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Lignin valorization via thermochemical approaches has the potential to produce

renewable fuels and value-added chemicals, which are of great significance to

the sustainable development of human beings. During the thermochemical

depolymerization which involves acid-catalyzed, alkali-catalyzed, oxidative,

reductive, pyrolytic, and other reactions, the lignin structure will undergo a

series of bond cleavage, condensation, and functional group changes, while the

mechanism is still unclear. To improve the efficiency, the analysis of the

evolution of intermediates during depolymerization is very important, among

which soft ionization mass spectrometry plays a vital role. This review aims to

summarize the research progress of process analysis of lignin depolymerization

in both gas-phase, typically thermal and catalytic pyrolysis, and liquid-phase via

online mass spectrometry. The challenges and our insights into the future

development of the lignin valorization as well as soft ionization mass

spectrometry methods are also discussed.
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Introduction

Under the dual pressure of energy and environmental crisis, lignocellulosic biomass,

as the most abundant non-food biomass on Earth, is considered to be the only carbon-

based renewable energy source that may partially replace fossil fuels (Ragauskas et al.,

2006; Zhou et al., 2011; Caspeta et al., 2013). It is mainly composed of cellulose,

hemicellulose, and lignin, among which lignin is the only renewable aromatic

resource in nature, and has a carbon-hydrogen ratio similar to that of petroleum, and

thus has a very broad prospect for utilization (Laskar et al., 2013; Ragauskas et al., 2014).

Lignin is composed of various phenylpropane units and connected by a series of C-C

(β-β, β-5, β-1, 5–5′, etc.) and C-O bonds (β-O-4, α-O-4, 4-O-5, etc.) in a nonlinear and

random pattern to form a variety of complex spatial structures in different plants
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(Figure 1A) (Li et al., 2015; Cao et al., 2020; Wang et al., 2021).

Lignin valorization usually requires conversion to monomers

first, and further transforming into desired chemical compounds.

Through depolymerization, lignin macromolecules with a

molecular weight of tens of thousands Da can be degraded

into lignin monomers, dimers and a few oligomers, which

involves acid-catalyzed, alkali-catalyzed, oxidative, reductive,

pyrolytic, and other reactions (Schutyser et al., 2018; Sun

et al., 2018; Zhou et al., 2022). While the lignin structure

undergoes a series of bond cleavage and functional group

changes, the formed active intermediates are prone to

repolymerization to form strong non-native C-C bonds, which

poses a great challenge to improving the monomer yield (Shuai

and Saha, 2017; Wang and Wang, 2019). In recent years, a series

of catalytic and protection-group chemical methods have been

proposed to stabilize the active lignin intermediates or inhibit

their formation, thereby inhibiting the occurrence of

condensation reactions and improving the depolymerization

efficiency (Rinaldi et al., 2016; Questell-Santiago et al., 2020;

Abu-Omar et al., 2021). However, so far, researchers have only a

limited understanding of the lignin depolymerization process,

and there is still much room for improvement in avoiding

unfavorable side reactions and improving product selectivity

(Wang et al., 2019).

The comprehensive assessment of the process products is the

premise to grasp the reaction mechanism and further improve

the conversion scheme, for which researchers have applied

multiple analytical techniques. Chromatography is the

preferred qualitative and quantitative method for gas and

liquid products (Figure 1B) (Du et al., 2021). Typical

separation methods such as gas chromatography (GC), liquid

chromatography, and gel chromatography, combined with mass

spectrometry (MS) and/or other detectors can conduct a detailed

analysis of the products, giving the content, molecular formula,

FIGURE 1
(A)Different sources and a representative structural fragment of native lignin, where H, G, and S units represent p-hydroxyphenyl, guaiacyl, and
syringyl units, respectively. Reprinted from Cao et al. (2020), with permission from American Chemical Society (Copyright 2020). (B) Chromatogram
of lignin depolymerization products which were identified by GC/MS and quantified by GC-FID, and yield of products with different degrees of
polymerization. Reprinted fromDu et al. (2021), with permission fromAmerican Chemical Society (Copyright 2021). (C) Experimental setup of in
situ APPI MS method. Reprinted from Chen et al. (2020), with permission from American Chemical Society (Copyright 2019). (D) The comparison of
mass spectra of guaiacylglycerol-β-guaiacyl ether (GGGE) pyrolysis with/without catalyst. Reprinted from Liu C. et al. (2020), with permission from
Wiley-VCH GmbH (Copyright 2020).
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and partial structure information of each component (Kozliak

et al., 2016; Letourneau and Volmer, 2020; Su et al., 2022).

Through derivatization treatment and two-dimensional GC,

complicated products can be better separated, and the

qualitative and semi-quantitative identification of lignin

monomers, dimers and trimers can be realized (Thi et al.,

2022). Nuclear magnetic resonance and Fourier transform

infrared spectroscopies are commonly employed in the

structural characterization of liquid products and solid

residues, which can provide information on chemical bonds

and functionalities (Kozliak et al., 2016). However, these

methods only allow for discontinuous analysis which takes

quite a long time, and the information is either limited by

molecular weight or lack of spectral resolution and sensitivity

(Lupoi et al., 2015; Kozliak et al., 2016; Michailof et al., 2016). In

the past decade, advanced mass spectrometry (MS) has gained

much attention, for it can obtain the chemical formula of

multiple products with molecular weight ranging from tens to

tens of thousands Da simultaneously and intuitively, and

monitor the evolution of reactive intermediates during the

reaction with its fast detection speed, high sensitivity, and

high resolution, as well as the development of soft ionization

technology (Kubatova et al., 2020; Sun et al., 2022), which ensures

the fragmentation controllable and reduces the difficulty of data

interpretation.

Since the lignin depolymerization involves a series of

complex reactions and generates various products including

numerous aromatic monomers, dimers, and possibly

cycloalkanes, furans, and oligomers with different chain

lengths (Kozliak et al., 2016), whose states are transforming

rapidly, conventional offline analyses are difficult to detect

transient intermediates of the reaction, let alone the

continuous changes in the composition and structure of lignin

derivatives during the conversion process. To reveal the process

of lignin depolymerization, online MS detection plays a vital role,

and researchers have developed many online monitoring

methods by innovating reactors, sampling methods, and

ionization techniques for different conversion systems (Rueger

et al., 2021; Sun et al., 2022). In the following, recent progress of

process analysis of lignin depolymerization via online MS will be

delivered separately from pyrolysis and liquefaction.

Thermal and catalytic pyrolysis of
lignin

Pyrolysis is the thermal degradation of feedstocks into fuels

and platform chemicals under an inert atmosphere, which acts as

the first reaction of multiple thermal conversions, and is also a

widely used thermal depolymerization method (Wang et al.,

2017; Hoang et al., 2021). Lignin will transform into gaseous

products, bio-oil, and char through pyrolysis, among which bio-

oil is considered to be the main depolymerization product. The

performance of depolymerization is closely related to the

parameters such as pyrolysis temperature, heating rate,

feedstock size, and residence time, as well as the choice of the

catalytic system (Chen et al., 2019; Hoang et al., 2021).

Since lignin contains a rich diversity of linkages, its thermal

decomposition covers a wide temperature range (Shen et al.,

2015; Zhou et al., 2017). By directly connecting various reactors

(including thermogravimetric (Zhou et al., 2017), fixed bed

reactor (Le Brech et al., 2016), fluidized bed reactor (Jia et al.,

2015), etc.) to photoionization (PI) MS via molecular beam

nozzle or heated transfer lines, or integrating different

furnaces into the ionization source (Dufour et al., 2013; Hurt

et al., 2013; Zhu et al., 2020), researchers have realized online MS

detection of pyrolysis volatiles, and thus observed the variation of

the characteristic products with time and temperature intuitively.

In general, lignin pyrolysis can be divided into two stages: 1)

When the temperature is low, feedstocks will melt into liquid

form, and the weaker ether bonds such as β-O-4 and α-O-4 will

undergo heterolytic cleavage to form lignin monomers. 2) When

the temperature increases, numerous C-O and C-C will be

broken to generate more monomers and further reactions

such as demethylation and demethoxylation will occur to

form various phenols (Le Brech et al., 2016; Chen et al.,

2019). Meanwhile, plenty of free radicals will be generated via

homolysis of chemical bonds, which will further undergo

rearrangement and repolymerization to form oligomers and

even coke (Li and Takkellapati, 2018; Zhu et al., 2020).

Discussions on the primary pyrolysis mechanism of lignin

have mainly focused on the radical mechanism and the concerted

mechanism, which may vary with feedstock structure and

reaction conditions and stages (Jarvis et al., 2011; Chen et al.,

2019). Model compounds are frequently used to simplify the

reaction system, with a concentration on the cleavage mechanism

of β-O-4 and α-O-4. Pyrolysis of 2-phenethyl phenyl ether was
conducted in a hyperthermal nozzle and analyzed via PIMS in

real-time (Jarvis et al., 2011). The mass spectra obtained at

different temperatures indicated that Maccoll and/or retro-ene

eliminations were the dominant reaction pathways for the

cleavage of β-O-4 at temperatures below 1000°C, which was

consistent with subsequent experiments using in situ

synchrotron vacuum ultraviolet (SVUV) PIMS (He et al.,

2016) and pyroprobe-integrated atmospheric pressure

chemical ionization MS (Sheng et al., 2017). While at higher

temperatures and longer reaction time, the homolysis reaction to

generate free radicals will gradually dominate, which will lead to

the growth of aromatic hydrocarbons and the formation of coke

(Zhu et al., 2020). In the pyrolysis experiment of α-O-4 model

compounds, benzyl radical and phenoxy radical were detected by

SVUV PIMS, which proved that the homolysis of Cα-O led to the

cleavage of α-O-4 (He et al., 2016; Dai et al., 2019). Further, since

the primary pyrolysis of lignin mainly produces monomers such

as guaiacol, the online analysis of guaiacol pyrolysis was used to

study the mechanism of the second-stage lignin pyrolysis
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reaction (Liu et al., 2018; Dai et al., 2019). The pathways for the

removal of methyl, methoxyl, and other groups were revealed,

and the formation of polycyclic aromatic hydrocarbons was

detected, which has guiding significance for improving

product selectivity and inhibiting repolymerization.

Due to the poor selectivity of thermal pyrolysis and the

occurrence of repolymerization, the pyrolytic oil usually has a

complicated composition with a low monomer yield (Schutyser

et al., 2018). Therefore, a suitable catalytic system is vital for the

lignin pyrolysis, among which zeolites have received the most

extensive attention, for their unique pore structure and shape

selectivity can stabilize the reactive intermediates and further

convert the depolymerized monomers into target products (such

as aromatics) (Jae et al., 2011; Schutyser et al., 2018; Chen et al.,

2019). Recently, an online MS method coupled with in situ

atmospheric pressure photoionization (APPI) was designed for

monitoring the primary products of biomass pyrolysis

(Figure 1C) (Chen et al., 2020), and further applied to the

investigation of pyrolysis of guaiacylglycerol-β-guaiacyl ether

catalyzed by HZSM-5 (Liu C. et al., 2021). A series of heavy

phenolic oligomers were successfully detected (Figure 1D),

elucidating the phenolic pool mechanism proposed previously

(Stanton et al., 2018). In an online study of catalytic fast pyrolysis

of biomass using a micro-fluidized bed, hierarchical zeolites were

confirmed to have high selectivity for aromatics (Jia et al., 2017).

To deepen the understanding of the mechanism, a temporal

analysis of products reactor coupled with photoelectron

photoion coincidence spectroscopy with SVUV was employed

for isomer-selective detection of intermediates in the catalytic

pyrolysis of guaiacol, and the core species in the reaction

network, fulvenone ketene, was discovered for the first time

(Hemberger et al., 2017). In addition, metal oxides, carbon-

based catalysts, etc. also have the ability to improve lignin

pyrolysis (Chen et al., 2019). For example, Pd/NC-catalyzed

hydrodeoxygenation of guaiacol was proved to have high

benzene selectivity (yield up to 85.1%) and stability (Liu C.

J. et al., 2021).

Liquid-phase depolymerization of
lignin

Liquid-phase depolymerization or liquefaction of lignin

refers to the decomposition of lignin into lignin monomers,

dimers, phenols, etc. in an aqueous or protic solvent

environment, usually with specific catalysts, which requires a

milder condition (200–400°C, 5–28 MPa) than lignin pyrolysis to

achieve better depolymerization effect (Kozliak et al., 2016; Li

and Takkellapati, 2018). Commonly used solvents include water,

organic solvents like methanol, ethanol, acetone, tetralin, formic

acid, and combinations of the above solvents (Kozliak et al., 2016;

Schutyser et al., 2018), which are usually in a subcritical or even

supercritical state under such reaction conditions, with excellent

flow and transport properties, strengthening their interaction

with solutes and providing great assistance for lignin

depolymerization (Gillet et al., 2017). Monomer yields and

product selectivity achieved by solvolytic depolymerization

without catalysts tend to be low, and thus a suitable catalytic

system, including acidic and basic catalysts, noble metals, and

zeolites, is required (Kozliak et al., 2016; Schutyser et al., 2018).

The depolymerization process is also greatly affected by the

atmosphere of the system, commonly used are reductive and

oxidative atmospheres. Reductive depolymerization often

requires harsher conditions and may saturate aromatic rings,

while oxidative depolymerization can cleave the inter-unit

linkages of lignin under milder conditions and retain the

aromatic rings to obtain phenolic products, but is not stable

enough under oxidative conditions. An alternative method is a

two-step strategy, in which β-O-4 is first weakened by selective

oxidation, followed by reductive depolymerization under mild

conditions (Schutyser et al., 2018; Liu et al., 2019). Moreover, the

proposal of the lignin-first strategy has attracted extensive

attention for reductive catalytic fractionation or direct

hydrogenolysis of biomass using batch or flow-through

reactors, which considerably inhibits the repolymerization and

increases the monomer yields (Anderson et al., 2017; Liu et al.,

2020; Abu-Omar et al., 2021).

However, since the systems of lignin liquefaction involve a

variety of complicated feedstocks, require unconventional

conditions and contain numerous side reactions, the current

understanding of the overall reaction process is far from enough,

and the theoretical maximum monomer yield is hard to reach. To

better control the undesirable repolymerization of the reactive

intermediates and the formation of tough C-C linkages, it is

crucial to grasp the formation and consumption processes of key

intermediates, which requires online monitoring during lignin

liquefaction (Cui et al., 2022). For homogeneous catalytic

reactions, soluble reactants, catalysts, and intermediates can be

sampled simultaneously for MS analysis, whose online detection

has been reported by several articles (Vikse et al., 2011; Yan et al.,

2014). However, for the lignin conversion system, in order to

facilitate the recovery of the catalyst and the separation of the

products, heterogeneous catalytic reactions are usually preferred

(Oregui-Bengoechea et al., 2019). Some researchers have used

inductive ESI (Yan et al., 2014) and desorption ESI (Brown et al.,

2015) methods, combined with pressured sample infusion coupling

ambient MS to achieve online detection of heterogeneous catalytic

reactions near atmospheric pressure. However, for the extreme

conditions (high temperature and high pressure) required for

lignin conversion, these methods are not applicable.

The greatest challenge in performing an online analysis of

lignin thermal liquefaction is the undisturbed and stable sampling

from the heterogeneous reaction zone under extreme conditions,

which is a slurry mixture of catalysts, reactants, and products.

Capillary sampling from the reaction system and transmission to

the MS detector is a feasible approach, while the sampling area
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must be filtered to avoid capillary blockage, and the inner diameter

and length of the capillary should be carefully selected to balance

the pressure difference between the reaction area and the

ionization zone. This idea was applied in the online

investigation of catalytic hydrotreatment of guaiacol by

coupling a batch reactor with PIMS and discovered the effect of

hydrogen pressure on the selectivity of aromatics (Cui et al.,

2021b). Most recently, an in situ reactor-integrated electrospray

ionization (R-ESI) MS analysis method was proposed (Figure 2)

(Cui et al., 2021a). The R-ESI source was integrated by applying

high voltage to the micro-autoclave and assembling a fused-silica

capillary with an inner diameter of 15 μmand a length of 60 mm to

the bottom of the reactor as a sampling port, and meanwhile the

spray needle. With this experimental setup, online studies on the

catalytic hydrogenolysis of lignin were conducted, using methanol

as a solvent, Pd/C or Ru/C as the catalyst, and the evolution of

products distribution and typical monomers, dimers, and other

oligomers during the reaction were discovered, with their structure

elucidated by tandem MS. The progressive depolymerization of

lignin and the repolymerization of activemonomers were observed

for the first time in experiments, and further, the lignin

depolymerization mechanism was proposed (Cui et al., 2021a;

Cui et al., 2022).

Discussion

Thanks to the development of online soft ionization MS,

complicated products of lignin pyrolysis and liquid-phase

depolymerization have been successfully analyzed in real time.

FIGURE 2
(A) A sketch of R-ESI MS. Reprinted fromCui et al. (2021a), with permission from American Chemical Society (Copyright 2021). (B) The evolution
of typical phenolic products with different polymerization during the online liquid-phase detection,where m1 and m2 refer to two representative
monomers, d1 and d2 are two dimers, and t1 is a trimer. Reprinted from Cui et al. (2021a), with permission from American Chemical Society
(Copyright 2021). (C)General reaction pathways for lignin depolymerization. Reprinted from Cui et al. (2022), with permission from the authors
(Copyright 2022).
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The detection of key intermediates, such as phenolic oligomers

that cannot be detected with conventional methods, has

promoted the fundamental understanding of the chemical

process in the thermochemical depolymerization of lignin.

Nevertheless, current knowledge is only the tip of the iceberg

of the complex lignin depolymerization process. First, lignin

resources are fairly extensive, including different types of virgin

lignocellulose (Zhang et al., 2012; Zhou et al., 2016; Naron et al.,

2019; Yuan et al., 2022) and technical lignin produced by

industries such as papermaking (Gillet et al., 2017), all of

which are complicated in composition and structure, without

a complete description and relevant standards. Second,

numerous reactions are involved in the depolymerization

under harsh working conditions, including high temperature,

high pressure, and heterogeneous environment, which results in

the fast generation and consumption of numerous intermediates.

The complexity of the reaction system poses great challenges for

detection and analysis, while under the limitations of current soft

ionization MS technologies, a full-molecular description of the

lignin depolymerization is far from being achieved.

For qualitative analysis, probing intermediates under harsh

conditions is an arduous task, and it is hard to detect all

captured molecules using a single ionization method due to

its certain preference for analytes (Kozliak et al., 2016; Stas

et al., 2017b). Meanwhile, the structural analysis capability of

the current online MS is very limited. Although different lignin

units can be sequenced by MS/MS, precise matching of product

formulas and structures is not possible due to the lack of a

complete fragmentation database (Kiyota et al., 2012; Banoub

et al., 2015). A database containing structural information of

typical markers of lignin depolymerization products, especially

the oligomers, is urgently needed. Moreover, due to the

limitation of the resolution of the first-stage MS (usually

quadrupole MS), the isolation of two closely adjacent peaks

is tough to achieve. Coupled with the existence of isomerism,

especially for macromolecular products that are the most

concerned products of lignin depolymerization, the parent

molecules with the same and/or similar molecular weights

may contain a variety of structures, resulting in their

fragment peaks jumbled together and difficult to interpret.

For quantitative analysis, the sampling instability of online

detection (Cui et al., 2021a), the difference in the response

of ionization sources to analytes (Stas et al., 2017a), and the

mass discrimination caused by mass analyzers (Smith et al.,

2012) make MS data unable to directly serve as a quantitative

standard. Due to the lack of standard samples corresponding to

lignin depolymerization intermediates, especially reactive ones,

accurate quantification via MS is challenging. Further, for

online detection of heterogeneous systems under extreme

working conditions, how to better connect the reactor with

the detector and achieve in situ analysis closer to the actual

process of the reaction is also an enormous challenge worth the

efforts of researchers. The limitations of qualitative and

quantitative analysis and online detection of MS indicate the

direction of future technological development, which is not

only helpful to deepen the understanding of details of lignin

depolymerization, but also beneficial to the exploration of other

catalytic reaction processes.
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