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The cracking furnace is the key equipment of the ethylene unit. Coking in furnace tubes
results from the generation of coke during cracking, which will compromise the heat
transfer efficiency and lead to shape change of tubes. In order to keep the cracking furnace
operating economically and safely, the engineers need to decoke according to the surface
temperature of the furnace tube. However, the surface temperature of the furnace tube is
difficult to obtain in practice. Due to redundant instrumentation and the high level of
process control in cracking furnaces, a large number of operation data have been
collected, which makes it possible to predict the surface temperature of furnace tubes
based on autocorrelation and cross correlation within and among variables. Traditional
prediction methods rely on labeled data samples for training, ignoring the process
information contained in a vast amount of unlabeled data. In this work, a data-driven
semi-supervised soft-sensor method is proposed. Considering the nonlinear and dynamic
relationship among variables, long short-term memory network (LSTM) autoencoder (AE),
a deep neural network suitable for the feature extraction of long-term nonlinear series, is
used for pre-training to extract process data features from unlabeled and labeled data.
Then, principal component analysis (PCA) and mutual information (MI) are applied to
remove feature correlation and select features related to target variables, respectively.
Finally, the selected data features are utilized to establish a soft-sensor model based on
artificial neural network (ANN). Data from an industrial cracking furnace of an ethylene unit
is considered to validate the performance of the proposed method. The results show that
the prediction error of furnace tube surface temperature is about 1% and successfully aid
engineers in determining the optimal time for decoking.
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1 INTRODUCTION

In the olefin industry, the cracking furnace is the most important piece of equipment (Zhao et al.,
2011). Keeping it under a normal operating condition is critical to ensure the production of olefin.
Coking in the furnace tube is a factor affecting the operation of the cracking furnace. In the
cracking process, coke is generated and deposited on the inner surface of the furnace tube, which
will compromise the heat transfer efficiency and lead to the shape change of tubes. Decoking is
required to keep the cracking furnace operating economically and safely. In industrial production,
the surface temperature of the furnace tube is an important indicator to reflect the degree of coking.
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In most facilities, tube surface temperature is manually
measured by operators, usually every 6 or 8 days,
which makes it hard for the operators to know the
information in time.

Data-driven soft-sensor methods make it possible to obtain
hard-to-measure variables in real time, such as the surface
temperature of furnace tubes, and component concentration in
streams. By extracting the relationship between online
available measure variables and hard-to-measure variables, a
regression model is established to realize online estimation of
the latter (Souza et al., 2016; Curreri et al., 2021). Tian et al.
(2017) proposed a soft-sensor method based on partial
least squares (PLS) and applied it to predict the surface
temperature of the furnace tube in real time. In addition,
traditional soft-sensor methods, such as principal
component regression (PCR), support vector regression
(SVR), and vector autoregression (VAR), can also be
utilized to forecast the surface temperature (Kaneko and
Funatsu, 2011; Ge, 2014; Cheng and Liu, 2015). However,
these soft-sensor methods require labeled data samples for
training. It means that only online available measure process
data matching the surface temperature measured values of
furnace tube are utilized to establish a regression model. As
mentioned earlier, in industrial processes, the surface
temperature data are usually collected manually with
limited numbers. If only limited labeled data is applied to
construct a model, it may lead to poor soft-sensing
performance (Shao et al., 2019). Meanwhile, rich latent
information is contained in a large number of unlabeled
samples, which is ignored by traditional soft-sensor
methods. In this case, semi-supervised learning methods are
proposed to solve the problem.

The main idea of semi-supervised learning methods is to
construct a data model using both labeled and unlabeled data,
with a focus on data feature extraction (Ge, 2021). Since most
industrial processes are nonlinear, data features are difficult to
accurately extract by traditional linear soft-sensor methods
such as PCR and PLS (Shao et al., 2019). Artificial neural
network (ANN) is a commonmethod to deal with process non-
linearity, which is widely applied in many fields such as speech
recognition and image processing (LeCun et al., 2015;
Schmidhuber, 2015). In recent years, ANN, such as long
short-term memory (LSTM), convolutional neural network
(CNN), and stacked autoencoder (SAE), has also been
applied to establish soft-sensor models in industrial
processes (Wang and Yan, 2018; Zhang et al., 2019; Yuan
et al., 2020). Among them, SAE is a more suitable semi-
supervised learning method due to its unsupervised layer-
wise pre-training mechanism. Wang and Liu proposed a
soft-sensor method based on SAE and applied it to predict
the rotor deformation of air preheaters (Wang and Liu, 2018).
The features of the input data are extracted using a SAE, and
then a support vector regression (SVR) is applied to predict the
target values. As only unlabeled data is used for pre-training,
the data features extracted by SAE may be independent of the
target variables, which may affect the performance of the soft
sensor. In order to solve the problem, Yan et al., (2020)

proposed to use mutual information analysis to evaluate the
correlation between codes obtained from encoders and target
variables to remove insignificant codes (Yan et al., 2020). On
this basis, Lima and de Araujo (2021) proposed an MI-based
weighted representative SAE. MI is utilized to assign
varied weights to the codes obtained by pre-training,
emphasizing codes associated with the target variable.
However, there is a high degree of correlation between
codes extracted by SAE. Useful information may still exist
in some codes that have been removed. Furthermore,
industrial processes are commonly dynamic, which is
ignored by the aforementioned methods.

LSTM AE is a neural network developed based on LSTM,
which can be used to extract process dynamic features. It is
proposed by Srivastava et al. (2015) and applied to learn
representations of video sequences. Recently, LSTM AE has
also been utilized to extract temporal features of time series data
in industrial processes. Mallak and Fathi (2021) proposed a
process monitoring algorithm based on LSTM AE to realize
fault detection and diagnosis for hydraulic machinery (Mallak
and Fathi, 2021). However, with typical autoencoders, the
data features extracted by LSTM AE could be highly
correlated. Prediction performance may be affected by
directly using these features to build a soft-sensor model.
There is no report available to discuss this issue in literature
yet. Principal component analysis (PCA) is a common method
for dimensionality reduction, which can remove the correlation
between variables through orthogonalization. If data obtained
from LSTM AE are orthogonalized by PCA, better extraction of
process dynamic features could be achieved.

In this work, a semi-supervised soft-sensor method based on
LSTM AE and PCA (LAPSS) is proposed for feature extraction
and applied to predictive maintenance of the industrial cracking
furnace. In order to take full advantage of process information
contained in a large number of unlabeled data, an unsupervised
learning method, LSTM AE, is first used for pre-training to
extract dynamic features of process from both labeled and
unlabeled data. Then, PCA is applied to remove the
correlation between codes obtained by LSTM AE. Based on
MI values of the target variable and codes, codes are
selected, which are strongly correlated with the target
variable. Finally, these codes are utilized to establish a
regression model, an ANN in this work. Data from an
industrial cracking furnace is employed to test the
performance of the proposed method.

The remainder of this article is organized as follows. In Section
2, methods utilized in the proposed method are briefly
introduced. Section 3 introduces the proposed framework in
detail. In Section 4, data from an industrial cracker are
investigated to validate the proposed method. The main
contributions of this work are summarized at the end.

2 PRELIMINARY

In this section, LSTM, LSTM autoencoder, MI, PCA, and SVR are
briefly introduced.
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2.1 Long Short-Term Memory
Long short-term (LSTM) neural network is a deep learning method
commonly used to describe the temporal dynamic behaviors of time
sequential data (Yuan et al., 2019a). In recent years, it has been
widely employed to extract dynamic features of industrial processes.
Figure 1 shows the structure of the LSTM (Yuan et al., 2019b).
It contains three gate controllers, which are input gate i(t),
forget gate f(t), and output gate o(t). These gates are employed
to determine which information should be remembered. At
time t, three inputs are fed into LSTM neural network, which
are the current input vector x(t), previous cell state c(t−1), and
previous hidden state h(t−1), respectively. The input gate is
applied to determine which input information at current
moment will be retained to new cell state c(t). The forget
gate f(t) is used to determine which information from the
previous cell state c(t−1) will be discarded. The output gate o(t)
controls the information output to the current output value in
the new cell state c(t) (Greff et al., 2016). Mathematically, the
LSTM cell state and output can be expressed as follows:

f(t) � σ(Wfxx(t) +Wfhh(t−1) + bf), (1)
i(t) � σ(Wixx(t) +Wihh(t−1) + bi), (2)
o(t) � σ(Woxx(t) +Wohh(t−1) + bo), (3)

~c(t) � tanh(Wcxx(t) +Wchh(t−1) + bc), (4)
c(t) � f(t) ⊙ c(t−1) + i(t) ⊙ ~c(t), (5)

h(t) � o(t) ⊙ tanh(c(t)), (6)
where c represents the cell state, ~c is an intermediate state, h
represents hidden state, σ and tanh represents nonlinear activation
function, ⊙ denotes pointwise multiplication operation, W
indicates weight matrix, and b is addable bias vectors.

2.2 LSTM Autoencoder
Traditional artificial neural network, such as CNN and LSTM, is a
supervised learning method, which requires a large number of
labeled data samples for training. However, it is very difficult to

obtain a large number of labeled data samples in an industrial
process. In order to solve the problem, an unsupervised neural
network autoencoder (AE) is applied to industrial processes. As an
unsupervised neural network, AE aims to learn representative data
features by minimizing the reconstruction error of original input
data. Generally, it consists of an input layer, an encoder neural
network, a latent space, a decoder neural network, and an output
layer (Nguyen et al., 2021). Among them, the encoder neural
network is applied to compress input data into the latent space to
generate codes. Then, by using the decoder neural network, the
original input data is reconstructed from codes obtained
previously. The backpropagation algorithm is usually employed
for AE training. Commonly, mean square error (MSE) is used as a
loss function to evaluate reconstruction error.

L � 1
m
∑m
i

(1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣xi − x̂i

∣∣∣∣∣∣∣∣∣∣∣2), (7)

where x is the original input data, x̂ is the reconstructed input
data and m is the number of variables. LSTM AE refers to the
encoder neural network and the decoder neural network of the
autoencoder are both LSTM networks. Time series data are first
input to the encoder neural network to obtain low-dimensional
data features. Relying on the powerful learning and data
processing capabilities of the LSTM network for time series
data, dynamic features in multivariate data can be captured
and represented by codes. However, codes obtained by LSTM
AE are non-orthogonal. If a regression model is established
directly with the codes and target variable, the prediction
performance of the soft-sensor model may be affected.

2.3 Principal Component Analysis
Principal component analysis (PCA) is a typical dimensionality
reduction method, which can be applied to decorrelate variables
in a new orthogonal space. Let X(n × m) denote an original data
matrix, while n and m stand for the number of variables and
samples, respectively. Its covariance matrix C can be calculated as

FIGURE 1 | Structure of the LSTM.
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C � XTX

n − 1
, (8)

By eigenvalue decomposing the covariance matrix C, the
following equation can be obtained (Wold et al., 1987):

PTCP � Λ �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ1
λ2
...

λn−1
λn

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭, (9)

FIGURE 2 | Framework for the LAPSS.
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where P is an orthogonal matrix consisting of eigenvectors, Λ is a
diagonal matrix and λi(i � 1, 2..., n) represents an eigenvalue.
Then, principal components can be obtained by

T � PTX, (10)

2.4 Correlation Measurement by Mutual
Information
In order to obtain the optimal soft-sensor model, it is very
important to select modeling variables related to the target
variable. In information theory, mutual information (MI) is a
measure of the interdependence between two random variables. It
is defined as follows (Kraskov et al., 2004):

I(x, y) � ∫
x

∫
y

p(x, y)log( p(x, y)
p(x)p(y))dxdy, (11)

where x and y are two random variables, p(x, y) represents the
joint density function, and p(x) p(y) indicate the marginal
density functions. Furthermore, let H(x) be the Shannon
entropy of variable x, which is calculated as (Kraskov et al., 2004)

H(x) � −∫
x

p(x)logp(x)dx, (12)

Then, Eq. 11 can be transformed as follows (Kraskov et al.,
2004):

I(x, y) � H(x) +H(y) −H(x, y), (13)
where H(x, y) is the joint entropy of both variables and is
expressed as follows:

H(x, y) � −∫
x

∫
y

p(x, y)log(p(x, y))dxdy, (14)

Measurements collected from industrial processes have
different degrees of correlation with hard-to-measure ones.
A similar situation can also be found between codes and hard-
to-measure variables. It can be believed that better prediction

in soft sensoring can be obtained from more relevant
variables or codes. Based on this consideration, MI is
adopted to screen original variables and codes obtained
from LSTM encoders.

According to the work ofWang and Yan (2018), 1,000 random
vectors are generated by a uniform distribution in the range of [0,
1], which can be considered totally independent with the target
variable. The dimension of each vector corresponds to the
number of training data samples. Then, MI between each of
the random vectors and the target variable is calculated. Among
them, the 50th largest MI value is selected as the MI threshold.
Thus, for certain original variables or codes, the variables or code
has a certain causal relationship with the target variable at a 95%
confidence level if its MI with the target variable is greater than
the threshold obtained earlier.

3 FRAMEWORK FOR THE LAPSS

Traditional supervised soft-sensor methods require labeled data
for training, which makes process information contained in a
large number of unlabeled samples to be ignored. AE is an
unsupervised method, which is commonly employed by semi-
supervised learning methods to extract data features from
unlabeled data in the pre-training stage. However, industrial
processes are frequently dynamic. Typical AE is not suitable
for the feature extraction of long-term nonlinear series. In
addition, codes obtained by AE are non-orthogonal, which is
not conducive to selecting the codes related to the target variable,
in order to establish the optimal soft-sensor model.

To solve the aforementioned problems, a semi-supervised
soft-sensor model based on LSTM and PCA (LAPSS) is
proposed. The framework for LAPSS is illustrated in Figure 2.
Its procedures include the offline modelling phase and the online
prediction phase.

Offline modeling stage:

Step 1: historical data are collected to establish a soft-sensor
model, including labeled data {XL, Y} and unlabeled
data {XU}. The labeled data {XL, Y} are normalized by
the zero-mean normalization method, and the unlabeled
data {XU} are scaled with the average and standard
deviation of the labeled data {XL, Y}.

Step 2: to ensure the performance of the soft-sensor model, the
correlation measurement by MI is applied to choose the
soft-sensor modeling variables. A window width l is
applied to pre-process the data into a time series
matrix. The LSTM AE model is constructed using both
labeled and unlabeled data. The codes H � {h1, h2, ..., hz}
are obtained by the LSTM AE model.

Step 3: in order to remove the correlation between the codes, a
PCA model is established. Then the codes H �
{h1, h2, ..., hz} are projected onto a new orthogonal
space, and orthogonal codes T � {t1, t2, ..., tz} are
obtained. MI between each of the orthogonal codes
and the target variable is calculated for correlation
measurement. Based on the degree of correlation, the

TABLE 1 | Process variable information of the cracking furnace.

Variables Quantity Unit

Naphtha mass flow rate 7 kg/h
Naphtha temperature 1 Mpag
Naphtha pressure 1 °C
Diluted steam mass flow rate 7 kg/h
Diluted steam temperature 1 °C
Crossover section temperature 6 MPag
Crossover section pressure 6 MPag
Temperature in furnace A/B side 2 °C
Fuel gas flow rate 1 kg/h
Coil outlet temperature 30 °C
Outlet pressure 6 MPag
Super-high-pressure steam flow rate 1 kg/h
Super-high-pressure steam temperature 1 °C

Total: 70 variables
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orthogonal codes irrelevant to the target variable are
eliminated. Tpca � {t1, t2, ..., tq}, q≤ z represents the
selected codes related to target variable Y.

Step 4: to obtain a soft-sensor model, labeled data feature samples
TL
pca are used to establish an ANN-based regression

model. Among them, 70% TL
pca are selected to establish

FIGURE 3 | MI of each independent variable with the dependent variable and the value of the threshold.

FIGURE 4 | MI of each data feature with the dependent variable and the value of the threshold.
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the ANN regression model, and 30% TL
pca are used as

validation data to obtain the key parameters of the model.
Up to this point, the optimal soft-sensor model based on
LSTM AE and PCA is established.

Online prediction stage:

Step 1: online data are collected and normalized with the average
and standard deviation of the labeled data {XL, Y}. Based
on the results of variable selection in the modeling stage,
the input variables irrelevant to the target variable Y are
removed.

Step 2: as in the offline modeling stage, online data are pre-
processed into a time series matrix. Codes HV �
{h1, h2, ..., hz}V are obtained using the LSTM AE model.

Step 3: codesHV � {h1, h2, ..., hz}V are input into the PCA model
to obtain mutually independent codes
TV � {t1, t2, ..., tz}V. Then, the codes irrelevant to the
target variable Y in orthogonal space are removed
based on the degree of correlation in the modeling stage.

Step 4: codes in orthogonal space correlated with the target variables
are input to the ANN model, and the output value is then
inversely normalized to obtain the predicted value.

4 CASE STUDY

In order to validate the performance of the proposed method,
data from an industrial cracking furnace is investigated. The
cracking furnace is mainly divided into two sections: convection
and radiation. The main function of the convection section is
material preheating and heat recovery. In the radiation section,
the preheated hydrocarbon and steam are mixed for a cracking
reaction at about 800°C to produce olefins, alkanes, and coke. The
heat required for the cracking reaction is obtained from the
external surface of the radiant furnace tubes by convective
heat transfer. Coke as a by-product of the reaction deposits
over the inner surface of the tubes, which will affect the heat

FIGURE 5 | Prediction and true values of different soft-sensor methods
on the test set.

FIGURE 6 | The surface temperature prediction results for the first group of furnace tubes.
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transfer efficiency of the furnace tube. To maintain reaction
temperature and conversion, it is necessary to increase fuel
flow or reduce feed flow.

Based on the process characteristics of the cracking furnace,
the process variables shown in Table 1 are selected to build a soft
sensor for the surface temperature of the furnace tube. In the case
study, data for five complete production cycles are collected,
covering 8,700 samples with 1-h interval. During the period, only
67 sets of surface temperature data of furnace tubes are collected.
Each set of data contains 12 temperature measurements located
in the south and north sections with six groups of tubes in each
section. In order to accurately predict the surface temperature of
furnace tubes, temperature soft-sensor models are established for
each group of furnace tubes separately. Data for four complete
production cycle are applied to build the soft-sensor models,
which included 5,000 samples of process variables and 55 sets of
surface temperature measurements for furnace tubes.

Data from one group of furnace tubes on the south side is
taken to illustrate the modeling process. Online collected data are
used as easy-to-measure variables to predict the surface
temperature of furnace tubes. After the normalization, MI of
each easy-to-measure variable with respect to the target variable is
calculated to evaluate their correlation. As can be seen from
Figure 3, the MI of 14 easy-to-measure variables with respect to
the target variable fell below the MI threshold. It means that these
variables are independent of the target variable in terms of mutual
information point of view and will be removed from subsequent
calculations. The remaining variables are pre-processed into a
time series matrix. The width of the moving window is
determined by considering the autocorrelation coefficient of
each variable. Then, an LSTM AE model is established by
using both labeled and unlabeled data. Among them, 3,500
samples are used as training data and 1,500 samples are used
as validation data.

After several trials, the number of codes for the LSTM AE is
determined to be 35, under which the reconstruction error of the
validation data reaches its minimum. A PCAmodel is established
to remove correlation between data features obtained by the
LSTM AE model, by which 35 unrelated orthogonal codes are
obtained. The feature selection method based on MI is used to
select orthogonal codes related to the dependent variable. As
shown in Figure 4, the MI of seven data features and dependent
variable are less than the MI threshold. Then, the remaining
orthogonal codes whoseMI with dependent variable exceeded the
threshold are reserved to build an ANN-based regression model.
The key parameters of the ANN-based regression model are
obtained based on validation data, like the number of hidden
layer neurons, activation functions, and the number of iterations.

Apart from the proposed method, PLS, SVR, ANN, and SAE
are established for comparison. The parameters set for PLS, SVR,
ANN, SAE and proposed method can be found from
Supplementary Material. Data from one production cycle are
used to evaluate the predictive effectiveness of the soft-sensor
model. To evaluate the prediction performance of different soft-
sensormethods quantitatively, themean relative error (MRE) and
root mean square error (RMSE) of each model are calculated.
Their mathematical definitions are given as follows:T
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MRE � 1
n
∑n
i

∣∣∣∣yi − ŷi

∣∣∣∣
yi

× 100%, (15)

RMSE �
������������
1
n
∑n
i

(yi − ŷi)2√
, (16)

where yi and ŷi are the true value and the prediction value of the
dependent variable, respectively, n is the number of samples. The
MRE and RMSE of PLS, SVR, ANN, SAE and proposed method
are 1.70%, 1.45%, 1.24%, 1.08%, 0.87% and 22.37, 20.19, 17.30,
15.81, 11.60, respectively. It can be observed that the best
prediction performance is realized by the proposed method.
The prediction values of different soft-sensor methods vs. true
values on the test set are shown in Figure 5. It can be seen that the
data points of the proposed method are closer to the symmetry
axis, which also shows that the prediction performance of the
proposed method is the best. In addition, the data points of PLS
are mainly distributed below the symmetry axis. It means that the
prediction value of PLS is generally larger than the true value. If
engineers schedule the decoking time based on the prediction
results of PLS, it will result in shorter production cycle, therefore
yields and profits will be affected. In contrast, the data points of
SAE are mainly distributed above the symmetry axis, which
means that the prediction value of SAE is generally smaller
than the true value. If the engineers arrange the decoking time
according to the prediction values of SAE, the decoking will be
delayed, and the coils inside the furnace could break, which could
cause serious loss of facility and personnel.

Comparison for prediction performance of different soft-
sensor methods is shown in Table 2. Obviously, the best
prediction results for 12 groups of furnace tube surface
temperature are obtained by the proposed method. As
unlabeled data are employed for semi-supervised soft-sensor
modeling in pre-training phase better prediction performance
is achieved than that by PLS, SVR, and ANN. Compared with
SAE, the LSTM AE and the PCA are used by the proposed
method to extract process dynamic features and remove the
correlation between codes from LSTM AE. The surface
temperature prediction results for the first group of furnace
tubes are shown in Figure 6. With the operation of the
cracking furnace, the surface temperature of the furnace tube
is constantly increasing. At the 748th sample and the 1065th
sample, drops can be observed in the surface temperature
prediction values of furnace tubes. By checking the history
record of the cracking furnace operation, it can be found that
the production load of the cracking furnace has been decreased at
the 748th sample and the 1065th sample. The results show that
the prediction values of the proposed method are consistent with
the actual operating conditions. When the temperature
approaches 1,100°C, it indicates decoking operation should

start. Engineers can schedule decoking time based on the
results of the soft-sensor model.

5 CONCLUSION

In this work, a novel semi-supervised soft-sensor method is
proposed and applied to predict the surface temperature of
furnace tubes. Different from traditional supervised methods,
which require labeled data samples for training, both labeled
and unlabeled data samples are applied to extract process
features by the proposed method, which makes the feature
extraction not only based on less number of labeled data but
also a huge number of unlabeled data. Considering the dynamic
and nonlinear characteristics of industrial processes, the LSTM
AE is used to extract process features for pre-training first. In
order to eliminate the adverse influence of high correlation
between codes for code selection, PCA is applied to obtain
orthogonal codes. Then, the orthogonal codes relevant to the
target variable are selected to establish an ANN-based
prediction model based on the degree of correlation. To test
the performance of the proposed method, an industrial cracking
furnace is investigated. The results show that the surface
temperature of furnace tubes can be well predicted, which
can help engineers plan decoking time more effectively.
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