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Membrane processes are today one of the key technologies for industrial separations and
are expected to play an important role in future sustainable production systems. The
combination of materials science and process engineering has historically always been an
essential condition to the development of new applications for membranes. The recent
development of high performance nanostructured materials, together with new production
technologies (such as 3D printing) and high performance computing possibilities is
expected to open new horizons to membrane processes. The different challenges and
prospects to be addressed to achieve this purpose are discussed, with an emphasis on
the future of process industries in terms of feedstocks, energy sources, and environmental
impact.
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1 INTRODUCTION: MEMBRANE SEPARATIONS TODAY

Membranes are usually considered as the third wave of separation processes, thermal separations
(e.g., distillation, evaporation) and auxiliary phase processes (e.g. absorption, liquid extraction,
adsorption) being the first and second respectively (King, 1980; Koros, 2001). The industrial
development of membrane indeed demanded advanced thin layer materials to be produced at a
large scale; early attempts of microporous membranes preparation (with pore sizes below µm range)
can be dated back 1920, while thin film dense membranes could not be obtained before 1960 (Hwang
and Kammermeyer, 1975).

The key production challenges of membranes, which are still valid today, have been soon
identified: first, a highly permeable material simultaneously showing a high enough selectivity is
logically absolutely necessary. The antagonism between these two performances generates a so called
trade-off curve, an empirical limit based on experimental data, that is obtained for the separation of
gas and liquid mixtures (Robeson, 2008). The possibility to overpass the corresponding upper bond
between permeance and selectivity is one of the key challenges of membrane science (Park et al.,
2017).

In a second step, large scale production processes of membrane and module have to be developed
with zero default standards.

Finally, the membrane process has to be implemented at the best place in the industrial process,
with efficient pretreatment operations, in order to ensure the longest membrane material lifetime.

The development of membrane processes thus requires a combination of 1) high performance
materials (chemistry being the key discipline), 2) robust and liable module production technologies
and 3) process engineering and design tools (Prasad et al., 1994; Baker, 2004; Favre et al., 2017).

These three key steps (material, module, system) are sketched in Figure 1 as a science push
contribution, while the application framework and constraints correspond to an industry pull action.
Taking into account the tremendous developments recently achieved in the different directions
shown on Figure 1, it can be expected that the place and role of membrane processes in a large range
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of industrial applications will significantly expand in the near
future. This prospective statement, together with the associated
challenges, is detailed hereafter.

2 THE FUTURE OF MEMBRANE
PROCESSES: CHALLENGES AND
PROSPECTS
2.1 Membrane Materials
To a large extent, polymers represent today the dominant
material family of membrane separation processes (Baker and

Low, 2014). This statement applies for porous (microfiltration,
ultrafiltration, dialysis) or dense (reverse osmosis, gas separation,
and pervaporation) industrial membranes. Polymers effectively
offer unique possibilities in terms of thin separation layer
production, through cheap, scalable, liable processing
technologies (phase inversion, extrusion, hollow fiber spinning,
and coating) (Nunes et al., 2020). Globally speaking, the
permeability/selectivity trade-off is achieved based on
statistical porous structures: pore size distribution in the nm
to µm range for porous membranes, statistical free volume
distribution in the subnanometer range for dense polymeric
membranes (Figure 2). The same statement holds for

FIGURE 1 | Synopsis of the industrial development framework of membrane processes: scientific advances (innovative materials, new production technologies,
and process engineering methodologies) can synergistically contribute to current and future industrial needs.

FIGURE 2 | Examples of current industrial membrane materials. (A) Dense skin asymmetric polymeric membrane (reverse osmosis, gas separations). Productivity
constraints require a very thin dense layer supported on a porous structure. The separation performances result from species solubility and diffusion into a subnanometer
free volume distribution matrix. (B) Porous membrane (ultrafiltration, microfiltration, dialysis, membrane contactors, and transmembrane distillation). The porous
separating layer, shows a pore size distribution in the nanometer to micrometer range, depending on the liquid mixture to be treated and species to be treated be
separated. This type of structure can be based on polymeric or inorganic materials.
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inorganic membranes (i.e. alumina, carbon, metal oxides,
silica. . .), which are produced by sintering/extrusion and are
mostly used for microfiltration and ultrafiltration operations.

With the advent of the nanostructured materials revolution,
breakthrough performances are achievable today, mostly at lab
scale for membrane materials (Koros and Zhang, 2017). For
instance, the classical permeability/selectivity trade-off limit of
polymers for gas and, more recently, liquid separations, can be
completely overpassed with materials showing a quasi-perfect
monodisperse pore size such as zeolites (Young et al., 2017),
carbon nanotubes (Skoulidas et al., 2002), Carbon Molecular
Sieves (CMS) (Koh et al., 2016), graphenes (Geim, 2009), Metal
Oxide Frameworks (MOF) (Gascon and Kapteijn, 2010), among
others.

The combination of ultrathin structure (down to the atom
level for graphene films), together with perfect lattice structure
opens the way to very high separation performances.
Moreover, most of the inorganic nanostructured materials
mentioned above show high temperature resistance and
compatibility with a very broad range of chemicals. The
limitations of polymers, with upper operating temperature
usually around 100 C and sensitivity to chemicals (e.g.,
chlorine for ultrafiltration and reverse osmosis in
biotechnology and water treatment, heavy hydrocarbons for
gas separations, solvents for organic solvent nanofiltration)
effectively limit today the selection of membrane processes for
industrial use. More specifically, the possibility to operate
membrane modules under high temperature conditions
could unlock novel hybrid processes such as membrane
reactors. The association of catalysis and separation
function in a single unit is indeed known to often offer
improved performances (Agrawal, 2001; Van Kampen et al.,
2021). Numerous studies have addressed this type of process
for decades, for instance for hydrogen production with high
temperature separation membranes based on palladium or
inorganic membranes. The success of membrane bioreactors
(Shannon et al., 2008), which has been achievable with
polymeric materials given the low temperature operation
level (ca 30 C), could then possibly apply to a new set of
chemical reactors.

2.2 Production Technologies
Besides new material developments, major changes are also
expected to occur for membrane module production. The
development of a new tailor made module for a new
membrane material is known to be tedious, long and costly.
Moreover, module/membrane industrial production most often
makes use of organic solvents (i.e., for polymer dissolution) that
can lead to environmental concerns. Green solvents (water,
supercritical CO2 .) have been proposed in order to limit these
problems, but their use is far to be applicable to any type of
polymer. Nevertheless, the large efforts and significant progress
recently achieved in producing more sustainable membranes,
employing green solvents and bio-based materials through the
replacement of traditional toxic and harmful compounds should
be stressed (Nunes et al., 2020). Simultaneously, solvent resistant
membranes, such as fluorinated polymers and thin film polymers

showing impressive mechanical resistance have been recently
developed, opening new perspectives for polymeric membranes
(Karan et al., 2015). Besides solvent use, potting and casing
materials can also be an issue, with difficulties in terms of
materials compatibility and defect free adhesion operation of
resin potting for instance. Module production often relies on
secret know-how. The challenges of module production also
explain why the number of membrane equipment suppliers
remains limited.

With the advent of 3D printing techniques, it might be
that a completely new field of development emerges. The
direct production of a membrane module through 3D
printing in place of classical production techniques (e.g.,
hollow fiber spinning + resin potting) is not achievable yet,
but it could become a reality in a near future. For instance,
the production of ultrathin composite membrane samples,
with dense skin layers down to 20 nm, has been recently
reported, offering tremendous perspectives for development
(Chowdhury et al., 2018). Several studies recently reported
3D possibilities for different types of membrane materials
and processes (Bara et al., 2013; Bram et al., 2015; Nguyen
et al., 2019). It has to be stressed that major limitations for
large scale modules remain. Nevertheless, the direct 3D
printing production of a membrane module based on
either polymeric or inorganic materials could be a
complete game changer. A rapid efficient module
production could be achieved, with completely new
possibilities offered in terms of structure.

The production constraints of a membrane, be it flat or a
hollow fiber, necessarily translates into 1D type module
structures. With 3D printing, complex geometries (such as
fractal or constructal), possibly including in situ turbulence
promoters (in place of spacers), anisotropic membrane or
module structures could be possible. It is important to
stress that living systems make use of membranes for
numerous applications (e.g., lung, kidney. . .) based on
complex structures, far away from the constant cross
Section 1D fluid flow. This is certainly not fortuitous, but it
may reflect improved performances (energy efficiency,
intensification) that are largely unexplored today in
membrane science with synthetic polymers.

2.3 Process Design Methods
The synergy between materials and process studies has always
been a key requirement of membrane applications. Similarly to
any chemical engineering target, Process Systems Engineering
(PSE) tools are very efficient for membrane process design
purposes today, with different software environments (Biegler
et al., 1997). The selection of the most efficient membrane
material, together with the best place, best design and optimal
operating conditions has been achieved for a great number of
industrial applications (Bozorg et al., 2019). Nevertheless,
complex processes such as multistage or hybrid systems still
address some important and partly unsolved optimization
issues. Significant progress has been recently achieved in this
direction, but an important paradigm shift is currently under
progress.
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2.4 Membrane Processes in a New
Industrial Environment
With the forecasted decrease of fossil fuel use, a completely new
industrial landscape is on the way to become reality in a near future.
In terms of feedstocks, renewables are expected to replace fossil
hydrocarbons (Agrawal and Mallapragada, 2010; Favre, 2020). This
will strongly impact the type of separation processes which are
classically used in petrorefineries, with the predominant role of
distillation. High performance membrane materials can drastically
improve the energy efficiency of separation processes (Sholl and
Lively, 2016; Castel and Favre, 2018).

Biorefineries will require efficient separation processes,
adequate to achieve operation on aqueous, diluted mixtures
containing heat sensitive biomolecules. Membrane processes
which offer the possibility to separate complex mixtures
without heat supply and require electricity in place of thermal
driving force are considered as a key technology for biorefineries.

Moreover, the use of alternative driving forces could be of
interest, besides the classical pressure, power based solution.
Temperature difference (such as in transmembrane distillation
or thermopervaporation), sweep operation (which can replace
vacuum pumping is some cases) or more exotic driving forces
such as light (Gérardin et al., 2021) or electrical fields (Wilcox,
2020) have been mostly discarded up to now. It might be that
these novel approaches are in some cases reconsidered in a
sustainable industrial framework, especially in an integrated,
energy efficient network.

3 DISCUSSION

The joined rapid evolution of advanced nanostructured materials,
module production technologies and process engineering tools
discussed in the previous sections is expected to generate
significant changes in the production, place and role of
membrane processes in industry.

- The new generation of membrane materials, to a large extent
based on inorganic monodisperse structures, is likely to
push membrane applications, through improved
separation performances, and/or new applications under
high temperature or aggressive environments. A sound
collaboration between materials scientists and process
engineers is however absolutely necessary in order to
rigorously evaluate these new perspectives.

- The possibilities offered by new materials production
technologies, especially 3D printing, is likely to generate a
breakthrough in membrane module production. This field
of research is very large and numerous development
stoppers have to be solved, but the production tool is

there, with spectacular developments in material science,
and technological devices.

- Besides the traditional separation function, operated by
membranes for decades, new possibilities are expected to
emerge, where membranes fulfill at the same time multiple
tasks (filtration, catalysis, support, and heat exchange.) (Liu
et al., 2016). The development of biomimetic and stimuli
responsive membrane materials (such as self repairing
structures for instance) is also expected to lead to new
applications (di Vincenzo et al., 2021).

- The development of modern, artificial intelligence type tools
(neural networks, surrogate models, superstructure
approaches, and genetic algorithms. . .) in Process
Systems Engineering enables today the very fast
identification of the optimal membrane, process design
and operating conditions (Castel et al., 2020). The joined
improvements of optimization algorithms and computing
capacity opens the way for innovative processes, where the
design of mutlimembrane, multistaged processes can be
rigorously achieved.

Additionally, the shift of numerous industrial sectors from
fossil to renewables feedstocks and energy offers promising
perspectives for membrane applications. The rational design of
downstream processes for biorefineries, which are expected to
gradually replace fossil fuel based refineries, will require a smart
combination of technological bricks, where membranes will for
sure play a key role (Huang et al., 2008; Favre and Brunetti, 2022).

The different aspects listed throughout this prospective
analysis are tentatively summarized in a general table
(Supplementary Material).
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