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All-Solid-state batteries (ASSBs) are non-flammable and safe and have high capacities.
Thus, ASSBs are expected to be commercialized soon for use in electric vehicles.
However, because the electrode active material (AM) and solid electrolyte (SE) of
ASSBs are both solid particles, the contact between the particles strongly affects the
battery characteristics, yet the correlation between the electrode structure and the stress
at the contact surface between the solids remains unknown. Therefore, we used the
results of numerical simulations as a dataset to build a machine learning model to predict
the battery performance of ASSBs. Specifically, the discrete element method (DEM) was
used for the numerical simulations. In these simulations, AM and SE particles were used to
fill a model of the electrode, and force was applied from one direction. Thus, the stress
between the particles was calculated with respect to time. Using the simulations, we
obtained a sufficient data set to build a machine learningmodel to predict the distribution of
interparticle stress, which is difficult to measure experimentally. Promisingly, the stress
distribution predicted by the constructed machine learning model showed good
agreement with the stress distribution calculated by DEM.

Keywords: all-solid-state batteries, simulation, discrete element method, machine learning, convolutional neural
network, stress distribution, reaction area

1 INTRODUCTION

Global warming is a worldwide issue, and the reduction in the emission of greenhouse gases is
key to combatting this problem. Therefore, electric vehicles (EV) and hybrid electric vehicles
(HEV) have been attracting attention because they use batteries as their power sources, which
reduces on-site carbon dioxide emissions and, if the electricity is sourced from renewable
resources, overall carbon emissions. In recent years, all-solid-state batteries (ASSBs) have been
attracting attention as next-generation batteries to power EVs and HEVs. ASSBs are superior to
lithium-ion batteries that use liquid electrolytes in several ways. The first is safety because
flammable organic electrolytes are not involved (instead, non-flammable inorganic electrolytes
are used). Secondly, there is no need for a separator, and laminated structures can be used. Thus,
high capacities can be expected. High energy densities and high output powers are key for
practical use, and high-capacity anode active materials such as Si and Sn, and high-ionic-
conductivity solid electrolytes such as sulfide crystals (Li9.54Si1.74P1.44S11.7Cl0.3) (Kato et al.,
2016) have been developed.
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The battery performance of ASSBs naturally varies greatly
depending on the materials used. Further, the contact between the
solid particles also affects the battery characteristics. In a liquid
lithium-ion battery, the liquid electrolyte surrounds the AM, so
the entire surface of the AM acts as a reaction site. In contrast, in
ASSBs, the electrolyte comprises solid particles, and only a section
of the AM surface is a reaction field. The stress acting on the
contact surface is strongly related to the contact state, but it is
difficult to measure the stress on each particle in the electrode
layer. In addition, even though it is possible to measure the stress
during electrode fabrication, it is not possible to determine the
stress on the particles by imaging the finished structure.
Additionally, it is not possible to reproduce the formation of
the exact microstructure via imaging.

In addition, the correlation between the microstructure and
the contact state remains unknown, as is its relationship to
structure fabrication. Therefore, with the aim of building a
technology that can predict battery performance from the
stress distribution in the electrode layer, we constructed a
machine learning model to predict the stress distribution from
cross-sectional images of particle-filled structures. Crucially,
using machine learning, correlations that cannot be identified
by humans can be isolated from a large number of data sets, and
these correlations can be used to make predictions. As shown in
Figure 1, in this study, to make predictions concerning the state
of the electrode layer, we used a convolutional neural network
(CNN), which is widely used in image recognition. To perform
machine learning, a large amount of data is required. Therefore,
to obtain sufficient stress distribution data to allow for adequate
learning, we used the discrete element method (DEM). Further,
we combined engineering modeling principles and machine
learning.

2 SIMULATION METHOD

This section describes the DEM, CNN dataset, and the CNN
itself.

2.1 DEM
DEM is a method of determining the motion state of solid
particles based on the temporal development and equations of
forward motion and particle rotation. The stress between

particles is calculated by assuming a spring–dashpot model
that represents the damping of elasticity and viscosity, as
shown in Figure 2.

2.1.1 Creating a Particle-Filled Structure Before DEM
Calculation
In preparation for performing a DEM calculation, the initial
conditions and computational domain are determined.
Therefore, in this section, we explain how to determine the
initial particle array and particle size. First, the average particle
size and SD of the particle size distribution of the AM particles
(denoted AMs hereinafter) for one generated structure are
randomly determined from set values (Bielefeld et al., 2019).
Then, AMs with the particle size that achieves that size
distribution are placed in randomly determined locations.
In doing so, if a particle overlaps with a particle that has
already been placed, the particle is discarded, and the process
returns to determining the size and location of the new
particle. If any particles protrude beyond the limits of the
image, they are also discarded, and the process to determine
the particle size and placement starts again. This process is
repeated until the area ratio of the AMs becomes less than a
specified value. In this study, we set five different values, 0.53,
0.58, 0.63, 0.68, and 0.73, to ensure sufficient variation between
images and adequate feature extraction. The next step is to fill
in the SE particles (denoted SEs); this is done in the following
way For simplicity, the size of each SE particle was set to a fixed
value of 1 μm, and the placement of the SEs was determined
starting from the edge of the structure; as in the case of the
AMs, if a particle was already placed or jumped out of the set
range, we moved on to the placement of the next particle. In
this way, the SE was filled exhaustively to create a particle-filled
structure before the DEM calculation.

2.1.2 Calculation of Contact Force
Here, the calculation of the stress on the contact surface between
particles i and j is used as an example. In DEM calculations,
particles are assumed to be rigid and cannot deform. However, if
we assume a completely rigid body, we cannot model multi-body
contact. Therefore, we allow for an overlap of the particles in
contact and define this overlap as δ [m].

δ � ((di + dj)/2) − dij. (1)

FIGURE 1 | Schematic image of concept of this study.

Frontiers in Chemical Engineering | www.frontiersin.org April 2022 | Volume 4 | Article 8362822

Komori et al. Stress Prediction of ASSBs Electrode

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


Here, di [m] is the diameter of particle i, dj [m] is the diameter
of particle j, and dij[m] is the distance between the centers of
particle i and j. Hereafter, the values used to calculate the force
acting on the contact surface are derived from the equations
shown below. Reff [m] is the effective radius and is given by

Reff � 1
2
( didj

di + dj
). (2)

Eeff [Pa] is the effective Young’s modulus, which is
calculated as

Eeff � ⎛⎝(1 − v2i )
Ei

+ (1 − v2j )
Ej

⎞⎠−1

. (3)

Here, E is the Young’s modulus [Pa] of each particle, and υ is
the Poisson’s ratio [-] of each particle.

Meff [kg] is the effective mass, as calculated below, where mi

[kg] is the mass of particle i, and mj [kg] is the mass of particle j.

Meff � 1
2
( mimj

mi +mj
) (4)

Geff [Pa] is the effective shear modulus:

Geff � ⎛⎝(2 − vi)
Gi

+ (2 − vj)
Gj

⎞⎠−1

. (5)

In addition, kN [N/m] is the spring constant:

kN � 4
3
Eeff


δReff

√
(6)

Next, we explain how to derive the stress acting on the contact
surface. The contact force, Fk [N], in a Hertzian nonlinear spring
is usually expressed as

Fk � kNδ. (7)
Further, the viscous force, Fη, arising from the dashpot in the

normal direction is expressed as

Fη � ηN
_δ. (8)

The viscosity coefficient, ηN, is given by

ηN � 
MeffkN

√
δ0.25. (9)

Using the above equations, the contact force in the normal
direction between particles can be expressed using the force of the
spring, which represents elasticity, and the force of the dashpot,
which represents viscous damping, as shown below.

FN � kNδ + ηN
_δ (10)

The calculation in the tangential direction was performed in
the same way. However, in this case, the spring constant number,
kS [N/m], is given by

kS � 8Geff


δReff

√
. (11)

The viscosity coefficient, ηS, is given by

ηS � ηN. (12)
In addition, the slippage arising from sliding in the tangential

direction must be considered. A detailed explanation of this can
be found in the original description of the DEMmethod (So et al.,
2021a).

2.2 CNN Method
In this study, AM and SE are LiCoO₂ (LCO) and Li₁₀GeP₂S₁₂
(LGPS), respectively, and the values of the physical properties
required for the DEM calculation are listed in Table 1 (Takahashi
et al., 2006; Hao and Mukherjee, 2018; Wang et al., 2021). The
size of the image after DEM calculation was 40 μm × 40 μm, and
the size of the image before compression by DEM was fixed at
40 µm for the height and 46–55 µm for the width (Figures 3A,B.
By varying the degree of compression, we were able to vary the
stress applied to each particle in the data set. This improved the
accuracy of feature extraction for machine learning. In the DEM

FIGURE 2 | Schematic of particle handling in the DEM calculations. (A) The overlap, δ, used to calculate the contact force is the distance shown by the red line. (B)
The DEM calculation assumes a spring and dashpot between the particles for the calculation of the contact force.

TABLE 1 | Calculation conditions for DEM.

AM (LCO) SE (LGPS)

Average particle diameter [μm] 9~12 1
Particle size SD [-] 0~2 0
Poisson’s ratio [-] 0.32 0.37
Young’s modulus [GPa] 264 26.7
Density [g/cm³] 4.72 1.99
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calculation, the stress acting on the contact surface of each
particle was calculated, and, from these results, the total stress
acting on each particle was obtained. The stress distribution
approximated a Gaussian distribution, so it was decided to
express it using the average and SD. To train with CNN, we
created a dataset consisting of 2D images of the particle structure
obtained by DEM and structural parameters calculated from the
DEM calculation results. For the 2D image of the particle image,
AM was set to gray, SE to white, and voids to black (Figures
3C,D) based on the cross-sectional image of the electrode
structure of an all-solid-state battery obtained at the Spring8
facility because the prediction accuracy is higher with a three-
dimensional image than with a two-dimensional image and to
enable matching of the image with future measurements. Thus,
we created the images needed for machine learning. However,
the particle array after calculation by DEM has voids
concentrated at the edges, a feature not seen in the actual
structure. Therefore, the actual images used for machine
learning were cropped 2 µm from the edge of each of the
four sides, and the center square was cut out. For each image,
the structural parameters were set in the file name. The four
structural property parameters are the mean value of stress on

the AMs, its SD, the mean value of stress on the SEs, its SD. In
addition, the reaction area, which is the contact area between
AM and SE, was also calculated. This will be further discussed
in Section 3.4.

2.3 CNN
Machine learning is good at predicting static fields, but there
are few examples of the prediction of actual operating
environments such as flow, concentration, and reaction
fields. However, in 2020 Raissi et al. predicted the flow
phenomenon in an aneurysm of the carotid artery (Raissi
et al., 2020). The authors predicted the flow field from
computerized tomography images by combining operando
measurements, numerical simulations of the flow, and
machine learning. In this study, machine learning was
also used to predict the stress distribution, which is also
dynamic.

As described above, we used a CNN (Zhang et al., 2018) as
the model for machine learning; this is a deep learning method
used especially in the field of image recognition. CNNs extract
features through multiple layers, including convolutional
layers that perform sum-of-products operations and pooling

FIGURE 3 | Part of the dataset created via DEM calculations. (A) Particle configuration before DEM calculation and (B) particle configuration after DEM calculation.
Green lines indicate stress acting on the contact area, and the thickness of the line indicates the magnitude of the stress. (C) Triangulation of the structure in (B). Five-
hundred such images were created to form a data set, and a part is shown in (D).
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layers that performmaximum value operations. The CNN then
learns the correlation between the image and the output. As
mentioned earlier, various structural parameters, including the
stresses on each particle determined by DEM, were identified
to create the dataset. For training, we used 500 images, of
which 320 were used for training, 80 for validation, and 100 for
testing. The CNN calculations were performed on a
workstation equipped with three GeForce RTX 2080 Ti
GPUs. When building a machine learning model from
training data, the optimal weight parameters are
automatically determined. The loss function, which used to
determine the weighting parameter, has the minimum value in
the final model and is a measure of the performance of a CNN.
In this study, we used the mean square error (MSE) as the loss
function, which is given by

MSE � 1
N

∑N

i�1(yi − ŷi)2

. (13)

Here, yi is actual value of the ith and ŷi is predicted value of
the ith.

Next, we repeatedly updated the parameters based on the
gradient of the loss function and searched for the minimum
value of the loss function. To calculate the gradient,
backpropagation, which is one of the most mainstream
learning methods, was used. In this method, the gradient of
the loss function is obtained by backpropagating the loss
between the output value and the training data in the
direction of the input layer and applying the chain rule.
The Adam algorithm (Kingma and Ba, 2017) was used to
update the weighting parameters. The coefficient of
determination (R2) was used to assess the accuracy of the
created model. R2 is given by

R2 � 1 −
∑N−1

i�0 (yi − ŷi)2

∑N−1
i�0 (yi − �y)2 . (14)

R2 is an indicator of the goodness of fit of a model, for which a
perfect fit is represented by a value of 1. If R2 is negative, the
model is not functioning as a predictive model.

The CNN created in this study is a simple CNN consisting of
convolutional and pooling layers based on VGG (SImonyan and
Zisserman, 2015), which has a simple structure and high
applicability.

The architecture of the constructed CNN is shown inTable 2. The
convolution kernel size was set to (3, 3), and the pooling kernel size
was set to (2, 2). In this study, the number of layers and parameters
were reduced compared to those in the original VGG to prevent
overtraining because of the limited dataset available. To implement
the model, we used Keras and Tensorflow as the backend.

3 RESULTS AND DISCUSSION

3.1 Assessment of the CNN
Figure 4A shows the predictions obtained using the CNN model
built for each structural parameter. In all figures, the horizontal axis
is the value calculated from the DEMs and images, whereas the
vertical axis is the value predicted by the CNN. Because the vertical
and horizontal axes have the same range, the closer the data points
are to the diagonal line, the higher the prediction accuracy; the
coefficient of determination of the CNN model was positive for all
items, indicating that it predicts the correlation with the images well.

Figure 4B shows an example of the prediction of the distribution
of stress on SE particles calculated by DEM. The light blue bars show
the values calculated by DEM, whereas the red smooth lines show
the values predicted using the constructed machine learning model.
The predicted Gaussian distribution is almost identical to the
calculated stress distribution.

3.2 Visualization of the Region of Interest
Machine learning is often described as a black box problem.
Specifically, in machine learning, a model is trained using a large
amount of data, but the application of the model simply provides
an answer, and how the result was obtained is unknown. To solve
this problem, we visualized which part of the image was being
extracted as a feature during training. To do this, we used Grad-
CAM (Gradient-Weighted Class Activation Mapping) (Selvaraju
et al., 2017) as a reference for visualization. First, we fed the image
to the CNN and extracted the feature map and output of the
convolutional layer. The output results were then used to
compute the gradient of the convolutional layer by
backpropagation, and the average of the gradient of the
convolutional layer was computed from the results. Finally,
the sum of the weightings of the convolutional layers were
superimposed on the original image to produce a heatmap, as
shown in Figure 4C. In this way, the red area can be identified as
the area that characterizes the structural properties. These results
confirm that the CNN learns by focusing on the areas where the
particles are in contact with each other, that is, the areas where
interparticle stress is acting.

TABLE 2 | CNN summary.

Layer name Output size Activation function

input 1, 224, 224 Linear
block1-conv 32, 224, 224 ReLU
block1-pool 32, 112, 112 Linear
block2-conv 32, 112, 112 ReLU
block2-pool 32, 56, 56 Linear
block3-conv 32, 56, 56 ReLU
block3-pool 32, 28, 28 Linear
block4-conv 64, 28, 28 ReLU
block4-pool 64, 14, 14 Linear
block5-conv 64, 14, 14 ReLU
block5-pool 64, 7, 7 Linear
flatten 3136 Linear
fc1 128 ReLU
fc2 128 ReLU
output 9 Linear
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3.3 Prediction of the Reaction Boundary
Area
As described above, CNN can predict the stress distribution on
each particle. Next, we decided to use CNN to predict the reaction
area, which is correlated with the stress. The reaction area here is
the area of contact part between AM and SE particles, which is
one of the indicators of battery performance because the reaction
occurs between AM and SE. The reaction area was obtained from
the stress on the contact surface and Hertz’s contact theory
(Persson, 2006). When particles i and j are in contact and a
pressure of P [N] is applied to the contact area, the radius (a) of
the contact surface at that time is obtained by Hertz’s contact
theory. P [N] is the interparticle stress, vi [-] and vj are Poisson’s
ratio for each particle, Ei [MPa] and Ej [MPa] are the Young’s
moduli, and Ri [mm] and Rj [mm] are the radii of curvature. The
radius, a [mm], of the contact surface circle is given by

a �


3P
4 (1−ν2i

Ei
+ 1−ν2j

Ej
)( 1

Ri
+ 1

Rj
)3

√√√
. (15)

The area of the contact surface, S [mm2], is given by

S � πa2. (16)
Similar to Figures 4A, 5B shows the stress values calculated by

DEM and the reaction area calculated fromHertz’s contact theory
on the horizontal axis, and the predicted values by CNN on the
vertical axis. The plotted points lie near the diagonal, and the
coefficient of determination is 0.921, which is good. As
mentioned in (Tian and Qi, 2017), the previous research most
focused on the relationship between the applied pressure and the
contact area and performed the prediction of the contact area loss
during the degradation period of batteries. On the other hand,
since this study uses images of the entire structure, we are able to

predict reaction area that reflects the minute parts of the
structure.

3.4 Analysis of the Calculation Results of the
Reaction Boundary Area
In this study, we created 10 compression width patterns as
described earlier to provide a wide range to the data set. Fifty
samples with the same compression widths were compared in
terms of active material particle size and contact area. Some of
the results are shown in Figures 5C-1,C-2. Under the
conditions of this study, the smaller the active material
particle size, the larger the reaction area. This can be
attributed to the fact that the smaller the particle size is,
the larger the surface area of the active material becomes when
the active material volume fraction is the same. In addition,
the larger the active material volume fraction, the larger the
reaction boundary area. This is because the difference in the
particle size ratio between the active material and the solid
electrolyte in this study is large, approximately 10:1, allowing
the solid electrolyte to enter even the smallest gaps. For
example, when the active material and solid electrolyte
particle sizes are similar, the larger the particle size, the
more space the particles cannot enter, resulting in a
decreased contact area between the active material and the
solid electrolyte. Furthermore, the degree of change in the
contact area owing to the particle size difference was greater
for those with a larger width to compress in the DEM
calculation compression process. We believe that this is
also due to the solid electrolyte penetrating into the gaps
between the particles when more external force is applied.
Based on these considerations, we believe that the trend of the
reaction area will change when the particle size difference
between the solid electrolyte and the active material is
changed.

FIGURE 4 | (A)Comparison between contact stresses predicted by CNN and calculated by DEM. (B) Stress distribution of SEs inPanel 2C. (C) Visualization of the
region of interest. As shown by the red area, CNN training has taken place.
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3.5 Comparison With Elasto-Plastic
Deformation Mode
From the cross-sectional view of the structure created by the DEM
calculation incorporating previously reported elasto-plastic
deformation (So et al., 2021b), we predicted the reaction area using
the machine learning model constructed in this study. Subsequently,
we verified what percentage of the active material surface area is in
contact with the solid electrolyte. Figure 5D shows the relationship
between the magnitude of the concluding pressure and the percentage
of the active material surface area that is in contact with the SE,
depending on the active material volume percentage.

SE coverage on AM [ − ]
� Predicted reaction area [μm2]

Calculated total surface area of AM [μm2] × f [ − ] (17)

f � 2.44 × 101 (18)

The correction factor f became a large value, and we think one
reason for this is the difference in the cross-sectional structure of the
previously reported structure and the data set used to create the original
machine learningmodel. The dataset has a very small porosity, whereas
the cross-section of the elasto-plastic deformationmodel has numerous
voids. Furthermore, even in the AM-SE contact area, there are enough
voids to clearly show the shape of the solid electrolyte, which is very
different from the dataset. This is thought to be the reason why the
reaction area is predicted to be very small.

Another factor is that with the DEM calculations used in this
study, the active material and solid electrolyte are arranged such that
the particle centers are aligned on the same plane. Therefore, the
particles are in contact only in the cross-sectional view.However, in a
three-dimensional structure, the activematerial is in contact with the
solid electrolyte at every part of the surface. For the AM-SE ratio of
the cross-sectional view obtained as a verification of this study, the
reaction area is limited to the part in contact on the cross-sectional

FIGURE 5 | (A) Hertz’s contact theory and predicted contact area results. (B) Comparison between contact area predicted by CNN and calculated by DEM and
Hertzian contact theory, indicating consistency between the predictions. (C-1,C-2)Relationship between particle size and reaction boundary area for each compression
ratio and CNN results. (C-1) has a smaller compression ratio than (C-2), and the color coding of the dots on the graph is based on the volume fraction of AM. (D)
Comparison with previously reported literature values. Here, fAM is volume fraction of AM Red circle represents fAM � 0.5%, green circle represents fAM � 0.7%.
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view. Conversely, the active material surface area was calculated by
obtaining the grain size from the cross-sectional view. The figure in
the reference paper used for the study uses the reaction field and
surface areas of the active material for the entire three-dimensional
structure; consequently, the number of solid electrolytes in contact
with one active material is overwhelmingly large. As a result, the
correction factor is considered to be large.

However, from this verification, we believe that the model
constructed in this study captures the general trend of elasto-
plastic deformation and can be applied to elasto-plastic
deformation models. As a future improvement, we are
considering using a data set that takes elasto-plastic
deformation into account when constructing machine learning.

4 CONCLUSION

In this study, we developed a machine learning model to estimate
the stress distribution of porous structures and investigated the
correlation between the structural properties. Because it is
difficult to measure the stress acting on the contact area
between microparticles, DEM was used. Five-hundred images
were obtained by DEM, and the dataset of the stress distribution
was used to construct a machine learning model to predict the
stress distribution acting on each particle that constitutes the
porous electrode structure. From themachine learningmodel and
using Hertzian contact theory, the contact area involved in the
electrode reaction was estimated. Because the rapid
commercialization of ASSBs is desirable, we plan to improve
the charge–discharge and cycle characteristics by linking machine
learning and measurements to enable structure design and
develop a fundamental technology that will contribute to
the rapid commercialization of ASSBs. For this purpose, we
will also consider the in-situ stress distribution and lithium

concentration distribution during charging and discharging
period (Sakai et al., 2019) into our simulation model, and
improve the DEM model by introducing elastic-plastic
deformation (So et al., 2021b). In addition, the model
established in this research can not only be applied to the
performance evaluation of porous secondary batteries but also
to other fields involving porous materials.
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NOMENCLATURE

δ overlap (m)

d diameter (m)

R radius (m)

E Young’s modulus (Pa)

v Poisson’s ratio (-)

m mass (kg)

M mass (kg)

F Force (N)

G effective shear modulus (Pa)

k spring constant (N/m)

η viscosity coefficient (Pa・s)

P Stress (N)

a radius (mm)

S contact area (mm2)

fAM Volume fraction of AM (-)
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