution to the steady state solution. In the meanwhile, as the

tolerance gets smaller, the integration time is increased to

ensure that the solution from dynamic simulation is close

enough to the true steady state solution. The detailed steps are

described below:

Step 1: Given values of the decision variables from last

converged steady-state simulation, an integration time T, the

largest tolerance tol0, the required tolerance tol req and the

FIGURE 4
FPBB algorithm.

TABLE 1 Feed conditions for Example 1.

Mixture components A/B/C n-pentane/n-hexane/n-heptane

Composition mole % 40/20/40

Pressure (atm) 2

Product purities 0.99/0.92/0.99

Feed flowrate (kmol h−1) 100

Feed condition Saturated liquid
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simulation tolerance tols which has the same initial value as tol0.

The iteration indicator j for integration time is initially set

to zero.

Step 2: Run dynamic simulation for PTC models for pseudo

time 10j · T with tolerance tols. If the PTC simulation fails, the

whole process simulation fails and then goes to Step 8. Otherwise,

go to next step.

Step 3: Record current converged point as C0. Run steady-

state simulation with tols. If converged, go to Step 6. Otherwise,

go to next step.

Step 4: If j reaches maximum iteration number, the process

simulation fails and go to step 8. Otherwise, go to next step.

Step 5: Reset the initial points to C0 and increase j by 1 to

increase the integration time. Return to Step 2.

TABLE 2 Optimal design for Example 1.

Column DWC (Montonati et al., 2022) DWC (FPBB)

Pre* Main Pre Main

Number of stages 23 46 21 46

Feed stage/Interconnection stages 14 9, 33 14 5, 26

Side stream stages 23 16

Reflux ratio 1.95 1.968

Liquid to pre (kmol/h) 33.5 24.9

Vapour to pre (kmol/h) 84.5 70.2

Condenser duty (kW) 815.8 821.87

Reboiler duty (kW) 898.6 900.81

Total Investment Cost ($) 134,130 134,185

Total Operating Cost ($/y) 29,844 29,926

Total Annual Cost ($/y) 43,258 43,344

FIGURE 5
Optimal design and operating conditions of DWC column for Example 1.
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Step 6: If tols is equal to tol req, then the simulation

completes successfully and go to Step 8. If tols is larger than

tol req and smaller than tol0, record current steady state solution

as S0 and run a steady-state simulation with tol req.

Step 7: If converged, the simulation completes successfully

and go to Step 8. If fails, reset the process variables to points

S0 and magnify tols by 10 times and then return to Step 2. If

tols is larger than tol0, the process simulation fails and go to

Step 8.

Step 8: Return results.

3.2 FPBB algorithm
The branch and bound search tree constructed by FPBB

algorithm is illustrated in Figure 3. The root node is denoted as

n0, at which an NLP problem is to be solved. This NLP problem is a

relaxation of the problemP2with all the binary variables relaxed to be

0–1 continuous variables. At the root node, only root node is

contained in active nodes set ζ . The fixed binary set y0F is empty,

while the relaxed binary set y0R contains all the binary variables with

assigned initial values that need to be determined. The upper bound
~f
ub

is set to infinite.

After solving the root node, the optimal results in y0*R shall be

examined. If all the determined values are already 0 or 1, the algorithm

should be terminated with the integer solution from root node.

Otherwise, two new child nodes are created. The active set ζ will

be updated with two new nodes n1 and n2, with n0 deleted from it.

The NLP subproblem to be solved at node ni is formulated as

problem P7.

FIGURE 6
Composition profiles of Toluene in the DWC for Example 1.

TABLE 3 Computational performance for Example 1.

CPU time (s) Nnode Ninf&pruned Nnlp Ninteger

2, 712 9 3 9 3

TABLE 4 Feed conditions for Example 2.

Mixture components A/B/C n-butane/i-pentane/n-pentane

Composition mole % 40/20/40

Pressure (atm) 4.7

Product purities 0.99/0.92/0.99

Feed flowrate (kmol h−1) 100

Feed condition Saturated liquid
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min
xI,yiR

~f(xI, y
i
R; y

i
F)

s.t. ~h(xI, y
i
R; y

i
F) � 0

~g(xI, y
i
R; y

i
F)≤ 0

xI ∈ Rn−m, yiR ∈ (0, 1)q, yiF ∈ {0, 1}p
(P7)

At each node ni, our previous introduced hybrid steady-state and

time-relaxation-based optimisation algorithm is employed to solve

the NLP subproblem. After solving the NLP subproblem at node ni,

the pruning rules shall be applied. If there is no feasible solution at

node ni, then this node is pruned. If an optimal solution ~f
*
i exists, it

shall be compared with the upper bound ~f
ub
which is either infinite

(no optimal integer solution so far) or current best integer solution. If
~f
*
i is larger than

~f
ub
, the nodewill also be pruned.Otherwise, yi*R shall

be checked. If all the components in yi*R are binaries, it means solution

at node ni is an optimal integer solution. Then ~f
ub
will be updated to

~f
*
i . If some components in yi*R are still fractions, node ni will be

treated as a parent node and further branched where one relaxed

binary variable in yi*R with value close to 0.5 is selected and forced to

TABLE 5 Optimal design for Example 2.

Column DWC(Montonati et al., 2022) DWC (FPBB)

Pre Main Pre Main

Number of stages 46 106 55 135

Feed stage/Interconnection stages 23 4, 51 49 9, 64

Side stream stages 14 16

Reflux ratio 9.756 8.217

Liquid to pre (kmol/h) 70.4 78.95

Vapour to pre (kmol/h) 110 123

Condenser duty (kW) 2,381 2006

Reboiler duty (kW) 2,408 2031

Total Investment Cost ($) 314,892 306,399

Total Operating Cost ($/y) 80,373 67,838

Total Annual Cost ($/y) 111,863 98,478

FIGURE 7
Optimal design and operating conditions of DWC column for Example 2.
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0 or 1. Hereby two child nodes nj and nk will be created. Obviously,

only one binary variable in nodes nj and nk is different from their

parent node ni. Hence the optimal solution from parent node is used

to initialise the NLP subproblems in its child nodes.

The depth-first search strategy is used to select which of the

candidate subproblems (i.e., active nodes) in ζ to solve. The

chosen node will be explored again using FPBB algorithm in

Figure 4.

3.3 Implementation

In this work, the process flowsheet models are written in the

equation-orientedmodelling environment - AspenCustomModeler

(ACM). The convenience of using process simulators is that it

possesses unit operation models, submodels to calculate physical

properties, and flow-sheeting capabilities (Franke, 2017). The

solution is more practical since it can be applied to nonideal

systems without making simplifying assumptions such as the

ideality on liquid and gas phase. Compared to the sequential

modular (SM) environment such as Aspen Plus, the advantage of

conducting process simulations in the EO environments is that

Jacobian and Hessian matrices can be calculated via automatic

differentiation which enables the simultaneous solution of large-

scale nonlinear equations (Dowling and Biegler, 2015). The NLP

subproblems are decomposed into two layers. The outer layer is a

small optimisation problem, while the inner layer is a process

simulation problem. For simulations in the equation oriented

(EO) environment, the most widely used method for solving

FIGURE 8
Composition profiles of i-pentane in the DWC for Example 2.

TABLE 6 Computational performance for Example 2.

CPU time (s) Nnode Ninf&pruned Nnlp Ninteger

10,591 47 24 47 4

TABLE 7 Feed conditions for Example 3.

Mixture components A/B/
C/D

n-butane/n-pentane/n-hexane/
n-heptane

Composition mole % 25/25/25/25

Pressure (atm) 4.73

Product purities 0.99/0.99/0.99/0.99

Feed flowrate (kmol h−1) 1,000

Feed condition Saturated liquid
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these problems, however, is Newton’s method. It works best only

when the starting point is near to an optimal point. To resolve such

problems, we apply the steady-state and time-relaxation based

algorithm together with PTC models to each NLP subproblem.

A larger basin of initial conditions is achieved, and convergence can

be guaranteed.

The FPBB algorithm is implemented in Python. Open-source

optimiser slsqp (Kraft, 1988) is the selected NLP solver for the

outer layer optimisation. Information such as derivatives and

iterative values of variables transferred between Python and

ACM is via ACM automation interface.

4 Computational studies

To illustrate the capability and superiority of the proposed

FPBB algorithm, three process intensification problems

(i.e., DWC) and two process synthesis problems

(i.e., distillation sequences synthesis) are solved. The first two

examples are taken from Montonati et al. (2022) and involve the

separation of ternary hydrocarbon mixtures. Example 3 requires

the separation of a four-component mixture in a Kaibel column.

Example 4 involves optimisation of a distillation sequence

synthesis for the separation of a mixture of benzene, toluene,

and o-xylene. Example 5 is the separation of a four-component

mixture of methanol, ethanol, 1-propanol and 1-butanol. All

examples are modelled with rigorous models. Bypass efficiency

(εn) (Dowling and Biegler, 2014) is adopted to model the number

of trays and treated as binary variables in our study which gives

the flexibility of optimising the feed stage location, side draw

location and the number of stages in a distillation column. The

complete mathematical model is provided in Supplementary

Material.

The objective function of these five case studies is stated as

below:

minTAC � f(Ntrue, D, AR, Ac) + Cs · QR + Cw · QC

where Ntrue stands for the actual number of stages, D is the

diameter of the column, and AR and Ac are the reboiler area and

condenser area respectively, Cs and Cw are the steam and cooling

water costs,QR and QC are the reboiler and condenser duties, the

function f(·) represents annualised capital cost.

In each example, the optimisation tolerance is set as 1 × 10−5.
The largest simulation tolerance used in the tolerances-relaxation

method is 1 × 10−3, while the required simulation is 1 × 10−9. All
examples are solved on a laptop with a 1.9 GHz Intel Core

i7 processor and 8 GB of RAM running Windows 10 64-bit

operating system.

4.1 Example 1: Separation of n-pentane,
n-hexane and n-heptane

In this example, a DWC is used for the separation of a ternary

mixture consisting of n-pentane, n-hexane and n-heptane. DWC

is a practical implementation which integrates two columns into

a single shell by the addition of a wall that physically separates the

feed side from the side product draw off section. It has been

proven that up to 30% energy savings can be achieved together

with space and capital cost reduction (Babi et al., 2016). Optimal

design of DWC is not straightforward since it possesses a

complex structure with additional design parameters to be

considered, such as vapour and liquid split ratio and side

draw flowrate.

Table 1 provides information on feed conditions, product

specifications, and column operating pressure, which is fixed

in this example. The Peng-Robinson equation of state was

used for the vapor-liquid equilibrium calculation.

TABLE 8 Optimal design for Example 3.

Column SC + DWC DWC (FPBB-HB)a DWC (FPBB-HB)b

SC DWC Pre Main Pre Main

Number of stages 35 40 55 83 54 84

Reflux ratio 1.33 5.05 5.89 6.6

Total condenser duty (kW) 13617.24 9539.03 10529.17

Total reboiler duty (kW) 16297.27 14262.86 12025.42

aThe feed pressure is 1 atm.
bThe feed pressure is 4.73 atm.

TABLE 9 Computational performance for Example 3

CPU time (s) Nnode Npruned Nnlp Ninteger

12,277 11 5 11 1

CPU time (s) Nnode Ninf&pruned Nnlp Ninteger

3,358 1 0 1 1

Feed pressure at 1 atm.

Feed pressure at 4.73 atm.
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FIGURE 9
Optimal design and operating conditions of Kaibel column for Example 3. (A) Feed pressure at 1 atm. (B) Feed pressure at 4.73 atm.

FIGURE 10
Composition profiles of Pentane and Hexane in the Kaibel column for Example 3
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The decision variables include bypass efficiency, reflux ratio,

reboiler vaporization fraction, side draw fraction, liquid and vapour

split ratio. We use the proposed FPBB algorithm to solve this

example. The optimisation problem involves 180 binary variables,

21,167 continuous variables and 18,965 constraints. We generate a

locally optimal solution of 43,344 $ yr−1 within 2,712 CPU s. The

optimal results are provided in Table 2. From Table 2, it can be

observed that in the optimal design, there are 46 trays in the main

column and 23 trays in the prefractionator column. The optimal

design is illustrated in Figure 5.

The conventional sequence of separation has a low

thermodynamic efficiency due to the remixing effect (the

remixing of internal streams with different compositions that

occurs at the feed point and along column). This is eliminated or

reduced by the design of DWC (Dejanovic et al., 2010). As shown

in Figure 6, the side draw is located on the 16th tray where the

concentration of middle boiling component n-hexane is close to

its peak concentration as shown in Figure 6. This significantly

reduces the re-mixing effects in two columns in series

arrangements, which is one of the primary reasons why DWC

uses much less energy than conventional configurations.

Another gain in this respect is that as the prefractionator

distributes intermediate component between top and bottom,

there is a greater freedom in matching the feed composition with

a tray in the column to further reduce mixing losses at the feed

tray. This also can be substantiated in our results. The feed

stream contains 20% n-hexane which matches with the

composition of 21.37% n-hexane in the feed tray.

The computational performance of the proposed FPBB

algorithm is presented in Table 3. From Table 3, it shows

9 nodes are created and investigated during B&B, and all the

9 NLP subproblems have been solved successfully.

Interestingly, during B&B, three feasible integer solutions

are found. Two nodes are pruned due to the optimal solution

is larger than the upper bound. In the final optimal integer

solution, all the bypass efficiencies are at 0 or 1.

TABLE 10 Feed conditions for Example 4.

Mixture components A/B/C benzene/toluene/o-xylene

Composition mole % 30/40/30

Pressure (bar) 1.2

Product purities 0.995/0.995/0.995

Feed flowrate (kmol h−1) 500

Feed condition Saturated liquid

TABLE 11 Computational performance for Example 4.

CPU time (s) Nnode Ninf&pruned Nnlp Ninteger

1,723 3 1 3 1

TABLE 12 Feed conditions for Example 5.

Mixture components A/B/
C/D

methanol/ethanol/1-propanol/1-
butanol

Composition mole % 30/40/30

Pressure (bar) 1.12

Product purities 0.9/0.92/0.92/0.96

Feed flowrate (kmol h−1) 100

Feed condition Saturated liquid

FIGURE 11
Optimal distillation sequence with operating conditions for Example 4.
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We also compare the optimal design with that from

literature (Montonati et al., 2022), which is generated

using the specialised or heuristic procedure. The

comparative results are also provided in Table 2. From

Table 2, it can be observed that the configuration obtained

by using FPBB is very similar to the configuration in the

literature (Montonati et al., 2022). The method used in the

literature (Montonati et al., 2022) is a special procedure,

which requires short-cut models to determine the initial

design parameters of DWC, followed by equilibrium-

staged simulation, molecular tracking application and

finally using many simulations to investigate the effects of

varying parameters in the flowsheet to find an optimal design.

The design procedure is tailored without generality and

computationally intensive for design of DWC. The total

computational time is not reported. By applying our

algorithm to the same case, the total computational time is

2,712 CPU s.

4.2 Example 2: Separation of n-butane,
i-pentane, n-pentane

Similar to Example 1, Example 2 consists of a mixture of

n-butane, i-pentane and n-pentane to be separated in a DWC. As

the boiling points of i-pentane and n-pentane are quite close, the

separation is more difficult than themixture in Example 1. This is

reflected on the number of stages in the DWC column. Table 4

provides information on the feed properties. Operating column

pressure is also fixed in this example.

The optimisation problem involves 350 binary variables,

35,955 continuous variables and 36,305 equations. Compared

FIGURE 12
Optimal distillation sequence with operating conditions for Example 5.

TABLE 13 Computational performance for Example 5.

CPU time (s) Nnode Ninf&pruned Nnlp Ninteger

2,470 3 1 3 1
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to Example 1, the size of Example 2 problem is much larger. This

is reflected on the prolonged CPU time and nodes generated and

evaluated. The resulting configuration from the FPBB algorithm

is compared with the corresponding configuration using

molecular tracking from the literature (Montonati et al.,

2022). The results are presented in Table 5. These two

configurations are rather different. From Table 5, we can see

that the total number of trays obtained from the FPBB algorithm

is 135, which is 28 more than 106 in the literature (Montonati

et al., 2022). The larger number of stages results in a smaller

reflux ratio and less energy consumption in both condenser and

reboiler. The heat duty in the reboiler is 15.7% less than the heat

duty of the reboiler in the literature. The operating cost is reduced

by 15.6%. Though our DWC column possesses more stages, the

capital cost for condenser and reboiler is reduced due to less area

required. As a result, a locally optimal solution 98, 478 $ yr−1 is

found with 12% TAC reduction compared to the TAC from the

literature. Figure 7 illustrates the optimal design of DWC. The

composition profiles of i-pentane in the column is provided in

Figure 8. From Figure 8, it can be seen that the intermediate

component i-pentane is drawn on the 16th tray near to its

maximum composition, which avoids the effect of re-mixing.

The composition of i-pentane on the fee tray is 22.74% which is

close to its composition 20% in the feed stream.

The computational performance is presented in Table 6.

47 nodes are evaluated 24 nodes are pruned due to the optimal

solution larger than the upper bound. 4 integer solutions are found.

4.3 Example 3: Separation of n-butane,
n-pentane, n-hexane and n-heptane

This example is taken from Errico et al. (2009). The

authors studied the possible energy saving using a DWC

together with a simple column for the separation of a

four-component mixture. In our study, the four-

component mixture is separated using one DWC,

commonly referred to in the literature as a Kaibel column

(Kaibel, 1987). The configuration of a Kaibel column is

similar to the above two DWC configurations. The only

difference is that two side draws exist on the right side of

the divided wall. Feed conditions, product specifications, and

the other operative conditions considered in this example are

summarized in Table 7. In the literature (Errico et al., 2009),

the pressure of feed streams is 1 atm, which is not practical

since the column pressure is 4.73 atm. In our work, the

pressure of feed is changed to 4.73 atm to make it

consistent with column pressure. However, in order to

make results comparative, computational results for the

case with the pressure of 1 atm are also presented in Table 8.

The optimisation problem involves 240 binary variables,

28,121continuous variables and 28,361 constraints. Table 9

provides the computational performance. For the case with

feed pressure at 1 atm, the optimisation consumes 12,

277 CPU s. Total 11 nodes are evaluated. 4 nodes are pruned

due to maximum iteration number reached. 1 node is pruned due

to the lower bound larger than the upper bound. Only 1 integer

solution is found. For the case with feed pressure at 4.73 atm, the

optimal integer solution is found at root node within

3,358 CPU s.

The detailed results with comparison to the results in the

literature (Errico et al., 2009) are also provided in Table 8. The

column configuration is illustrated in Figure 9. From Table 8, it can

be seen that the reboiler duty is 14262.86 kW for the case with feed

pressure at 1 atm, which can be reduced by 12.5% compared to that

(16297.27 kW) from the literature (Errico et al., 2009). When the

feed pressure increases to 4.73 atm, the reboiler duty decreases to

12025.42 kW, which is further reduced by 26.2% compared to that

(16297.27) at 1 atm. As indicated by Errico et al. (2009), the capital

cost evaluation of DWC is not defined. Therefore, comparison can

only bemade in terms of energy savings. The significant reduction of

reboiler duty is due to the avoidance of remixing effect which can be

substantiated by the composition profiles in the Kaibel column in

Figure 10. From Figure 10, it can be observed that both n-pentane

and n-hexane are drawn near to their peak compositions in the

column to avoid the effect of remixing.

4.4 Example 4: Separation of benzene,
toluene and o-xylene

The superstructure for synthesis of distillation sequences is

constructed using the state-equipment network (SEN). In

comparison to the state-task network (STN), SEN representation

requires fewer equipment, leading to a smaller combinatorial problem

for the selection of equipment. As a result, a smaller model can be

obtained (Yeomans and Grossmann, 1999). The superstructure

(Yeomans and Grossmann, 2000) is presented in Supplementary

Figure S1. The decision variables for process sequence synthesis

include bypass efficiency, reflux ratio, reboiler vaporization ratio

and split fractions.

For this example, we conduct a distillation sequence synthesis for

a feed mixture of benzene, toluene and o-xylene. Product

specifications and the other operating conditions considered are

summarized in Table 10. We also use the proposed FPBB

algorithm to solve. The computational results are provided in

Table 11. This optimisation problem involves 122 binary variables,

14,552 continuous variables and 13,052 constraints. From Table 11, it

can be observed that CPU time is 1,723 s with 3 nodes evaluated.

1 node is pruned due to the optimal value of objective function larger

than the upper bound.

The optimal distillation sequence with the minimum TAC of

2,325,271 $ yr−1 is illustrated in Figure 11, which is direct distillation

sequence for this example. If column sequencing heuristics are

applied to select the separation sequence, the rules in the book by

Smith (2016) should be obeyed. The first rule is to perform easy
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separation where the adjacent components have the highest relative

volatility. The relative volatilities αB,X/αT,X/αX,X are approximately

7.1/2.2/1. As the relative volatility of benzene and toluene is larger

than that of toluene and o-xylene, separation of benzene should be

performed first. The second rule is to remove the component

comprising a large fraction of the feed first. Since the feed stream

contains benzene and o-xylene equality. This rule also cannot be used

to determine the sequence. The third rule is to remove the lightest

component alone by one in column overheads. In other words, direct

sequence is favoured. By using the heuristic rule approach, direct

separation sequence is selected which is consistent with our

optimisation result.

4.5 Example 5: Separation of methanol,
ethanol, 1-propanol and 1-butanol

This example is to separate a four-component mixture

consisting of methanol, ethanol, 1-propano and 1-butanol. The

feed conditions are summarised in Table 12. The SEN

superstructure (Yeomans and Grossmann, 2000) for separation

of methanol, ethanol, 1-propanol and 1-butanol is provided in

Supplementary Figure S1. The logic constraints that enforce the

consistency of tasks in the columns are provided in the

Supplementary Material. The operating pressure is assumed to be

constant throughout these three columns, with a value of 112 kPa.

This problem involves 190 binary variables, 24,881 continuous

variables, 22,058 equality constraints and 41 inequality

constraints. Figure 12 shows the optimal separation sequence

with operating conditions. Methanol is separated first because the

heuristics approach favours the first separation of the lightest

component. Then it is followed by the separation of heaviest

component 1-butanol. The separation of ethanol and 1-propanol

comes at last. Table 13 presents the computational results. As seen

from Table 13, CPU time is 2,470 s with 3 nodes evaluated. 1 node is

pruned due to infeasibility.

5 Conclusion

In this work, a novel feasible-path based branch and bound

algorithm was proposed, where the branch and bound method was

used to systematically fix part of the binary variables and generate

relaxed NLP subproblems, while the hybrid steady state and time

relaxation-based feasible path algorithm was employed to solve the

derivedNLP subproblems. In the generated B&B tree, the solution from

the parent node is provided as awarm start for theNLP subproblems at

the child nodes, which increases the computational efficiency. Five

example problems were solved to evaluate the robustness and

performance of the proposed algorithm. They demonstrated that the

proposed algorithm was able to find a locally optimum with very good

convergence performance. The first three problems showed that it was

capable of solving the optimization of DWC for separation of a ternary/

quaternary mixture within an acceptable time. Though FPBB achieved

similar DWC configuration and TAC for Example 1 compared to the

results in the literature, the CPU time was 2,712 s and FPBB did not

require specialised procedure for the design of DWC. Moreover, for

Examples 2 and 3, energy savings could be up to 15% using FPBB. The

last two examples illustrated that it was able to be used for process

synthesis problems. The optimal solution for distillation sequence

synthesis problems was found in 1,723 CPU s for a ternary mixture

and 2,470 CPU s for a quaternarymixture. As themodels are written in

an EO environment ACM for inner level simulation and connected to

Python for outer level optimization, data transfer time between the

software consumes at least one-third of CPU time. It should be noted

that the proposed algorithm cannot guarantee a global optimum since

the nonconvex NLP subproblems are solved to local optimality for

efficiency.

In the future, a comprehensive evaluation of the proposed FPBB

algorithm will be conducted by solving a variety of nonconvex MINLP

problems. Detailed comparison of the proposed FPBB algorithm with

some existing MINLP algorithms will also carried out. The advantages

anddisadvantages of the proposed algorithmwill be clearly identified. In

addition, this novel MINLP algorithm can be further applied to other

process intensification cases such as reactive distillation and membrane

reactor and process synthesis problems such as superstructure

flowsheets coupled with reactors. Efforts should also be made on

finding the global optimum within an acceptable computational time.
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