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The United Nations 17 Sustainable Development Goals (SDGs) are a universal call to action
to end poverty, protect the environment, and improve the lives and prospects of everyone
on this planet. However, progress on SDGs is currently lagging behind its 2030 target. The
availability of water of adequate quality and quantity is considered as one of the most
significant challenges in reaching that target. The concept of the ‘Circular Economy’ has
been termed as a potential solution to fasten the rate of progress in achieving SDGs. One of
the promising engineering solutions with applications in water treatment and promoting the
concept of the circular economy is hydrochar. Compared to biochar, hydrochar research is
still in its infancy in terms of optimization of production processes, custom design for
specific applications, and knowledge of its water treatment potential. In this context, this
paper critically reviews the role of hydrochar in contributing to achieving the SDGs and
promoting a circular economy through water treatment and incorporating a waste-to-value
approach. Additionally, key knowledge gaps in the production and utilization of engineered
hydrochar are identified, and possible strategies are suggested to further enhance its water
remediation potential and circular economy in the context of better natural resource
management using hydrochar. Research on converting different waste biomass to
valuable hydrochar based products need further development and optimization of
parameters to fulfil its potential. Critical knowledge gaps also exist in the area of
utilizing hydrochar for large-scale drinking water treatment to address SDG-6.
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INTRODUCTION

The United Nations 17 Sustainable Development Goals (SDGs) are intended to ensure peace and
prosperity for people and safeguard the natural environment from human-induced pollution and
climate change (UNDESA, 2018). SDGs progress, however, is currently lagging behind its stipulated
2030 target because of continued environmental degradation, increasing social problems such as
poverty, inequality and inequity, and financial and economic instability (Jackson, 2009; Banerjee
et al., 2011; Sachs, 2015). While all the proposed SDGs are equally important and of high priority, the
first and central SDG of “No Poverty” is strongly linked to water (Merrey, 2015). Water permeates all
aspects of our daily lives as the availability of water of adequate quality and quantity is not only
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essential for the survival of humans but also for maintaining
healthy ecosystems, including agroecosystems, which in turn
translates to community wellbeing. Good water quality can
promote healthy lives, while degraded water quality will
adversely impact human wellbeing and economic
development. In addition, multiple interdependencies
involving water as a key natural resource, such as water-food-
energy nexus, highlights its role in the sustainable development
framework. Hence, availability of clean water has been termed as
a “critical entry point” to achieve sustainable development and
nearly all of the proposed SDGs (Merrey, 2015).

In recent years, the concept of the “Circular Economy” has
gained increasing attention with the hope of overcoming some of
the intractable sustainability challenges (Ghisellini et al., 2016).
The classical linear economic system utilizes natural resources
and non-renewable energy to produce goods and services, which
eventually generate mostly non-biodegradable waste. On the
other hand, the circular economy is based on the concepts of
conservation, reuse, and recycling to produce goods and services,
as illustrated in Figure 1. More formally, “the circular economy”
is defined by Geissdoerfer et al. (2017) as “a regenerative system in
which resource input and waste, emission, and energy leakage are
minimized by slowing, closing, and narrowing material and energy
loops”. In this context, a circular economy is relevant to all sectors

of the economy, including energy, materials, industry, health care,
financial and information technology, and can be a driver for
accelerating progress in achieving SDGs (UNGA, 2019).

One of the more promising solutions that have emerged in
recent decades to close the materials and energy loops
mentioned above is the conversion of waste biomass to
biofuels. It can be achieved either through thermochemical
or biochemical conversion processes. Out of these two
alternatives, thermochemical processes are being widely
explored due to inefficiencies and practical difficulties
associated with biochemical processes (Tripathi et al., 2016).
Pyrolysis is the most commonly used thermochemical process
and is carried out at temperatures higher than 300°C and in the
absence of oxygen. The solid output of this process is called
‘biochar’, which has been extensively discussed in the literature
for its environmental, agricultural, and material applications
(Bolan et al., 2021). Due to the higher energy input required for
pyrolysis and expensive pretreatment needs, hydrothermal
carbonization (HTC) has replaced pyrolysis as the preferred
thermochemical process for some waste biomass, especially
those with high moisture content. HTC is carried out at
relatively lower temperatures, typically from 80 to 240°C,
under subcritical water pressure (Nadarajah et al., 2021). The
solid output of this process is called “hydrochar”.

FIGURE 1 | Illustration of the concepts of linear and circular economies.
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Hydrochar is gaining popularity as an environmentally and
economically sustainable material with multiple applications,
including as an effective adsorbent to remediate polluted
water. Hydrochar can be produced using a range of widely
available biomass, including agricultural waste, sewage sludge,
manure, and microalgae through HTC, which ensures
sustainability in raw materials sourcing, energy consumption,
and waste management (Nadarajah et al., 2021). However,
compared to biochar, hydrochar is still in the early stages in
terms of optimization of production processes, custom design for
specific applications, and knowledge of pollutant removal
processes. In this context, this paper examines the role of
hydrochar in contributing to achieving the relevant SDGs and
promoting a circular economy through water quality remediation
and incorporating a waste-to-value approach. Additionally, some
of the knowledge gaps in the production and utilization of
engineered hydrochar are identified, and possible strategies are
suggested to further enhance the circular economy in the context
of better natural resource management using hydrochar.

HYDROCHAR AND WATER QUALITY

Only one out of the 17 UN SDGs focuses explicitly on water,
“SDG 6—clean water and sanitation for all”. However, water is
also an enabler to achieving the other 16 SDGs. There is also
growing recognition of the multiple interdependencies or “nexus”
among the various SDGs, including water and energy, water and
food, water and environment, or water and economy. Hence,
addressing the growing water scarcity and quality challenges is
critical to achieving UN SDGs by 2030 (Merrey, 2015).
Unfortunately, the latest United Nations data on SDG 6
(UNDESA, 2020; UN_Water, 2020) indicate very concerning
trends in the provision of safely managed drinking water
resources and sanitation services across the world. The data
show that the proportion of the urban population using safely
managed drinking water services exhibits a slightly decreasing
trend over time (86.2% in 2000; 85.9% in 2010; 85.2% in 2017).
Essentially, safe drinking water provision is not meeting the
growing demand of the ever-increasing urban population.
Similarly, in rural areas, the availability of contaminant-free
safe water has shown only a slight improvement. It remains
behind target, with nearly half of the total population not having
access to contaminant-free freshwater sources. These findings
need to be viewed in the context that the urban population is
increasing whilst the rural population is decreasing in all
countries around the world. More strikingly, the proportion of
the global population using drinking water free of contamination
shows an increase of only four percentage points over the five
years (2015-2020) since the adoption of SDGs. To meet the target
set out for SDG 6 by 2030, the rate of progress in achieving quality
clean water resources needs to be more than triple for the
remaining years (Ritchie and Roser, 2021). Hence, developing
sustainable and inexpensive water treatment solutions is the need
of the hour.

It is where hydrochar, as an inexpensive material because of
the abundance of waste biomass (e.g., agriculture, forestry, food,

and wastewater treatment) and less energy-intensive HTC
process, can play a key role. As a result of hydrolysis and
biomass monomer reactions during HTC, hydrochar surface
hosts various chemically reactive functional groups, including
acidic surface functional groups, that can drive the adsorption of
contaminants through electrostatic interactions (Sumaraj et al.,
2020). However, HTC alone produces hydrochar with low surface
area, and hence, it may need to be combined with additional
activation steps to increase its porosity and surface area desired
for certain environmental remediation purposes (Tasca et al.,
2019). The physicochemical properties of contaminants and the
surface chemistry of adsorbents control the chemisorption of
water contaminants (Sumaraj and Padhye, 2017). Typical
functional groups on hydrochar can be optimized for
increasing their adsorptive capacity or removing selective
contaminants. It can be effectively achieved by altering
physicochemical properties with additional activation steps
(Peng et al., 2019; Teng et al., 2020; Çatlıoğlu et al., 2020;
Mittapalli et al., 2021).

Although most studies have reported specific techniques for
optimizing surface functionality of hydrochar for efficient
adsorption of contaminants, a significant knowledge gap exists
in relation to their real-world application. For example, recent
studies by Zhang et al. (2022) and Lv et al. (2022) have reported
methods to make hydrochar surfaces more positively- and
negatively charged, respectively, for higher adsorption of
anionic and cationic contaminants in wastewater. Both studies
claim that their modified hydrochars could be used for
wastewater treatment, but neither of these studies used actual
wastewater in their batch experiments. The lack of consideration
given to various parameters/factors, including complex aqueous
matrices, continuous flow reactors, large-scale setups,
competition by solutes for active sites in the presence of
organic matter, and data related to regeneration efficiencies for
real-world applications, make such claims questionable. Even if
the surface modifications show promising results in the batch-
scale studies, more in situ or field measurements should be
conducted on a longer-term to examine the changes in surface
chemistry and adsorption performance of chemically modified
hydrochars in complex environments.

For the removal of uncharged or nonpolar contaminants,
hydrochars need morphological and/or chemical modifications
to achieve efficient adsorption. Although hydrochars have
typically low surface area, with the help of chemical activation,
surface areas higher than 1,000 m2/g, similar to activated carbons,
have been reported (Zhu et al., 2015; Zhang et al., 2019). The
activation of hydrochar by KOH, NaOH, K2CO3, H3PO4, ZnCl2
and other acids, bases, salts, and oxidizing agents have been
reported in the literature to increase their surface areas
significantly (Zhu et al., 2015). Lower peak temperatures and
lower residence times of the HTC process have been reported to
enhance surface area; thus, effective activation achieved at these
conditions can result in hydrochars with higher surface areas and
surface reactivity (Fang et al., 2015; Zhu et al., 2015). However,
most of the reported research on activation of hydrochar has
solely focussed on surface area enhancement, while little or no
information is available regarding the cost and energy input for
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such activation at large scale. Weight ratios of activating agents:
hydrochar have been reported as high as 1:1 (Zhu et al., 2015;
Zhang et al., 2019), which can make their large scale applications
economically unfeasible. Hence, there exists a significant research
gap on cost-benefit analysis and scaling-up of activation
processes.

The presence of contaminants, including potentially toxic
elements in the feedstock, is another concern in relation to
hydrochar application for water remediation. For example,
wastewater sludge may contain toxicants and, when used as a
feedstock, can lead to the leaching of these contaminants from
sludge-derived hydrochars during their applications to treat
water. In such cases, specific inexpensive pre- or post- HTC
treatments can significantly lower the concentrations of residual
contaminants (Hoang et al., 2022). However, ecotoxicological
risks posed by the use of such hydrochars are rarely investigated.
Consequently, in-depth studies are needed to understand the
toxicological risks of using sludge-derived hydrochars for
extended periods of water treatment.

As shown in Table 1, most of the research on hydrochar for
water remediation has focused on removing dyes, heavy metals,
and pharmaceuticals. There is a need for more studies on
understanding the interactions of hydrochars with pollutants
commonly found in urban and/or agricultural runoffs,
wastewaters, and surface waters such as inorganic nitrogen
contaminants, phosphorus, and emerging contaminants.
Especially with the increasing number of studies reporting the
presence of poly- and perfluoroalkyl substances (Lenka et al.,
2022), personal care products (Kumar et al., 2019a), illicit drugs

(Kumar et al., 2019b), and disinfection by-products, such as
N-nitrosodimethylamine (Jasemizad et al., 2021), in urban
waters, it is critical that the hydrochar’s applicability for water
treatment should consider its performance against modern-day
contaminants.

HYDROCHAR AND CIRCULAR ECONOMY

Agricultural residues are increasingly being used as a sustainable
source of energy in rural areas (Mau and Gross, 2018; Huang
et al., 2019). As such, hydrochar production using agricultural
residues in rural areas would provide additional economic
benefits by integrating renewable energy, water treatment, and
waste management. Similarly, sewage sludge and food waste are
increasingly generated in urban areas due to the increasing
population, where their use for hydrochar production can
yield multiple benefits, as described above (Tasca et al., 2019).
In fact, urban-produced wastes are often found to cause air, water,
and soil pollution while, at the same time, cities account for 75%
of global greenhouse gas emissions (Van Hullebusch et al., 2021).
Hence, using these wastes for generating value-added products
for various sustainable applications is a prime example of a
circular economy in action. Hydrochar production is a
promising pathway to support the transition to a circular
economy by adding innovation to most basic services, such as
water and wastewater services, waste materials management,
energy production, construction materials etc., in big cities
and small towns (Zvimba et al., 2021). Table 2 lists examples

TABLE 1 | Selected studies on aqueous contaminant removal using hydrochar.

Target Contaminant The Feedstock Used
for Hydrochar Production

Key Findings References

Dyes Food waste Dye adsorption was spontaneous and endothermic; van der Waals
forces, electrostatic interactions, and hydrogen bonding are three
proposed mechanisms

Parshetti et al. (2014)

Dyes Sewage sludge and further activation High adsorption was attributed to strong p-p stacking interaction and
electrostatic attraction

Liu et al. (2017)

Dyes Bamboo and acrylic acid in the presence of
ammonium persulphate

High adsorption was attributed to electrostatic interactions of methylene
blue with carboxylate-rich surface of hydrochar

Lv et al. (2022)

Organic Matter Fibers from wastewater screenings and
further activation

Hydrochar surface area was found to be higher than commercial
activated carbon, but the removal of organic matter was lower.
Researchers claimed that screened fibers provide all carbon required for
wastewater treatment

Benstoem et al. (2018)

Lead Pinewood and rice husk Lead adsorption was strongly influenced by pH. O-containing surface
functional groups were found responsible for higher adsorption

Liu and Zhang, (2009)

Uranium Switchgrass Fast Uranium adsorption followed the H-type isotherm. The adsorption
mechanism was related to the contaminant’s pH-dependent aqueous
speciation

Kumar et al. (2011)

Copper and Cadmium Switchgrass and further activation Activated hydrochar showed higher adsorption capacity than powdered
activated carbon (PAC) because of hydrochar’s O-containing surface
functional groups

Regmi et al. (2012)

Hexavalent chromium Bamboo Cation functionalized hydrochar bearing—N+H2R was found to
electrostatically attract Cr(VI) under acidic conditions and reduce it to
Cr(III)

Zhang et al. (2022)

Tetracycline Salix psammophila and further activation One step activated hydrochar produced magnetic porous carbon with
improved surface area

Zhu et al. (2014)

Triclosan, ibuprofen,
diclofenac

Olive oil production waste Phenolic compounds on the surface were found to play an important role
in the sorption mechanisms of the studied compounds on hydrochar

Delgado-Moreno et al.
(2021)
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of different hydrochar applications to achieve a circular economy
and contribute towards achieving SDGs.

As shown in Table 2, despite the numerous applications of
hydrochar, the available information on its use to reduce adverse
environmental impacts of cities or generate sustainable
construction practices using local materials is very limited.

For example, selected studies on converting sewage sludge and
municipal solid waste to hydrochar are included in Table 2,
where the use of different additives was tested to increase the
heating value of produced hydrochar or machine learning tools
were explored to predict hydrochar properties. However, no
information is available for scale-up operation of hydrochar
production and its evaluation under field conditions. The
production of hydrochar from either municipal solid waste or
sewage sludge is a topic receiving significant attention in recent
years (Sharma and Dubey, 2020; Huezo et al., 2021; Liu et al.,
2021). However, it is worth noting that the technology readiness
level is very low for all cases. This is a significant knowledge gap as
there is a need for technologies that incorporate circular economy
principles to establish sustainable communities. The lack of
information on further technology demonstration, system
development and launch and operation may delay
implementation or even hinder knowledge of their technologic
and economic feasibility, which in turn could result in failure of
the timely achievement of SDGs goals.

Using hydrochar from solid waste for the improvement of
asphalt surfaces for road construction has attracted attention
recently because the application of solid wastes to road
infrastructure through its conversion to hydrochar provides a
practical and economical solution to the construction and
maintenance of roads, especially in rural areas with a ready

supply of feedstocks available for large-scale hydrochar
synthesis. Augmented rheological properties of hydrochar-
modified asphalt have been reported, which has also been
suggested as an environmentally friendly asphalt modifier (Qin
et al., 2021). Other studies, however, have suggested that
hydrochar has adverse impacts on road surfaces as it increases
bitumen viscosity, thus creating difficulties with workability and
poor storage stability (Wu and Hu, 2021). These conflicting
findings present an interesting avenue for further research.
Assessing whether hydrochar performance as an asphalt
modifier depends on its chemical and/or physical
characteristics is fundamental to better understanding its
potential use. Finding engineering solutions to overcome
drawbacks on the use of hydrochar from solid waste as an
asphalt modifier can open the door for circular economy
solutions for sustainable solid waste management.

The application of hydrochar for energy-related applications
such as electricity generation or energy storage is also gaining
traction. For example, the use of hydrochar made of kitchen waste
has been reported with a high potential for energy storage (Zhou
et al., 2021). Researchers have found that hydrochar, as a
supercapacitor, surpassed the performance of commercial
activated carbon, reaching specific energy values 6.66 and
8.52Wh/kg in acidic and neutral electrolytes, respectively
(Lang et al., 2021). The effect of HTC variables on the
performance of the hydrochar produced, though, remains
poorly understood and has been identified as an important
knowledge gap that merits further exploration to optimize the
process and produce the best materials for energy storage.

Similarly, generating hydrochar from spent algal materials
after biofuel extraction is another promising application of

TABLE 2 | Hydrochar production and its applications in line with principles of circular economy.

Production/Application TRLa General Information References

Hydrochar production from sewage sludge 3 The influence of alkali and inorganic and organic acids as additives for
phosphorus removal, heating value and yield of produced hydrochar
was assessed

Ekanthalu et al. (2021)

Hydrochar production from municipal solid waste 3 Machine learning tools were used for bridging inputs and outputs to
predict hydrochar properties and develop hydrochar production
optimization

Li et al. (2021)

Hydrochar production from municipal solid waste 3 Catalytic hydrochars were produced for testing the influence of
treatment time, compost load, and temperature

(Magdziarz et al., 2021;
Roman et al., 2021)

Use of HTC to improve sewage sludge dewatering and
produce high heating value hydrochar

2 Sewage sludge co-carbonized with different biomass wastes. The use
of additives suggested HTC improved dewaterability and provided
optimal fuel properties

Wilk et al. (2021)

Hydrochar from different feedstocks evaluated for carbon
capture and storage

2 Best performance achieved for hydrothermal treatment-carbon capture
and storage of lignocellulosic biomass at low temperature

(Cheng et al., 2020; Gallucci
et al., 2020)

Hydrochar as bio-asphalt modifier 3 Hydrochar-modified asphalt showed better performance compared to
unmodified asphalt. The optimized dosage was 6 wt% with Rutting
Index 76°C, penetration, and softening point 31.7, and 54.70°C,
respectively

Hu et al. (2021)

Hydrochar for electricity generation 2 The average calorific value of hydrochar was 32% higher than waste
materials; HTC provided 70% hydrochar yield and 84% energy
efficiency

Hantoro et al. (2020)

Hydrochar for supercapacitor electrode materials 3 Microwave-assisted HTC was used to synthesize supercapacitor
electrode materials from corn straw with potassium catalyst (30 wt%)

Liu et al. (2020)

HTC used to convert exhausted Chlorella vulgaris into
hydrochar

2 Combining hydrochar production with algal biodiesel process, found to
be feasible for solid fuel production and waste disposal

Lee et al. (2018)

aNote: TRL, Technology Readiness Level.
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circular economy. For example, using such hydrochar (5 wt%)
has been reported to have more than double co-hydrothermal
gasification yield (Sztancs et al., 2020). Several challenges,
however, remain to be answered, including problems
associated with processing aqueous phase discharges with a
diluted load of by-products (e.g., microalgal slurry) (Khoo
et al., 2020). The impact of the solid content of spent algal
waste on hydrochar production yield is a significant
knowledge gap worthy of further exploration. Addressing the
problem of using dilute microalgal slurry (e.g., 1 wt% biomass) for
hydrothermal treatment will allow recovery of valuable materials
in addition to biofuels production from biorefinery processes.

CONCLUSION

As evident from the above discussion, hydrochar production and
application is a promising pathway towards a circular economy
and achieving UN SDGs through water treatment and waste
management. However, significant research gaps exist and will
need to be addressed as a matter of priority due to the SDGs
timeframe. It is important to note that the current research tends
to focus on the application of hydrochar for treating non-potable
water such as stormwater and wastewater output from other
treatment technologies (e.g., industrial treatment plants,

bioretention systems and wetlands) (Cui et al., 2020; Merzari
et al., 2020; Wang et al., 2021). Therefore, critical research gaps
exist in the area of utilizing hydrochar for large-scale drinking
water treatment to address SDG-6 directly. Similarly, although
several laboratory-scale studies (Table 2) have shown the
promise of converting different waste biomass to valuable
hydrochar based products, such technologies are in their
infancy and need further development and optimization of
parameters to enable making a significant contribution to
improve human wellbeing and contribute to achieving the
UN SDGs. Therefore, although promising in principle,
hydrochar research needs the immediate attention of the
research community, industry, and policymakers to make a
lasting and positive impact on the environment in the current
SDG cycle and beyond.
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