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The properties of many solid-state materials arise from critical interfaces tied to the
structure, morphology, and composition of the materials under study. For many
materials, identifying components that may be invisible to diffraction techniques or
other bulk sensitive techniques (i.e. inductively coupled plasma (ICP)), may cause
important information to be overlooked. These can include grain boundary phases,
nanoscale coatings, amorphous layers, or second phases that influence the materials
environment. In this short review, the use of 29Si MAS NMR as a local probe to detect
silicon-containing phases in complex energy storage systems is explored with a focus is on
silicon-containing materials and silicon electrodes. Examples highlighting the utility of 29Si
MAS NMR include 1) examining copper diffusion into silicon as a method to create
3 dimensional electrodes, 2) using Mg(II) electrolyte additives to create in-situ nanoscale
silicide coatings to inhibit low voltage parasitic side reactions and extend calendar life, and
3) studying the lithiation reactions of passivated silicon on different time scales.
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INTRODUCTION

Understanding solid-state diffusion is critical to understanding the role of syntheses in areas ranging
from materials processing to the creation of protective coatings (van der Ven et al., 2013). While
optimizing solid state diffusion is the desired result of many materials studies, i.e. Li+ conduction in
Li7La3Zr2O12 or O

2- diffusion in (Y,Zr)O2-x, understanding its role in the synthetic pathway can help
form specific structures or change the rate of reaction (Descemond et al., 1993; Kuhn et al., 2011). As
an example, the commercial lithium-ion battery (LIB) cathode LiCoO2 exists in two forms depending
on the synthesis route chosen (Gummow et al., 1993a). Using a conventional solid-state synthesis
heated to high temperature (~900°C), a hexagonal layered phase is isolated. However, it was noted by
Gummow, et al., that if the mixture is heated to only 400°C for an extended period and cooled to
room temperature, a three-dimensional cubic spinel structure with a distinct electrochemical cycling
profile is seen rather than the high temperature hexagonal layered oxide (Gummow et al., 1993a;
Gummow et al., 1993b). Later studies by Kan et al., showed that samples annealed for shorter time
lengths, intermediate intergrowths in the samples were observed (Kan et al., 2014; Shi et al., 2021).
Mechanistic studies highlighted that the spinel-phase is the dominant product below 620°C followed
by conversion to the layered LiCoO2. In these examples, the spinel cation ordering was identified by
diffraction methods, in-situ spectroscopic techniques, thermal properties, and electrochemical
properties to correlate the structural differences to the electrochemical properties. In this report,
the use of local-probe 29Si Solid State Magic Angle Spinning (MAS) NMR spectroscopy is reviewed
for its uses as a tool to better understand the role of annealing temperature, precursor, and sample
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history on the properties of energy storage materials (Blanc et al.,
2013; Delpuech et al., 2016; Dogan and Vaughey, 2016; Michan
et al., 2016). Specific examples from the literature in the fields of
solid-state electrolytes, electrode formation, and silicon-based
anode materials will be used to create a better understanding
of the synthetic processes involved.

29Si NMR Studies of Silicon-Based LIB
Electrodes
29Si Solid State Magic Angle Spinning (MAS) NMR spectroscopy
is a local structural probe that can identify the different local
silicon environments in a sample and correlate them with
compositions. In a study of the copper/silicon deposition
process used to create an all-inorganic electrode, the local
environments and phases formed after processing the copper-
coated silicon powder at various temperatures were identified by
29Si MAS NMR (Dogan et al., 2013). This study, part of an effort
to understand the interface between nanoscale copper and silicon,
was performed in the temperature range (450–650°C) to study
intermetallic formation and copper diffusion in silicon. Previous
diffraction studies showed formation of the electrochemically
inactive phase Cu3Si for samples heated above 700°C but the
isolation of disordered (lacking long-range order) or amorphous
species (i.e., nanoscale silicon oxides, surface silicon hydrides/
hydroxides) was not possible using XRD methods (Joyce et al.,
2012). Identifying these interfacial phases is important in
understanding the electrode properties as many silicon oxides
are insulating and electrochemically inactive. Globally, their
presence on the particle surface has an effect on the cell
impedance, irreversible capacity, and SEI stability.

Since 29Si MAS NMR spectroscopy is sensitive to the local
environment of silicon, it can be used to study the formation of
both ordered (crystalline) and disordered materials within the
electrode at various processing temperatures. To focus the study
on surface species, 29Si single pulse (SP) and 29Si{1H} cross-
polarization (CP) techniques were combined so that both bulk
and protonated surface silicon sites can be identified. Using 29Si
{1H} CP MAS NMR allowed the selective investigation and
detection of the 29Si NMR resonances from silicon atoms in
close proximity to protons and surface silicon atoms.

Background
The silicon isotope 29Si has a spin I = ½ and a low natural
abundance of 4.7%. Despite its low natural abundance, it is
commonly used as structural characterization tool for silicon
oxides and zeolite-based catalysts and more recently silicon
based energy storage materials. The locations of the 29Si NMR
peak shift values, reported relative to a tetramethylsilane (TMS)
standard, are directly related to the shielding of the 29Si nucleus by
the electronic structure in its immediate environment. Therefore,
29Si MAS NMR spectroscopy provides direct information about
the structure of silicon compounds via measurements of the
isotropic chemical shifts (Blanc et al., 2013; Delpuech et al.,
2016; Dogan and Vaughey, 2016; Michan et al., 2016). The
observed silicon chemical shift is influenced by: 1) the
coordination number of the Si, 2) the nature of the nuclei in

the first coordination sphere, and 3) the local symmetry of the
silicon’s environment. Based on literature studies, the 29Si chemical
shift of bulk silicon is a sharp resonance at −80 ppm. While the
linewidth increases with increasing local environment disorder, by
utilizing theMagic Angle Spinning (MAS) technique, the averaging
of dipole dipole interactions and chemical shift anisotropy, reduces
the peak width (Chang et al., 1996). Since the silicon linewidth in
powder samples is dominated by these interactions, using MAS to
examine these different silicon local environments can greatly
improve the data resolution. Literature studies report a typical
chemical shift value of −40 ppm for amorphous silicon which
changes depending on the hydrogen content up to an experimental
value of −92.5 ppm for silane (SiH4) (Pietraβ et al., 1996). Silicon
oxide environments typically give rise to 29Si peaks in the range−90
to −110 ppm, depending on the local environment and
coordination and are often referred to with a Qn to indicate the
number of bridging bonds (-O-Si) tied to the central silicon atoms
(Mackenzie and Smith, 2002; Petit et al., 1063).

For the annealed inorganic electrodes, samples were prepared
using electroless Cu deposition. The literature method operates
by the reduction of soluble copper cations (as CuSO4) dissolved in
70°C water at pH ≈12 by slow addition of formaldehyde. The
samples were processed as reported in reference 12. Analysis of
the data for the unannealed copper coated silicon powders
showed a similar 29Si NMR spectrum to elemental bulk silicon
supporting the conclusion that the local silicon environment
remains for the most part unchanged after the copper
deposition process and that formation of any silicon oxide/
hydroxide/hydride species is minor and cannot be detected by
MAS NMR. For comparison, X-ray powder diffraction data
showed only elemental copper and silicon with small amounts
of copper oxide (CuxO) for the most copper rich samples (Joyce
et al., 2012; Dogan et al., 2013).

Data Analysis
After annealing under an argon atmosphere at various
temperatures, several new silicon environments emerged
during the 29Si NMR experiments that provided information
about various silicon compounds present, notably for the high
silicon content materials. The formation of these new silicon
environments identified by MAS-NMR may arise from 1) higher
population of copper-free silicon particles in silicon rich samples,
2) silicon being reactive (silicon oxides, hydroxides, or silicon
hydrides) in the storage environment, 3) charge
disproportionation of the copper cations, or 4) interfacial
copper-containing grain boundary phases.

Various species identified in the study, such as the formation
of silicon hydrides, are consistent with the third scenario where
the deposition of copper onto a silica support and surface silicon
is linked to a hydrogen spillover reaction (protons from water
associated with the copper ions). Data analysis indicates that the
electrode materials prepared with the lowest silicon (highest
copper) content (Cu:4Si) and post treated below 600°C show
only pure silicon environments, indicative of no Cu-Si reactivity,
and the most stable cycling performance. Cu-Si electrode
materials with higher silicon contents (Cu:6Si and Cu:8Si) but
annealed at high temperatures near 700°C showed formation of
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multiple silicon local environments originating from both bulk
and surface sites. These sites had a significant impact on the
electrochemical performance of the materials as these new
environments are at the critical interface in the system
between the active electrode and the electrolyte. Figure 1
highlights the differences in the spectra. Analyzing the data
collected, Cu-Si samples with lower amounts of silicon surface
defects had superior electrochemical performance than those
with more defects implying it is possible to improve the
system electrochemical performance by minimizing the
undesirable interfacial silicon local structures that may lead to
more surface reactivity (i.e. thicker SEI formation). Analyzing the
29Si MAS NMR data and XRD data, the silicon-rich Cu:8Si
compositions show formation of the phase Cu3Si, an
electrochemically inactive phase, and the expected
performance drop. While XRD data showed mainly crystalline
phases, the MAS-NMR techniques identified several new Si
environments that are assigned to various silicon oxides/
hydrides as well as interfacial silicon atoms near and
influenced by the copper (Joyce et al., 2012; Dogan et al., 2013).

29Si and 7Li NMR Studies of Silicon-Based
Electrodes Containing Li14MgSi4
In the previous section, 29Si MAS-NMRwas used to identify poorly
crystalline surface species that formed on annealing. The most
common crystalline species, identified using X-ray diffraction, were
elemental copper, silicon, and the bulk intermetallic phase Cu3Si.
Intermediate phases, identified by MAS-NMR, included various
silicon oxide, hydroxide, and hydride species that effected the
cycling performance due to increased surface reactivity with the
electrolyte as a function of charge. Building on the ability to study
amorphous and nanoscale surface coatings, it was used to evaluate
the products of an in-situ synthesis method that selectively coats
the surface of an active silicon particle (BH Han et al., 2019a; BH
Han et al., 2021; Li et al., 2021).

Background
For an LIB silicon electrode, a fully charged anode mainly contains
the Zintl phase Li15Si4. Using Zintl-Klemm rules, the stoichiometry
and properties of this phase can be understood as being composed
of a combination of fully reduced four Si−4 anions, surrounded by
15 lithium cations per unit cell (Heider and Scheschkewitz, 2021).
Using these rules, the phase is formally electron rich (exact charge
balance would be 16 lithium cations) and is metastable at room
temperature at this defect stoichiometry. On exposure to the
constituents of an electrochemical cell, these electron rich
phases are observed to react (formally oxidize) with the solvent
and electrode binder to form various insoluble and electrolyte-
soluble organic species (BH Han et al., 2019b) The exact oxidized
silicon species (i.e. Li13Si4) depend on sample history and
conditions. When considering the degradation mechanisms
associated with full cell calendar life, this reactivity results in a
parasitic current that effects the Coulombic efficiency of the cell.
Under calendar life conditions that involve maintaining a specific
cell voltage for extended time, the slightly oxidized silicon is
reduced formally back to the electron non-precise Li15Si4
creating a redox cycle that degrades the electrolyte. To counter
this cell reactivity and add stability, Mg+2 ions were added to the
electrolyte. These ions move into the charged phase at low cell
voltage formally to make the electrode surface electron precise by
forming Li14MgSi4. The material, by Zintl-Klemm electron
counting rules, is stoichiometric and (ideally) has a closed
(electron) shell due to the extra electrons brought in by the Mg
ions (Heider and Scheschkewitz, 2021). Creating these phases at
the silicon/electrolyte interface adds stability to the cell and extends
electrochemical cell cycle and calendar life (Zeilinger et al., 2013).

In a recent proof-of-concept study, Han et al., evaluated the
stoichiometric Zintl phase Li2MgSi (an isostructural Mg-rich
endmember of the solid solution with Li14MgSi4) against
common organic cell materials (binder, solvents, salt) and
observed the Si−4 anion was not obviously oxidized (as they
were in the Li15Si4 study) and the enhanced stability was obtained

FIGURE 1 | 29Si MAS NMR spectra on the effect of temperature treatment on the silicon local environment for Cu:4Si composition (left), and Cu:8Si composition
(right). The extra peaks in the Cu:8Si are most likely due to the silicon within the copper-silicon matrix, interfacial silicon atoms, or silicon hydrides [From reference 12].
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(BH Han et al., 2021). This lack of reactivity, compared to the
pure lithium silicide phases, diminishes the parasitic currents by a
mechanism consistent with removing Si−3, Si−2, or Si−1 phases (as
seen in the Li-Si binary system) from the reaction pathway. From
the ternary Li-Mg-Si phase diagram, no equivalent intermediately
charged cluster species exist as in the Li-Si system. Since
elemental silicon is the next phase in the diagram, the
transition requires a four-electron oxidation, which may
represent a high kinetic barrier making the electrode surface
more stable against the organic species in the electrochemical cell.

Data Analysis
To form a coating of these phases on the silicon in an electrochemical
cell, small amounts of the saltMg (TFSI)2 were added to the standard
Gen2 electrolyte (1.2M LiPF6 EMC/EC 3:7). After cycling, TEM,
EDX, MAS-NMR, and XPS studies showed surface Mg+2 at the
approximate stoichiometric ratio of Li14.5Mg0.5Si4, a point in the solid
solution between Li14MgSi4 and Li15Si4 that may represent a limit
based on magnesium diffusion under the conditions used for the
study (BH Han et al., 2019a; BH Han et al., 2021; Li et al., 2021).
Spectroscopic evidence for interfacial phase formation is shown in
Figure 2. With in-situ ternary salt formation at the surface, baseline
Si electrode samples have extended cycle and calendar life compared
to electrolytes without the additive.

The mechanism of ternary Zintl phase formation and its
dynamics upon lithiation/delithiation were also studied with
29Si MAS NMR on Si electrodes harvested from cycled coin

and pouch cells at various states of (de)lithiation, see Figure 3 (Li
et al., 2021). The NMR data, along with other complimentary
characterization techniques, reveal that lithiation of Si starts from
the Si−O surface layer and progresses with heterogeneous silicon
clustering with Si−4 anions at high states of lithiation. At a fully
lithiated state, formation of an overlithiated Si species was also
detected. At a low-voltage region (below 100 mV) and/or high
lithiation levels, direct evidence for Mg-ion insertion is found,
postulated by two possible mechanisms: ion exchange with fully
or overlithiated binary domains (Li 3.75+xSi) and/or a co-insertion
into slightly underlithiated domains (~Li3.55Si).

For silicon based systems, calendar life is an important
performance issue as it reduces the cycle life and utility of
lithium-ion cells. The use of 29Si MAS NMR was critical to
identify the mechanism of Mg insertion, the role of time and
diffusion, and the growth of the phase at that critical interface.
Extending the calendar life of the silicon cell, by reducing the
redox activity of the electrode surface, was difficult to characterize
due to the nature of the coating. However the local probe aspect of
MAS-NMR is capable of yielding insights many other techniques
are incapable of providing to the researcher.

Silicate Reactivity
Although it does not have any appreciable redox reactivity in an
electrochemical cell, the silica layer on silicon is chemically
reactive with other SEI components and forms a variety of
lithium silicates, ranging from the molecular species Li4SiO4 to

FIGURE 2 | (A) Rietveld analysis from XRD data of the phases formed, (B) high resolution XRD of the cycled materials with stoichiometric refinement; (C) 7Li NMR
study on cycled materials showing the growth of a second phase (Li-Mg-Si) on cycling; (D) 29Si MAS NNMR study highlighting formation of a second reduced silicon
phase. Both spectra are consistent with gradual formation of a ternary Li-Mg-Si phase(s) on cycling in the Mg-containing electrolyte. [from reference 18]
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the condensed material Li2SiO3. This chemical reaction is notable
when evaluating the nanoscale Si/SiO2 composite “SiOx” as
lithiation of the silica is a sink for active lithium and produces
high irreversible capacity on the first cycle. Various approaches to
overcome this reaction require pre-lithiation of the electrode to
retain active lithium on cycling, however the active matrix
produced is a relatively good lithium-ion conductor and
produces an electrode with a stable cycling performance.

Background
Silicon is passivated quickly on exposure to air, water, or other
oxygen containing species, to form a relatively dense silica coating
that has a typical depth of 5 nm. This layer, difficult to detect with
common lab XRD methods, acts to block additional reactions
with an oxygen source and allows silicon to be handled and
processed in air (Kale et al., 2019). Uses that require silica free
materials require more stringent handling due to this oxyphilic
nature of the silicon surfaces (Jiang et al., 2019; Schulze et al.,
2021). In an electrochemical cell, it was noted by Edström et al.,
that this natural silica-based coating on silicon is lithiated early in
the process forming a variety of lithium silicates, notably Li4SiO4

(Philippe et al., 2012; Philippe et al., 2013a). While no redox
reactions occur, the lithiation is thought to occur as a reaction
between the nanoscale silica and various species produced at the
interface during the electrochemical silicon reduction (Hubaud
et al., 2015). On long term cycling, these phases are not readily
identifiable at the interface which may indicate reactions occur
with SEI materials that form a soluble species or loss of interfacial
cohesion in the cell.

Data Analysis
The Li4SiO4 was a commercially sourced powder from Alfa
Aesar®. Lab XRD revealed a broad-peaked Li4SiO4 material.
Small amounts of Li2SiO3 often seen in lab preps (from the
oxides) could not be eliminated as a possible contaminant (i.e.
from lithia loss on heating) due to similarities in the XRD spectra.
NMR analysis of the as-received powder revealed a multiphase
mixture, consistent with similar powders created in the lab. This
sample analysis found the commercial material was a mixture of
at least two silicate phases, one being relatively amorphous and
thus difficult to detect in XRD experiments. Based on a
mechanistic understanding of the formation of the second
phase (probably Li2SiO3) it was probably nucleated on the
surface phase of a crystalline Li4SiO4 (Philippe et al., 2012;
Philippe et al., 2013a) Previous work has reported both Li2O
and Li4SiO4 form initially when Li+ is inserted through a SiO2

native oxide on Si (Philippe et al., 2013b).
The commercial Li4SiO4 was stirred in a salt free mixture of

ethylene carbonate and ethyl methyl carbonate (EC:EMC, 3:7
weight%) at room temperature for 48 h to test for solubility and
reactivity. 29Si and 7Li solution NMR were performed to look for
Si and Li species in the solvent after samples were filtered and
spectra revealed the presence of lithium but no solubilized silicon
in the electrolyte. Solid-state 29Si NMR was performed, on the as-
received powder and powder that was in contact with the solvent
for 2 days. The data are consistent with a decrease in the amount
of Li4SiO4 and a corresponding increase in Li6Si2O7 and in
Li2SiO3, indicating that the dissolving species from the
electrode into the electrolyte may formally be Li2O or related
(reaction product) species. The reaction mechanism is thought to
be dimerization of the [SiO4]

4- tetrahedra to form pyrosilicate
[Si2O7]

6-, then eventually the fully condensed Li2SiO3 linear chain
material. Given longer exposure to the electrolyte, it is anticipated
that expulsion of lithium oxide would continue depending on
diffusion to the active surface, and possibly other intermediate or
oligomeric species might be detected (Hubaud et al., 2015).

CONCLUSION

While diffusion is an important aspect of many commercial
systems, methods to understand these properties at a
mechanistic level are often limited to an understanding of
crystalline pathways available to the diffusing species. In the
examples noted, 29Si MAS NMR has been used to understand the
role of amorphous or poorly crystalline species in reaction
mechanisms and their evolution of these phases over time. In
the examples of the active surface coatings, the diffusion of Mg+2

FIGURE 3 | 29Si NMR spectra (solid line) and simulation/fitting (dash line)
of GF (A) and GFM (B) at 100, 10, 400, and 1,500 mV. Peaks around
−80 ppm are from unreacted crystalline Si, the broad resonance(s) at
−15 ppm is from LixSi, whereas the peak around 220 ppm is ascribed to
small Si clusters. When discharging to 100 mV, the majority of reacted Si is
either in isolated Si or small Si clusters. For the fully lithiated samples, both GF
(30 ppm) and GFM (−25 ppm) show one single broad peak with different
chemical shifts. The shift difference is due to the presence of Li−Mg−Si
phases. Upon charge to 400 mV, a significant amount (~49.3%) of LixSi is
observed in GFM cells, compared with only 11.5% residual Si in the GF cell. In
the fully delithiated state, Si shifts of both GF (−83 ppm) and GFM (−90 ppm)
cells shift toward lower frequencies. (Reproduced from Reference 20)
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into Li15Si4 was critical in understanding the formation cycling
issues associated with the emergence of Li14MgSi4-boundary
coatings, the mechanism of Mg insertion into the bulk
forming ternary Zintl phases, as well as the long-term
advantages to important properties like calendar life. For the
compound Li4SiO4, initially formed during the first charge for
silicon containing anodes, these phases condense and eventually
move into the cell environment by reaction, formally releasing
lithia. Changes at this critical interface have an important role in
an energy storage system, be it stabilizing the long cycle life anode
SiOx, releasing of silicates gradually into the SEI layer, or tracking
copper diffusion in silicon and understanding the role of minority
surface species. Local probe techniques such as 29Si MAS NMR
are critical tools to understand these differences in reactivity and
the relationship with the electrodes performance.
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