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Steam cracking of naphtha is an important process for the production of olefins.

Applying artificial intelligence helps achieve high-frequency real-time

optimization strategy and process control. This work employs an artificial

neural network (ANN) model with two sub-networks to simulate the

naphtha steam cracking process. In the first feedstock composition ANN,

the detailed feedstock compositions are determined from the limited

naphtha bulk properties. In the second reactor ANN, the cracking product

yields are predicted from the feedstock compositions and operating conditions.

The combination of these two sub-networks has the ability to accurately and

rapidly predict the product yields directly from naphtha bulk properties. Two

different feedstock composition ANN strategies are proposed and compared.

The results show that with the special design of dividing the output layer into

five groups of PIONA, the prediction accuracy of product yields is significantly

improved. The mean absolute error of 11 cracking products is 0.53wt% for 472

test sets. The comparison results show that this indirect feedstock composition

ANN has lower product prediction errors, not just the reduction of the total

error of the feedstock composition. The critical factor is ensuring that PIONA

contents are equal to the actual values. The use of an indirect feedstock

composition strategy is a means that can effectively improve the prediction

accuracy of the whole ANN model.
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1 Introduction

With the concept of industry 4.0 (BMBF, 2011), intelligent manufacturing has

gradually penetrated various industrial fields. Artificial intelligence (AI) is an integral

part of this industrial revolution. The term “Artificial intelligence” was coined in 1956 at a

math conference at Dartmouth College (Venkatasubramanian, 2019), which means the

ability of machines to perform tasks that are generally linked to the behavior of intelligent
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beings, such as humans (Dobbelaere et al., 2021). Machine

learning, an advanced technique to realize artificial

intelligence, is widely used in various aspects of chemical

engineering, and it is especially suitable for solving highly

complex and nonlinear problems (Plehiers et al., 2019). For

example, the current boom in using machine learning to

predict quantum chemical properties (Schütt et al., 2017;

Yalamanchi et al., 2020). With well-trained machine learning

models, bond dissociation enthalpies of organic molecules were

predicted at near chemical accuracy with sub-second

computational cost (St John et al., 2020). Another example is

the application of machine learning for catalyst design and

discovery (Goldsmith et al., 2018). Using a combination of

machine learning and optimization, a fully automated

screening method was constructed to rapidly identify

candidate catalyst types (Tran and Ulissi, 2018). In addition,

machine learning is also widely used in chemical process

engineering, such as plastic pyrolysis (Armenise et al., 2021),

Fischer-Tropsch synthesis (Chakkingal et al., 2022), and ethylene

thermal cracking (Bi et al., 2021), the topic of this paper.

Steam cracking of naphtha is an important chemical process

for olefins production. Naphtha cracking furnace is the core

device of this process, where hydrocarbons undergo highly

complex cracking reactions through the free radical

mechanism to produce olefin products. The schematic

diagram of a typical steam cracking furnace is illustrated in

Figure 1. The furnace is divided into two sections: the convection

section and the radiant section. Naphtha feedstock is first

introduced into the convection section for preheating (Zhang

et al., 2016). Dilution Steam with a specific ratio of hydrocarbon

is added to the feedstock to increase its temperature and lower the

hydrocarbon partial pressure (Fakhroleslam and Sadrameli,

2019). The diluted feedstock enters the fired tubular reactor to

convert into smaller molecules under controlled residence time,

temperature profile, and pressure. The required heat of the

radiant reaction is provided via several burners by the fuel

source. After leaving the radiant section, the cracked gas is

cooled rapidly and indirectly in the transfer line exchanger

(TLE) to stop the undesired reactions (Sadrameli, 2015).

The simulation of steam cracking furnace is significant for

production increasing, process control, energy-saving, and

emission reduction. The modeling of hydrocarbon pyrolysis could

be satisfactorily completed by rigorous calculation of kinetic and

thermodynamic parameters, which characterizes many possible

reactions. Parmar et al. (2019) established a complete model

including mass balance, energy balance, and momentum balance

to simulate a naphtha cracker. The kinetic model reaction network

used in this work was an extension of the classic Kumar model

(Kumar and Kunzru, 1985), which involved one primary reaction

and 21 secondary reactions. Fang et al. (2016) established an

industrial ethylene cracking furnace model with a free radical

mechanism kinetic model, containing 4694 reactions,

93 molecules, and 49 radicals. In order to decrease the

computational scale, a network flow analysis algorithm was

proposed to reduce the original network to 2293 reactions. Zhang

et al. (2017) directly used the commercial software COILSIM1D

(Hillewaert et al., 1988; Willems and Froment, 1988) to simulate a

tubular steam cracking reactor. An extensive reaction network

consisting of hundreds of species and thousands of elementary

reactions had been integrated into the software. Ren et al. (2020)

constructed a detailed mechanistic model of naphtha steam cracking

with the help of an open-source automatic reaction network

generator RMG (Gao et al., 2016; Liu et al., 2021). The final

model contains 1947 species and 82130 reactions, and was

verified by a set of naphtha steam cracking experiments.

However, as demonstrated in the above literature, the traditional

complete reactor simulation required a lot of prior knowledge of the

pyrolysis reactions, and plenty of time must be spent to solve a large

number of differential equations, which was not conducive to real-

time prediction and control (Qian et al., 1994). Using machine

learning, such as an artificial neural network (ANN) as a

surrogate model, could significantly improve the calculation speed

of prediction and provide the possibility for high-frequency real-time

optimization (RTO) strategy or process control for the naphtha

steam cracking process (Fakhroleslam and Sadrameli, 2020).

Nowadays, ANN has been widely used to predict the products of

the naphtha steam cracking furnace. Niaei et al. (2007) used both

ANN andmathematical models to predict main product yields in the

thermal cracking of naphtha and found that the performance of the

former was better than the latter. Sedighi et al. (2011) compared

several mechanistic and empirical models, including ANN, to predict

the main product yields of heavy liquid hydrocarbon thermal

cracking. The results showed that ANN had better results than

the kinetic and polynomial models. Jin et al. (2015), Jin et al. (2016)

used a feed-forward neural network to replace the complex free

radical pyrolysis model of naphtha. Good prediction accuracy of the

developed ANN was validated. Li et al. (2021) used two-layer neural

networks as the predict model of the ethylene yield in their proposed

DPC-ANNmodel. Hua et al. (2018a), Hua et al. (2018b) found that,

similar to images, the architecture of the naphtha pyrolysis network

has modular features after a graph theoretical analysis. The authors

introduced convolutional neural networks (CNN) to extract the

features of its topology to build a novel model of naphtha

pyrolysis. The proposed model was considered to be well

generalized and predict the yields of key products with high

accuracy. Based on Hua’s CNN model, Bi et al. (2020) introduced

transfer learning to create the source data from numerical simulation

in order to deal with conflicts between the high demands of data

quantity and low supplies from practical cases. Recently, this research

group developed an innovative graph neural network model to

extract effective features for product prediction, aiming to further

improve the prediction accuracy (Zhang et al., 2021). In their works,

neural network inputs are usually feed compositions and operating

conditions, and outputs are product yields. The feed compositions are

converted from feedstock properties using the molecular

reconstruction model in an ethylene cracker simulation and
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optimization system EcSOS (Fang et al., 2017; Bi and Qiu, 2019).

Plehiers et al. (2019) considered both ANN of feedstock composition

and reactor modeling. A four interacting deep learning ANNs (DL

ANNs) was developed tomake the model deal with different types of

naphtha feedstock. Among the DL ANNs framework, the second

network used the PIONAcomposition of the naphtha and the boiling

points to reconstruct the detailed composition of the feedstock

instead of molecular reconstruction algorithms. The initial input

was limited bulk properties of the naphtha feedstock and process-

related variables. The final goal was to predict steam cracker product

compositions.

In addition to using ANN for prediction, many articles use

ANN as a surrogate model for process optimization. Li et al.

(2007) optimized the operation of a naphtha industrial cracking

furnace by combing the ANN hybrid model with a multi-

objective particle swarm optimization procedure. The steam-

to-naphtha ratio (also called dilution ratio), the coil outlet

temperature (COT), and the outlet pressure were considered

to be the decision variables of multi-objective problems. Geng

et al. (2010) searched the optimal operating conditions to

maximize the total yields of ethylene and propylene and

linked them to cracking depth control. The prediction model

was radical basis functions neural network (RBFNN). Jin et al.

(2015) also applied the ANN model to investigate the multi-

objective optimization of the mean yields of key products and the

day mean profits. The feed flow rate and COT were chosen as the

direct input variables, and the coke thickness inside the coil was

taken as the state variable.

Table 1 summarizes the above literature based on ANN as a

surrogate model. In the above literature, the naphtha

feedstock was fixed or converted from molecular

reconstruction models (except the work of Plehiers et al.,

2019), whether for prediction or optimization. In modern

refineries, timeliness and accuracy are both important to meet

the demands of RTO systems. It is necessary to make a rapid

TABLE 1 Summary of the literature using ANN as a surrogate model.

Type of ANN Input variables of ANN Output variables of ANN Size of training
set/test set

References

Back-propagation ANN COT, reactor pressure, dilution ratio, and
residence time

Yields of CH4, C2H4, C2H6, C3H6, C4H6, C4,
C5+, and aromatics

48/15 Niaei et al.
(2007)

Unspecified Dilution ratio, COT, and COP Yields of C2H4 and C3H6 200/100 Li et al. (2007)

Radical basis functions
neural network

Feed flow rate, dilution ratio, resident time, COT,
and COP

Yields of C2H4, C3H6, and CH4 160/160 Geng et al.
(2010)

Back-propagation ANN COT, dilution ratio, and feed flow rate Yields of C2H4, C3H6, C2H6, CH4, and C5+ 106/14 Sedighi et al.
(2011)

Feed-forward neural
network

Feed flow rate and COT Yields of H2, C2H4, C3H6, C4H6, benzene,
and TMT

1024/462 Jin et al. (2015)

Convolutional neural
networks

Feed compositions, CIT, COT, CIP, feed flow rate,
and dilution ratio

Yields of H2, CH4, C2H4, C2H6, C3H6, C3H8,
C4H6, NC4H8 and IC4H8

2000/500 Hua et al.
(2018a)

Deep learning back-
propagation ANN

Naphtha bulk properties including PIONA
fractions, density, vapor pressure; COT, COP, E/E,
P/E, and M/P

Yields of 28 (pseudo-)components including
C2H4, C3H6, benzene, C7 iso-paraffins, C10+
aromatics and so on

239/33 for naphtha;
13600/1587 for
reactor

Plehiers et al.
(2019)

Convolutional neural
networks with transfer
learning

Feed compositions, COT shape
Variables, CIP, CIP, COP, feed flow rate, dilution
ratio, and coke thickness

Yields of H2, CH4, C2H4, C4H6, C3H6, C2H6,
C6H6, C7H8, C8H10, and TMT

4593/1968 Bi et al. (2020)

Graph neural network Feed compositions, CIT, COT, CIP, feed flow rate,
and dilution ratio

Yields of H2, CH4, C2H4, C2H6, C3H6, C3H8

and C4H6

1500/500 Zhang et al.
(2021)

Back-propagation ANN Naphtha bulk properties including molecular
weight, density, PIONA fractions, and distillation
curve; residence time, dilution ratio, pressure,
and COT

Yields of H2, CH4, C2H6, C2H4, C3H8, C3H6,
C2H2, 1-C4H6, iso-C4H6, 1,3-C4H6 and 2-
C4H6

45/5 for naphtha;
4520/472 for reactor

This work

FIGURE 1
Schematic diagram of typical steam cracking furnace.
Modified from Zhang et al. (2016).
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prediction when the compositions of naphtha change.

However, the experimental methods for composition

analysis are often costly and time-consuming, such as gas

chromatography (GC). In the contract, it is relatively easy to

obtain the common bulk properties of naphtha. If the naphtha

feedstock was fixed, the ANN prediction performance and the

process optimization were limited by the type of naphtha.

Even though molecular reconstruction models are able to

convert properties into feed compositions, it is also limited

by the prediction accuracy and relatively long solution times.

Therefore, in order to make artificial intelligence better serve

the steam cracking industry, it is reasonable to take into

account the model of bulk properties to the detailed

product compositions, which not only improves the

applicability of different naphtha feedstock but also better

meets the needs of industrial RTO.

In this work, an artificial neural network model composed

of two sub-networks is constructed for the naphtha steam

cracking process, where the naphtha feedstock compositions

are variables. The first sub-network is the prediction from the

bulk properties of the naphtha to the detailed compositions,

and the second sub-network is the prediction from feedstock

compositions and operating conditions to cracking product

yields. The two sub-networks combined ANN realizes the

prediction of the steam cracking process directly from

limited naphtha bulk properties. Among the first sub-

network, direct and indirect feedstock composition ANN are

proposed, and the effects of these two strategies on the

prediction accuracy of the final product yields are compared.

2 Construction of the artificial neural
network

The artificial neural network model of the naphtha steam

cracking process is generally divided into two parts, as shown in

Figure 2. The first part is the ANN of the feedstock composition,

which predicts the detailed compositions from bulk properties

of naphtha; the second part is the ANN of the tubular reactor,

which predicts the product yields from the feedstock

compositions and operating conditions. The type of ANN

used in these two parts is both the back-propagation

network (BP ANN), with an input layer, a hidden layer, and

an output layer.

MAE (mean absolute error), RMSE (root mean square error),

and MAPE (mean absolute percentage error) are selected as the

evaluation indicators to evaluate the performance of ANN. MAE

is the average value of absolute errors, which can better reflect the

actual situation of prediction error.

MAE � 1
n
∑n

i�1
∣∣∣∣xcal

i − xexp
i

∣∣∣∣ (1)

RMSE measures the deviation between the predicted and

actual values, which is more sensitive to outlier data and can

highlight the error values with greater influence.

RMSE �
����������������
1
n
∑n

i�1(xcal
i − xexp

i )2√
(2)

MAPE considers the error between the predicted value and

the actual value and the ratio between the error and the actual

value. A MAPE of 0% indicates a perfect model, and a MAPE

greater than 100% indicates an inferior model.

MAPE � 100%
n

∑n

i�1

∣∣∣∣∣∣∣∣x
cal
i − xexp

i

xexp
i

∣∣∣∣∣∣∣∣ (3)

2.1 Acquisition of data sets

Fifty naphtha samples in the literature (Mei et al., 2017; Ren

et al., 2019) were used in this work. The input variables of

the feedstock composition ANN are the bulk properties of

naphtha, including molecular weight, density, PIONA

fractions, and distillation curve. The scopes of the bulk

properties are shown in Supplementary Table S1. The output

variables are 35 (pseudo-) components to characterize the detailed

compositions of naphtha, including C4–C12 n-paraffins, C4–C12

iso-paraffins, C4–C7 olefins, C5–C11 naphthenes, and C6–C11

aromatics (Supplementary Table S2).

FIGURE 2
The framework of the whole ANN model.
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The reactor ANN network contains 39 input variables,

which are 35 (pseudo-)components and 4 operating variables

including residence time, dilution ratio, reactor pressure,

and coil output temperature. The output variables are the

mass fractions of 11 representative products: hydrogen,

methane, ethane, ethylene, propane, propylene, acetylene,

1-butene, isobutene, 1,3-butadiene, 2-butene. The data sets

of reactor ANN were obtained through the mechanism

kinetic model in the existing literature (Ren et al., 2020)

combined with the reactor simulation performed on

CHEMKIN-PRO (2013) software.

Considering the limited amount of available naphtha

samples, random variations of 0%~±20% were introduced into

the 35 (pseudo-) component concentrations of each naphtha

feedstock. The value of ±20% was determined by the relative

error of the feedstock composition ANN, as shown in Figure 6 in

Section 3.1. The purpose was to make the naphtha composition

of each training set different, which could enrich the coverage of

the feedstock composition of the network.

The determination of the ranges of operating variables is

detailed in Supplementary Section S2. The final ranges of the

operating variables are shown in Table 2. The input variables of

reactor ANN were sampled using Latin hypercube sampling

(uniform distribution) (Mckay and Beckman, 1979) within

their respective sampling ranges. Finally, there was a total of

4520 simulation data sets in the reactor ANN data sets. Note that

only the naphtha samples used to train the network needed to

introduce random variations into the concentrations

(corresponding to the 45 training sets below), and the

naphtha samples used as the test sets remained the same as

the real concentrations (corresponding to the 5 test naphtha

below).

2.2 Feedstock composition artificial neural
network

The first sub-network, feedstock composition ANN, was to

predict the contents of 35 components from 20 bulk properties.

The 50 sets of naphtha bulk properties with detailed composition

data were divided into two parts: 45 sets of oil samples were

randomly selected to generate ANN, and the remaining 5 sets

were used for testing. It should be emphasized that the 5 selected

test sets do not involve any process in ANN generation, which are

only used to test the prediction accuracy of ANN. The hidden

layer and the output layer of the feedstock composition ANN

were both sigmoid functions. The number of hidden layer

neurons was determined by selecting the minimum network

error after multiple adjustments. The process was to perform

50 repetitions of training for each network with various hidden

layer neurons (in the range of 5–20) through an automatic

program. The network with the minimum error was screened

out, and the number of neurons in its hidden layer was used. The

ANN mentioned below also implemented this unified

adjustment process.

Predicting the detailed composition directly from bulk

properties of naphtha is called direct ANN in this article,

i.e., realizing prediction only through an ANN with 20 inputs

and 35 outputs. The network structure of direct ANN is shown in

Figure 3. The number of neurons of the hidden layer was

determined to be 10 after adjustments. In addition to the

direct ANN model, we developed another indirect ANN

model inspired by the literature. Plehiers et al. (2019)

mentioned that splitting the output layer into five separate

PIONA categories could reduce the impact of wide ranges in

the absolute concentrations of the components in the different

categories. However, the authors just considered that directly

predicting all fractions at once would result in a network that was

difficult to train. After our analysis, it was found that the greater

significance of dividing the output layer into five groups of

PIONA lay in making the PIONA contents in the output

TABLE 2 Ranges for process operation-related input variables of reactor ANN.

Variable Minimum value Maximum value

Coil output temperature (°C) 753 900

Reactor pressure (bar) 1.7 2.3

Dilution ratio (kgSteam/kgHydrocarbon) 0.40 0.65

Residence time (s) 0.1 0.3

FIGURE 3
The network structure of the direct ANN model.
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exactly equal to the actual values of each homologues series. The

differences in PIONA contents had greater impacts on the

cracking products compared to the content error of each

component, as shown in Section 3.3. Therefore, we referred to

the proposal of literature, while in the of modeling process, there

were differences:

• Preprocessing: The detailed composition data of the

naphtha samples was normalized in each homologous

series according to PIONA. The normalized data were

used for network training.

yactual
i,j � Factual

i, j∑i∈IF
actual
i, j

∀j ∈ J (4)

where Factual
i, j was the actual mass fraction of component i in the

whole oil, yactual
i,j was the fraction of component i in homologous

series j through normalizing Factual
i, j , I was the set of components

in homologous series j. J was the set of homologous series.

• Network division: The indirect ANN was divided into

5 sub-networks. The inputs of each network were the bulk

properties, and the outputs were the fraction of each

component in the corresponding homologous series.

Y � f 2(W2 · f 1(W1 · X + b1) + b2) (5)

where Y was the output vector, X was the input vector, f 1 and
f 2 were the activation functions for the hidden layer and output

layer, respectively; W1 and W2 was the weight vectors for

hidden layer and output layer, respectively; b1 and b2 were

the bias vectors for the hidden layer and output layer,

respectively.

• Post-processing: After obtaining the network outputs,

considering the difference between the predicted results

and the actual fractions, although the difference was small,

a step of normalization was performed to make the total

fractions to be 100%. Subsequently, the component

fractions in each sub-network were multiplied by the

total content of the corresponding homologous series to

ensure that the PIONA content was exactly the same as the

actual value.

ypredict
i,j � Ypredict

i,j∑i∈IY
predict
i,j

∀j ∈ J (6)

Fpredict
i,j � ypredict

i,j · Factual
j (7)

where Ypredict
i,j was the predicted fraction of component i in

homologous series j, ypredict
i,j was the predicted fraction of

component i in homologous series j through normalizing

Ypredict
i,j , Fpredict

i,j was the predicted mass fraction of component

i in the whole oil, Factual
j was the actual content of homologous

series j available in the bulk properties.

The number of neurons in the five sub-networks of the

indirect method ANN was determined to be 7, 7, 8, 5, and

9 after adjustments. Its network structure is shown in Figure 4.

FIGURE 4
The network structure of the indirect ANN model.

FIGURE 5
The network structure of the reactor ANN.
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2.3 Reactor artificial neural network

The second sub-network, reactor ANN, was to predict

the yields of 11 representative cracking products by

35 feedstock composition variables and 4 reactor

operation variables. Among the 4520 sets of reactor

simulation data, 472 sets of data related to the 5 test

naphtha were used to verify the reactor ANN further, and

the other 4048 sets of data were used to train the reactor

ANN. The test sets were used to verify the reactor ANN, and

their compositions were the same as the real values.

Similarly, the 472 test sets still did not participate in any

network training process. The reactor ANN used a network

structure similar to the feed composition ANN. The hidden

layer activation function was the sigmoid function, and the

output layer was the purelin function. After adjustments,

the number of neurons in the hidden layer was determined

to be 9. Its network structure is shown in Figure 5.

FIGURE 6
Predicted results of all components in the output for five test naphtha. (A) Direct ANN, (B) Indirect ANN.

FIGURE 7
Predicted results of the selected components in the output for five test naphtha. (A) Direct ANN, (B) Indirect ANN.
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3 Results and discussion

3.1 Predictive performance of feedstock
composition artificial neural network

Five test naphtha were used to test the direct and indirect ANN,

respectively. Figure 6 shows the parity plots for all components in the

output for five test naphtha. Figure 7 shows the selected components

with high contents in each homologous series (the olefins are too low

to be ignored). It can be seen fromFigure 6 that although the errors of

the predictedmass fractions ofmost components fell within ±20% for

both two methods, the indirect ANN had higher accuracy than the

direct ANN. For the indirect ANN, the number of components

whose errors were greater than ±20% was significantly reduced, and

the errors were more concentrated within ±10%. Figure 7 more

clearly shows the prediction accuracy of the two methods for

representative components. Obviously, the errors of the four

representative components of the indirect method were smaller,

which proved that the indirect method effectively improved the

prediction accuracy.

Figure 8 shows the contents deviations of each homologues

series (PIONA) for five test naphtha. Obviously, the direct ANN

had significant errors in predicting PIONA contents. Among

them, for n-paraffin, the average absolute error of the five test

naphtha reached 2.60wt%. The predicted PIONA contents of

indirect ANN were almost equal to the actual values. The slight

errors of the indirect method were due to the difference between

the PIONA contents obtained from the naphtha bulk properties

and that obtained by adding the detailed compositions. Table 3

shows the MAE and RMSE of the 35 component contents of the

direct and indirect methods. The MAE and RMSE of the direct

ANN were 0.47wt% and 0.55wt%, respectively, while these of the

indirect ANN were reduced to 0.36wt% and 0.42wt%,

respectively. The above results showed that the strategy of

indirect ANN, i.e., the compositions were divided into five

sub-networks of PIONA according to the actual physical

meaning, significantly improved the prediction accuracy of the

feedstock compositions. Moreover, the accuracy of indirect ANN

was also higher than the results obtained by our previous

molecular reconstruction model (Ren et al., 2019). The MAE

and RMSE of the five test-naphtha obtained by molecular

reconstruction were 1.00wt% and 1.20wt%, respectively. It was

worth noting that the average calculation time was shortened

from 215s by molecular reconstruction to 0.104s by indirect

ANN per naphtha. The computations were carried out on the

same PC constituted by Intel Xeon E31230 processor 3.20 GHz.

3.2 Predictive performance of reactor
artificial neural network

Figure 9 is the parity plots of four important products selected

from the reactor ANN output. Ethylene and propylene are the most

concerning products of naphtha steam cracking. Methane is a by-

product with high yield, and 1,3-butadiene is a by-product with high

added value. Note that the yields of all reactor outlet products in this

article are dry yields after removing water. It can be seen from

Figure 9 that the errors of 472 sets of test data were almost all

within ±20%, except for very few points (4%) exceeding the margin

of error. There were 71%, 63%, 58%, 61% of the data within ±10%

for ethylene, propylene, methane, 1,3-butadiene, respectively. The

results showed that reactor ANN had good prediction accuracy for

these four important products. Table 4 shows the MAE, RMSE, and

MAPE of 11 predicted products. The average MAE of all predicted

products was 0.24wt%, and the RMSE was 0.28wt%. The MAPE of

all products except ethane was less than 10%, indicating that the

calculated product yields of the reactor ANN had an acceptable

deviation from the actual values. It should be emphasized that the

single calculation of reactor ANN on the same PC took only 0.247s.

In contrast, the calculation results obtained by the mechanism

model through CHEMKIN-PRO reactor simulation usually

took 180s.

FIGURE 8
Contents deviations of each homologues series for five test naphtha of the direct and indirect ANN.
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3.3 Predictive performance of two sub-
networks combined artificial neural
network

The feedstock composition ANN and reactor ANN were

combined to form a complete prediction framework from

naphtha bulk properties to pyrolysis product yields. The

values of the 35 composition variables in the 472 sets of

reactor test data were replaced with the composition results of

the direct and indirect feedstock composition ANN respectively.

The reactor operating conditions remained unchanged to

investigate the influence of composition prediction accuracy

on the prediction of the final product yields.

Table 5 shows the statistics for 11 predicted products with the

reactor model combined with direct and indirect ANN.

Compared with the single reactor ANN in Section 3.2, the

errors of the two sub-networks combined ANN were

obviously increased. For the combination with direct ANN,

TABLE 3 Statistics on the performance of the 35 component contents of the direct and indirect ANN.

Component Direct ANN Indirect ANN

MAE RMSE MAE RMSE

N-paraffin C4 0.75 0.92 0.49 0.56

C5 0.96 1.06 0.65 0.79

C6 0.78 0.83 0.39 0.43

C7 1.31 1.42 0.48 0.55

C8 0.86 1.13 0.86 0.96

C9 0.79 0.94 0.67 0.78

C10 0.83 0.96 0.89 1.02

C11 0.14 0.15 0.36 0.39

C12 0.12 0.15 0.11 0.13

Iso-paraffin C4 0.15 0.21 0.07 0.08

C5 1.37 1.67 0.82 0.93

C6 1.66 1.97 1.34 1.55

C7 0.31 0.41 0.64 0.76

C8 0.74 0.93 0.78 0.95

C9 0.93 0.97 0.54 0.68

C10 0.23 0.30 0.51 0.54

C11 0.27 0.35 0.22 0.23

C12 0.14 0.20 0.08 0.09

Olefin C4 0.00 0.00 0.00 0.00

C5 0.02 0.02 0.05 0.06

C6 0.03 0.04 0.05 0.06

C7 0.00 0.00 0.00 0.00

Naphthenic C5 0.32 0.39 0.19 0.21

C6 0.42 0.51 0.10 0.12

C7 0.61 0.64 0.27 0.32

C8 0.58 0.78 0.37 0.46

C9 0.43 0.48 0.36 0.39

C10 0.32 0.33 0.61 0.71

C11 0.08 0.13 0.02 0.03

Aromatics C6 0.12 0.15 0.07 0.08

C7 0.19 0.22 0.16 0.18

C8 0.41 0.48 0.09 0.11

C9 0.13 0.19 0.31 0.33

C10 0.26 0.30 0.18 0.24

C11 0.12 0.19 0.02 0.03

Average 0.47 0.55 0.36 0.42
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FIGURE 9
Predicted results of four selected products for 472 test sets: ethylene, propylene, methane, 1,3-butadiene.

TABLE 4 Statistics on the performance of the 11 cracking products of reactor ANN.

Products MAE (wt%) RMSE (wt%) MAPE (%)

ethylene 1.12 1.28 7.66

propylene 0.60 0.68 8.75

methane 0.39 0.47 9.52

1,3-butadiene 0.19 0.22 9.00

hydrogen 0.02 0.02 7.10

acetylene 0.03 0.04 8.19

ethane 0.06 0.07 10.49

propane 0.01 0.01 7.13

1-butene 0.08 0.10 8.07

2-butene 0.03 0.04 9.40

isobutene 0.09 0.11 9.88

Average of all above products 0.24 0.28 8.65
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the average MAE, RMSE, and MAPE of 11 products were more

than 4 times higher than those of single reactor ANN. For the

combination with indirect ANN, they were more than twice that

of single reactor ANN. It was indicated that the prediction

accuracy of the feedstock composition had a significant

impact on the final product yields. However, improving the

predictive ability of the feedstock composition ANN was

limited by the size of the naphtha data set, which was more

difficult and expensive to obtain than reactor data. Therefore,

based on the limited naphtha data set, improving the prediction

accuracy of feedstock composition ANN was the key point.

It was worth noting that the MAE, RMSE, and MAPE of all

products obtained by the indirect ANN were smaller than those

of the direct ANN. The average MAE of 11 products of the two

methods were 0.53wt% and 1.02wt%, respectively. The

difference between them was almost double, while the errors

of single direct feedstock composition ANN were only 1.3 times

higher than those of single indirect feedstock composition

ANN, as shown in Section 3.1. Note that the used reactor

ANN in the combination process was the same. The difference

between these two combined ANN implied that the

composition errors of the direct ANN were further amplified

when they were transferred to the product errors, while the

indirect ANN could control the product errors to an acceptable

level.

An indirect feedstock composition ANN was designed for

further comparison, called: compared ANN. The model

framework of this compared ANN was consistent with the

TABLE 5 Statistics for 11 predicted products with the reactor model combined with direct and indirect ANN.

Products Combined with direct ANN Combined with indirect ANN

MAE (wt%) RMSE (wt%) MAPE (%) MAE (wt%) RMSE (wt%) MAPE (%)

ethylene 4.58 5.46 30.56 2.40 2.90 14.96

propylene 2.60 3.07 37.35 1.32 1.56 17.61

methane 1.82 2.24 42.19 0.92 1.13 19.05

1,3-butadiene 0.83 0.97 38.90 0.43 0.50 18.37

hydrogen 0.06 0.07 25.29 0.03 0.04 13.16

acetylene 0.05 0.08 11.37 0.05 0.07 12.28

ethane 0.38 0.45 65.20 0.19 0.23 28.55

propane 0.05 0.05 34.04 0.02 0.03 17.11

1-butene 0.31 0.40 24.56 0.19 0.24 16.22

2-butene 0.13 0.15 37.41 0.07 0.08 18.88

isobutene 0.40 0.48 42.36 0.20 0.23 19.19

Average of all above products 1.02 1.22 35.38 0.53 0.64 17.76

TABLE 6 Statistics for 11 predicted products with the compared ANN.

Products MAE (wt%) RMSE (wt%) MAPE (%)

ethylene 3.56 4.33 21.87

propylene 1.95 2.35 25.82

methane 1.42 1.76 29.80

1,3-butadiene 0.63 0.75 26.63

hydrogen 0.05 0.06 19.34

acetylene 0.06 0.08 14.61

ethane 0.29 0.35 45.87

propane 0.04 0.04 24.43

1-butene 0.26 0.34 21.38

2-butene 0.09 0.12 26.26

isobutene 0.30 0.36 29.02

Average of all above products 0.79 0.96 25.91

Frontiers in Chemical Engineering frontiersin.org11

Ren et al. 10.3389/fceng.2022.983035

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2022.983035


aforementioned indirect ANN, and the error of the model was

the same as that of the direct ANN by adjusting the parameters of

the neural network. As shown in Supplementary Table S3, the

MAE and RMSE of 35 components of compared ANN were equal

to those of the direct ANN, which were 0.47w% and 0.55w%,

respectively. The composition results of the compared ANN were

brought into the reactor ANN to predict the product yields. As

shown in Table 6, the following results were obtained: the average

MAE, RMSE, and MAPE of 11 products with the compared ANN

were 0.79wt%, 0.96wt%, and 25.91%, respectively. The errors were

larger than the aforementioned indirect ANN (0.53wt%, 0.64wt%,

17.76%) but smaller than the direct ANN (1.02wt%, 1.22wt%,

35.38%).

The above results showed that even if the feedstock

composition errors were the same, the indirect ANN

reduced the errors of product prediction and the error

transmission due to the accurate PIONA contents. The

indirect ANN transmitting fewer errors benefited not only

from reducing errors of each (pseudo-)component, but also

from the ability to ensure PIONA contents equal to the actual

values of each homologues series, which may be the most

important advantage of the indirect ANN. In connection

with the actual physical background, the contents of

naphthenes and aromatics greatly impact the product yields.

If the contents of these two parts in naphtha feedstock are

predicted to be higher or lower, it will seriously cause the olefin

yield to decrease or increase.

4 Conclusion

An artificial neural network model of the naphtha steam

cracking process was constructed. It was composed of two sub-

networks: the feedstock composition ANN and the reactor ANN.

The whole model could directly predict the yields of cracking

products from the bulk properties of the naphtha feedstock. In

the first part of the feedstock composition ANN, two different

ANN construction methods were compared: directly predicting

the detailed composition from bulk properties of naphtha;

indirectly predicting the respective contents of PIONA first,

and then obtaining the total detailed composition. The results

showed that the indirect method had higher prediction accuracy,

and the MAE of 35 components was 0.36wt%. In the second

part of the reactor ANN, the MAE of 11 cracking products was

0.24wt%. Both the feedstock composition ANN and the reactor

ANN are computationally much faster than the molecular

reconstruction algorithms and mechanistic models compared

to them, respectively. Combining the two parts of the network,

i.e., directly predicted the product yields from the bulk properties,

for the direct method and the indirect method, the MAE of the

product yields were 0.53wt% and 1.02wt%, respectively. Through

the design of the compared case, there is evidence to believe that

the indirect method had lower product prediction errors, not just

the reduction of the total error of the feedstock composition. The

critical factor was ensuring that PIONA contents were equal to the

actual values. Overall, it should be emphasized that the prediction

accuracy of feedstock composition ANN is the key point. In addition

to the indirect ANN strategy supported in this paper, for the conflicts

between “data-hungry” and “data-lacking,”more advanced machine

learning technologies such as transfer learning, are needed to deal

with naphtha feedstock’s few-shot learning.
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Nomenclature

Abbreviations

CIP Coil input pressure

CIT Coil input temperature

COP Coil output pressure

COT Coil output temperature

E/E Product ratios of ethylene to ethane

M/P Product ratios of methane to propylene

P/E Product ratios of propylene to ethylene

PIONA N-paraffins, iso-paraffins, olefins, naphthenes, aromatics

Superscripts

cal Calculated

exp Experimental
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