AUTHOR=Ji Cheng , Tao Tingting , Wang Jingde , Sun Wei TITLE=Multi-Scale Process Monitoring Based on Time-Frequency Analysis and Feature Fusion JOURNAL=Frontiers in Chemical Engineering VOLUME=4 YEAR=2022 URL=https://www.frontiersin.org/journals/chemical-engineering/articles/10.3389/fceng.2022.899964 DOI=10.3389/fceng.2022.899964 ISSN=2673-2718 ABSTRACT=
Data-driven process monitoring is an important tool to ensure safe production and smooth operation. Generally, implicit information can be mined through data processing and analysis algorithms to detect process disturbances on the basis of historical production data. In industrial practice, signals with different sources of disturbance show different distribution patterns along with the time domain and frequency domain, that is, noise and pulse-type changes are usually contained in the high-frequency portion while most process dynamic is contained in the low-frequency portion. However, feature extraction is usually implemented at a single scale in traditional multivariate statistical algorithms. With this concern, a novel multi-scale process monitoring method is proposed in this work, by which wavelet packet decomposition is first employed for time-frequency analysis. After decomposition, multivariate statistical models are established for each scale to construct process statistics. For the high-frequency part, the classical principal component analysis (PCA) algorithm is adopted to construct squared prediction error (SPE) and Hotelling