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The biotechnological production of fine chemicals, proteins and pharmaceuticals is usually
hampered by loss of microbial performance during scale-up. This challenge is mainly
caused by discrepancies between homogeneous environmental conditions at laboratory
scale, where bioprocesses are optimized, and inhomogeneous conditions in large-scale
bioreactors, where production takes place. Therefore, to improve strain selection and
process development, it is of great interest to characterize these fluctuating conditions at
large-scale and to study their effects on microbial cells. In this paper, we demonstrate the
potential of computational fluid dynamics (CFD) simulation of large-scale bioreactors
combined with dynamic microfluidic single-cell cultivation (dMSCC). Environmental
conditions in a 200 L bioreactor were characterized with CFD simulations.
Computational lifelines were determined by combining simulated turbulent multiphase
flow, mass transport and particle tracing. Glucose availability for Corynebacterium
glutamicum cells was determined. The reactor was simulated with average glucose
concentrations of 6 g m−3, 10 g m−3 and 16 g m−3. The resulting computational
lifelines, discretized into starvation and abundance regimes, were used as feed profiles
for the dMSCC to investigate how varying glucose concentration affects cell physiology
and growth rate. In this study, each colony in the dMSCC device represents a single cell as
it travels through the reactor. Under oscillating conditions reproduced in the dMSCC
device, a decrease in growth rate of about 40% was observed compared to continuous
supply with the same average glucose availability. The presented approach provides
insights into environmental conditions observed by microorganisms in large-scale
bioreactors. It also paves the way for an improved understanding of how
inhomogeneous environmental conditions influence cellular physiology, growth and
production.
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INTRODUCTION

Biotechnological production of chemicals, enzymes for industrial
usage and pharmaceuticals takes place in bioreactors with sizes of
up to several 100 cubic meters (Noorman, 2011). In such large-
scale bioreactors, the environmental conditions experienced by
the cultivated organisms cannot be maintained homogeneous.
This applies especially to the availability of nutrients such as
glucose and other substrates such as oxygen. Cells traveling
through large-scale reactors experience rapid changes between
starvation/limitation and excess/abundance regimes regarding
glucose and oxygen as well as gradients of other process
parameters like pH or temperature. Having to adjust their
metabolism or even transcriptional programs costs a lot of
energy (Enfors et al., 2001; Lara et al., 2006). In bioprocess
development, organisms are usually selected and optimized
based upon their performance at laboratory scale where
homogeneous conditions prevail. However, these conditions
do not mirror the conditions the organisms are ultimately
exposed to in large-scale reactors. Numerous studies have
shown that discrepancies between laboratory and production
scales cause undesired effects such as deteriorated performance
of the microbial cells, i.e. reduced growth and productivity, at
industrial scale (Nadal-Rey et al., 2021). Understanding the
impact of substrate gradients on cellular physiology has not
only become a key aspect in academic research over the last
decades, but from an economical perspective also plays a vital role
in improving industrial bioprocess performance.

From a physico-biological standpoint, nutrient gradients in
large-scale bioreactors occur because microbial cells often
consume nutrients or take up oxygen faster than these
substrates are transported (Sweere et al., 1987). The higher the
uptake rate or biomass concentration the more severe becomes
the impact of the resulting gradients. Another cause of substrate
gradients is the hampered transport of nutrients. Nutrient
transport generally depends on various factors ranging from
operating conditions, e.g., feed rate, aeration rate and stirrer
speed, to design parameters, e.g., reactor type, reactor design
and internal hardware such as baffles. Understanding the impact
of changing environmental conditions on cellular well-being is
paramount to optimize biotechnological processes at production
scales.

Effects of nutrient gradients on metabolism and growth of
microbial cells have been experimentally investigated in literature
(Larsson et al., 1996; Lara et al., 2009). With so-called scale-down
bioreactors, it is possible to mimic changes in nutrient availability
that represent large-scale conditions (Neubauer and Junne, 2010;
Lemoine et al., 2015; Limberg et al., 2016). These laboratory scale
bioreactors consist of combined compartment systems. Each
reactor imitates a compartment with conditions that can be
found in a certain region of the large-scale bioreactor. Cellular
responses were quantified by measuring changes in nutrient
uptake or product formation. By modifying the reactor
number, type (stirred tank/plug-flow), volume, connectivity,
feed rate and residence time (through pump rates) as well as
overall nutrient availability it is possible to represent a variety of
changing conditions. Traditionally, the design of scale-down

bioreactors is based upon global correlations like mixing time
or even without large-scale reference (Delvigne et al., 2006;
Noorman, 2011). It is still challenging to experimentally
measure local nutrient concentration in large-scale bioreactors.
Free-floating sensors can potentially measure parameters like
pressure, pH, temperature and dissolved oxygen but are yet in
development (Reinecke et al., 2012; Lauterbach et al., 2019;
Bisgaard et al., 2020).

In recent years, researchers have become increasingly
interested in computing hydrodynamics and mass transfer
within bioreactors to characterize the environment of
cultivated cells. Computational Fluid Dynamic (CFD)
simulations can provide detailed spatio-temporal information
on flow fields and nutrient distributions in different large-scale
bioreactors without physical setup and operational effort. The
concept of lifeline has received considerable attention in the last
years (Haringa et al., 2016; Kuschel and Takors, 2020; Hajian
et al., 2021). It was coined by Lapin et al. (2004) and describes the
environmental conditions, e.g., glucose or oxygen concentration,
that an organism is exposed to on its way through the bioreactor.
These transient conditions reflect the history of the organism.
Lifelines can be statistically analyzed to determine residence time
distributions in different regimes, e.g., starvation or abundance of
nutrients (Haringa et al., 2016). This information can be used for
selecting number, type and volume of laboratory reactors and
thus, CFD simulations can guide the rational design and
operation of representative scale-down experiments.

Insights provided by current scale-down bioreactors are
limited to the average response of microbial cells in the whole
system. So far it was not possible to investigate how representative
large-scale conditions affect microbes at single-cell level. Novel
microfluidic single-cell cultivation tools can fill this gap. In the
last years, considerable attention and research has been devoted
to microfluidic single-cell cultivation systems and their
application to examine the relation between nutrient
availability and cell physiology (Grünberger et al., 2014). Most
recently, dynamic microfluidic single-cell cultivation (dMSCC)
offers the possibility to analyze cellular response upon controlled
changes of the environment at single-cell level (Täuber et al.,
2020). Grünberger et al. (2013) have shown that physiology
(growth, morphology, division etc.) of the cell is not negatively
affected compared to the lab scale bioreactor. Obtained
maximum growth rates are even higher (μmax = 0.6 h−1

compared to μmax = 0.4 h−1) when cultivated in perfusion
based microfluidic systems.

Computational
In the last years, an increasing interest in CFD simulation of
bioreactors can be observed (Table 1). This trend is supported by
ever increasing computational capacity which progressively
accelerates the computation of hydrodynamics and mass
transfer. CFD is often the only option to determine substrate
gradients in large-scale bioreactors, since industrial equipment is
hardly available for fundamental research (Nadal-Rey et al.,
2021). In addition, experimental accessibility of spatio-
temporal details is very limited in steel bioreactors. CFD on
the other hand offers the chance to gain information about the
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environment observed by cultivated organisms. In most cases,
only a few minutes of real time can be simulated due to
computational constraints. However, this allows to repeatedly
simulate temporal snapshots at different stages of much longer
fermentation processes.

CFD models can be coupled with metabolic models to
investigate interactions between cells and their local

environment. These models describe substrate uptake and
product formation and can also consider the intracellular state
such as ATP availability or gene expression (Haringa et al., 2018a;
Kuschel and Takors, 2020; Zieringer et al., 2021). Lifelines are
based on computed concentration fields and particle trajectories.
The statistical analysis of lifelines in regard to frequency and
duration of exposure to certain conditions, e.g., nutrient and

TABLE 1 | CFD simulations for fermentation processes in stirred tank bioreactors (see supplement for further details).

Fermentation parameters Computational parameters

References Microorganism Bioreactor setup Operational setup Gradient(s) Phase(s) Lifelines Validation

Bach (2018) Trichoderma
reesei

V = 89 m3, H = 10.4 m, T =
3.47 m, aeration ring, cooling
coils, 1) 4 Rushton turbines; 2)
and 3) 1 Rushton turbine +
3 pitch blade turbines (2) down-
pumping and 3) up-pumping)

Information not
published due to
confidentiality
reasons

Oxygen Multi-phase (Euler-
Euler): water and air

No Oxygen
concentration

Cappello
et al. (2021)

Trichoderma
reesei

1) V = 98 m3 H = T = 5 m,
1 Rushton turbine, 6 baffles; 2)
V = 22 m3, H = 6.3 m, T = 2.1 m,
4 Rushton turbines, 6 baffles,
aeration ring

1) N = 1.6 s−1, Fa =
0.015–0.020 gS
gX

−1 h−1, Fb = 2Fa,
Qg = 0.1 vvm;
2) N = 2.7 s−1, Fa
and Fb see above,
Qg = 0.076 vvm

Substrate (not
specified),
oxygen

Multi-phase (Euler-
Euler): water and air

No Mixing time, kLa,
gas holdup, bubble
size, relative power
demand

Hajian et al.
(2020)

Escherichia coli V = 54 m3, H = 7.7 m, T = 3.0 m,
2 Rushton turbines, 4 baffles,
aeration ring

N = 2.5 s−1,
F = 0.11 mol s−1,
Qg = 0.21 kg s−1

Glucose,
oxygen

Multi-phase (Euler-
Euler): water and air

Yes
(100,000
cells)

Mixing time, kLa

Hajian et al.
(2021)

Saccharomyces
cerevisiae

V = 22 m3, H = 6.55 m,
T = 2.1 m, 4 Rushton turbines,
4 baffles, aeration ring

N = 2.22 s−1,
F = 52 kg h−1,
Qg = 0.231 kg s−1

Glucose,
oxygen,
ethanol,
carbon
dioxide

Multi-phase (Euler-
Euler): water and air

No Mixing time, kLa

Haringa et al.
(2016)

Penicillium
chrysogenum

V = 54 m3, H = 7.7 m, T = 3.0 m,
2 Rushton turbines, 4 baffles,
aeration ring

N = 1.63 s−1,
F = 0.37 mol s−1, no
gassing

Glucose Mono-phase: water Yes
(175,000
cells)

Mixing time

Haringa et al.
(2017)

Saccharomyces
cerevisiae

V = 22 m3, H = 6.55 m,
T = 2.1 m, 4 Rushton turbines,
4 baffles, aeration ring

N = 2.22 s−1,
F = 52 kg h−1,
Qg = 0.182 Nm3 s−1

Glucose Multi-phase (Euler-
Euler): water and air

Yes
(12,500
cells)

Mixing time, kLa,
gas holdup, bubble
size, power
number

Kuschel et al.
(2017)

Pseudomonas
putida

V = 54 m3, H = 7.7 m, T = 3.0 m,
2 Rushton turbines, 4 baffles

N = 1.67 s−1,
F = 0.738 kgS kgX

−1

h−1, no gassing

Glucose Mono-phase: water Yes
(120,000
cells)

Mixing time

Kuschel and
Takors (2020)

Corynebacterium
glutamicum

V = 0.2 m3, H = 1.06 m,
T = 0.488 m, 3 Rushton
turbines, 4 baffles, aeration ring

N = 5 s−1,
F = 560 g h−1,
Qg = 0.25 vvm

Glucose,
oxygen

Multi-phase (Euler-
Euler): water and air

Yes
(120,000
cells)

Mixing time, kLa,
gas holdup, bubble
size, power
number

Morchain
et al. (2014)

Escherichia coli 1) V = 0.07 m3, H = T = 0.45 m,
1 Rushton turbine, 4 baffles; 2) all
dimensions from 1) ×10,
1 Rushton turbine, 4 baffles

1) N = 7 s−1,
F = 0.319 kg h−1,
Qg = 0.67 vvm;
2) N = 1.5 s−1,
F = 355.4 kg h−1 or
318.9 kg h−1,
Qg = 0.067 vvm

Glucose,
oxygen

Multi-phase (Euler-
Euler): water and air

No Global kinetic
energy and
turbulent
dissipation rate
(see also Delafosse
et al. (2008))

Spann et al.
(2019)

Streptococcus
thermophilus

V = 0.7 m3, H = 1.92 m, T =
0.69 m, 3 Rushton turbines

N = 3.33 s−1, initial
lactose
concentration
cLac = 70 g L−1, no
gassing

pH Mono-phase: water No Mixing time

Zieringer et al.
(2021)

Escherichia coli V = 54 m3, H = 7.7 m, T = 3.0 m,
2 Rushton turbines, 4 baffles

N = 1.67 s−1,
F = 3.68 kg m−3

s−1, no gassing

Glucose Mono-phase: water Yes
(120,000
cells)

Mixing time (see
also Kuschel et al.
(2017))

This paper Corynebacterium
glutamicum

V = 0.2 m3, H = 1.03 m,
T = 0.51 m, 3 Rushton turbines,
4 baffles, aeration ring

N = 5 s−1,
F = 1.9–3.1 kg h−1,
Qg = 12 Nm3 h−1

Glucose Multi-phase (Euler-
Euler): water and air

Yes
(10,000
cells)

Mixing time
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oxygen limitation or excess, have been used to guide the design of
scale-down bioreactors (Haringa et al., 2017; Kuschel and Takors,
2020; Hajian et al., 2021). Furthermore, CFD can be used to

optimize bioprocesses by adjusting operating conditions (Spann
et al., 2019) or modifying the geometrical setup, e.g., size, shape
and position of impellers and baffles or position of the feed

FIGURE 1 | Overview of dMSCC device for cultivation of single cells under dynamic environmental conditions. (A) Microfluidic chip with two inlets and one outlet.
Each chip has three parallel cultivation units, each of which enables one measurement. (B) Flow profile within dMSCC device. Scale bar is 200 μm. (C)Monolayer growth
chambers by observing growth under dynamic conditions starting from 1-4 cells, often called as cultivation chamber. (D)Bode plot showing fluorescence intensity within
a cultivation chamber at oscillation frequencies from 100 s (0.01 Hz) to 0.2 s (5 Hz), experimental validation (black squares). Corresponding CFD simulated
concentrations (red circles: simulation without colony, blue triangles: simulation with colony as steric hindrance) are normalized to maximum substrate concentration,
measured in cultivation chamber at lowest frequency. dMSCC allows oscillation intervals greater than or equal to 5 s. Copyright from Royal Society of Chemistry,
adapted from Täuber et al. (2020).
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(Morchain et al., 2014; Bach, 2018; Haringa et al., 2018b).
However, it is crucial to compare simulation results with
experimental data to validate the methodology. In this regard,
several metrics are available such as the mixing time, gas hold-up,
power number, kLa and bubble diameter (Kuschel and Takors,
2020).

The governing equations are solved in two steps. First, the
velocity and pressure fields are computed by solving Navier-
Stokes equations. Then, mass transfer is computed by solving
convection-diffusion equations based on the velocity field. These
problems can be solved subsequently, as velocity and pressure
fields are largely independent of concentration fields typically
occurring in bioreactors. The computational demand is usually
reduced by applying the Reynolds-Averaged Navier-Stokes
(RANS) approach. In contrast to Large Eddy Simulations
(LES) or Direct Numerical Simulations (DNS), which are
more accurate, RANS averages over all eddies. For simulating
bioreactors, the RANS approach yields a reasonable trade-off
between accuracy and computational demand (Kelly, 2008).
Turbulence is widely addressed using the standard k-ε or
realizable k-ε models. Both turbulence models apply turbulent
kinetic energy k and turbulent dissipation ε to close the Reynolds
stress terms in the RANS equations. Realizable k-ε shows better
performance for flows with rotation and recirculation but causes
longer compute times (Versteeg and Malalasekera, 2007).

Different approaches have been applied to account for the
rotational effect of impellers in stirred tank bioreactors,
depending on the required level of accuracy and available
compute resources. The multiple reference frame (MRF) or
frozen rotor (FR) method (Haringa et al., 2016; Hajian et al.,
2020; Kuschel and Takors, 2020) and the sliding mesh (SM)
method (Kuschel et al., 2017) are most widely used in
biotechnology. They are based on the concept of subdividing
the bioreactor into two domains: a rotating domain that covers
the impeller and an immediately influenced zone, and a
stationary domain that covers static elements such as baffles
and the rest of the reactor volume. MRF and FR assume a fixed
rotor position, i.e., impellers do not move in relation to the static
parts. The rotational effect is considered by introducing
centrifugal and Coriolis forces in the momentum equations for
the rotating domain, whereas the momentum equations in the
stationary domain remain unchanged. This yields a stationary
velocity field. The SM approach accounts for transient rotation
and yields an unsteady flow field, i.e. the impeller moves in
relation to static parts. Rotating and stationary domains are
coupled through a sliding interface along which fluxes of
mass, momentum etc. are conserved. The SM approach is
more accurate in resolving unsteady flow effects and is used
when a time-accurate solution is needed. MRF and FR provide a
more efficient way to compute time-averaged solutions.
Furthermore, studies have shown that MRF and FR yield
comparable results to SM in terms of global flow
characteristics, e.g., power demand and gas holdup (Scargiali
et al., 2007; Cappello et al., 2021).

Aerobic bioprocesses require to consider multiphase flow.
Aeration can substantially influence the overall velocity field
and consequently mass transfer. Moreover, oxygen is an

important substrate and required for both growth and
synthesis of desired products by many microorganisms. When
oxygen is not abundant for all cells, gradients are formed in the
reactor and mass transfer of dissolved oxygen (DO) must be
included in the computational model. Most commonly the Euler-
Euler approach is used, where both phases are modeled as
interpenetrating continua (Bach et al., 2017; Cappello et al.,
2021; Hajian et al., 2021). Sophisticated Euler-Euler
simulations are based upon population balance models for
different classes of bubble sizes with coalescence and breakup,
which adds to the computational burden (Haringa et al., 2017;
Kuschel and Takors, 2020). Resolving single bubbles with the
Euler-Lagrange approach would be even more accurate but is
computationally infeasible in most cases.

The turbulent Schmidt number Sct � ]t
D is an important

parameter, defined by the ratio between eddy viscosity ]t and
eddy diffusivity D (both m2 s−1). This dimensionless number
accounts for the influence of unresolved eddies on the mass
transport and is hard to be accurately predicted or measured
experimentally. The smaller Sct the faster turbulent mixing occurs
and thus the smaller the simulated mixing time. A value of 0.7 is
often found as default, but bioreactor simulations typically yield
more realistic mixing times for lower values in the range 0.1–0.2
(Haringa et al., 2016; Kuschel and Takors, 2020; Cappello et al.,
2021; Zieringer et al., 2021). Most studies apply further
assumptions to simplify model building and facilitate
numerical solution. For example, the thickness of internal
hardware such as baffles and impeller blades is commonly
neglected. Water-like properties are usually applied for the
fermentation broth, as accounting for viscosity variations and
non-Newtonian behavior would dramatically increase the
computational demand (Bach et al., 2017; Cappello et al., 2021).

Experimental
Scale-down bioreactors are currently the system of choice for
reproducing and analyzing gradients in process performance and
production strains in large scale bioreactor cultivations (Lara
et al., 2006; Neubauer and Junne, 2010; Nadal-Rey et al., 2021). In
conventional scale-down systems, e.g., stirred tank reactor (STR)
or plug flow reactor (PFR), it is difficult to implement specific
oscillations of one parameter without capturing the influence of
other process parameters (Täuber et al., 2021a). Control of the
microenvironment of each cell is limited in typical scale-down
devices, and cell history data are expressed only as average
residence time. These cultivation systems calculate microbial
growth based upon biomass and optical density, which are
mass measurements. Therefore, the data is always based on
averaged populations (Kovárová-Kovar and Egli, 1998), and
no representative information can be collected for individual
cells. Thus, the effects of population heterogeneity on production
cannot be analyzed with temporal resolution (Templer and Ces,
2008). Conventional systems have not been able to reproduce and
analyze lifelines from large-scale bioreactors. However, it is very
important to find out how individual cells behave on their journey
through the large-scale bioreactor and how changing
environmental conditions affect growth to improve overall
bioprocess development.
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Microfluidic cultivation systems can be used to precisely
study different environments and their effects, e.g., on growth,
cell-to-cell heterogeneity or gene expression, at single-cell level.
Microfluidic cultivation offers many advantages such as laminar
flow, small size and volumes (pL - μL), and a high surface-to-
volume ratio (Ortseifen et al., 2020; Grünberger et al., 2015). In
recent years, systems have evolved for cultivation at constant
conditions (Grünberger et al., 2012), in batch mode
(Kaganovitch et al., 2018) and under changing environmental
conditions to study cellular behavior and physiological
responses of single cells to fluctuations. CFD studies were
used to investigate the feasibility of reproducing large-scale
substrate oscillations on microfluidic chips (Ho et al., 2019).
Dynamic microfluidic cultivation systems, such as dMSCC
devices, can also be used for the targeted and precise study
of the effects of regularly and irregularly oscillating medium
conditions and media changes (Täuber et al., 2020). The
combination of this system with live-cell imaging provides
high spatial and temporal resolution for studying the
behavior of populations at single-cell level under specific
environmental fluctuations. In dMSCC devices (Figure 1A),
environmental conditions can be precisely controlled at
timescales ranging from 5 s to several hours within the
cultivation chambers (Figures 1C,D). The limiting oscillation
frequency of the dMSCC system has been theoretically
determined with CFD simulations of the medium exchange
within the cultivation chamber and experimentally validated
with fluorescine measurements. It has been shown that at
relatively low oscillation frequencies, 100% medium exchange
occurs within the cultivation chamber during oscillation. With
increasing oscillation frequency, a complete medium exchange
can no longer be ensured. Up to an oscillation frequency of
0.2 Hz, a complete medium exchange in the cultivation chamber
can be ensured (Figure 1D). The dMSCC device allows

cultivation with oscillating environments of two parameter
levels, e.g., different glucose concentrations. In addition, high
oscillation frequency can be achieved, providing the possibility
of implementing cellular lifelines (Täuber et al., 2021a). At the
same time, control measurements of the different media can be
performed (Figure 1B). The chosen flow profile allows for such
control measurements on both sides. Between the control zones
is the so called “switching zone” where cells can be cultivated
under oscillating conditions between the two medium
conditions.

In microfluidics, only medium oscillations of one selected
parameter can be performed, whereas in traditional scale-down
reactors, different parameters such as substrate and oxygen
concentration can be studied in combination. Moreover,
currently only two or three discrete concentrations can be
chosen, whereas in traditional scale-down systems continuous
changes/oscillations can be performed.

Scope
Most published CFD studies for fermentation processes have
focused mainly on describing environmental conditions. Lately,
this information is often applied for the design and operation of
conventional scale-down reactors. The generated statistical data
indicate evidence for population heterogeneity, but to this date no
study has specifically targeted experimental validation of this
hypothesis. Little is understood of the influence of large-scale
gradients on the physiology of single cells. Microfluidic systems
with changeable and controllable nutrient supply are suitable to
investigate this causal relationship, but also here only few
attempts have been made so far to investigate the impact of
changing conditions on single cells. Furthermore, to the best of
our knowledge, only one proof-of-concept study (Täuber et al.,
2020) has focused onmimicking realistic large-scale conditions in
microfluidic systems to analyze the effect on growth behaviour.

FIGURE 2 | Geometry and dimensions of studied bioreactor with three Rushton turbines, impeller shaft, aeration ring, four baffles and elevator-mounted
sensor box.
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In this study, we present a framework to investigate the
impact of dynamic large scale conditions on microbial cells,
combining two state-of-the art technologies in bioprocess
development: CFD and dMSSC. In a first step, example
cellular lifelines, i.e. fluctuating extracellular glucose
concentration experienced by microbial cells, are
determined by a CFD simulation of a fed-batch snapshot.
The lifelines are postprocessed to be suitable as feeding
input signals for dMSCC devices, which are then applied for
experiments with tightly controlled glucose concentration
profiles. The impact of these oscillations on microbial
growth is observed at single-cell level by stretching snapshot
conditions. Several lifelines with same and varied average
glucose availability are compared to growth under
homogeneous supply of the respective glucose amount.

Case
The studied model bioreactor has 200 L working volume and four
baffles. It is stirred with three Rushton turbines. The reactor is
equipped with a sensor box mounted to an elevator which
additionally disturbs the flow (Figure 2). An aeration ring is
situated in the bottom part of the reactor. The stirrer speed is 5 s−1

and air is supplied with one vvm. Further details on parameters
and operating conditions can be found in the Supplementary
Table S3.

The computational model is designed using literature data on
Corynebacterium glutamicum fed on glucose. A snapshot of a fed-
batch cultivation is simulated, hence phenomena happening on
longer time-scales, e.g. cellular growth, can be neglected in the
large-scale context. In three scenarios, the substrate feed is chosen
such as to establish average glucose concentrations of 6 g m−3,
10 g m−3 and 16 g m−3 in the bioreactor. Substrate uptake is
determined using Monod’s equation, qs � qs,max

cS
cS+Ks

, with
substrate concentration cS (g m−3), uptake rate qs (g m−3 s−1),
half velocity constant Ks = 3.6 g m−3 and maximum uptake
rate qS, max = 10.3 g m−3 s−1. The half velocity constant for C.
glutamicum and glucose is taken from Kuschel and Takors
(2020), the maximum uptake rate from Lee et al. (1998). A
cell density of 27.5 · 103 g m−3 is taken from Lu et al. (2020).

METHODS AND MATERIALS

Computational
All simulations were performed with COMSOL Multiphysics
5.5 (COMSOL AB, Stockholm, Sweden) and postprocessed
using MATLAB. Two-phase flow was modelled using the
bubby flow interface based on the RANS standard k-ε
turbulence model. The velocity field was computed using a
frozen-rotor approach, assuming stationarity. This is
computationally less demanding than transient approaches
while yielding comparable results (Scargiali et al., 2007;
Cappello et al., 2021). Based on the stationary velocity field,
transient mass transfer was calculated. DO concentration was
assumed to be non-limiting and hence neglected in this study.
Cell metabolism was implemented as a sink that continuously
depletes glucose from the fermentation broth. The

concentration field also becomes stationary after a certain
simulation time. Based on a published study with similar
reactor setup (Kuschel and Takors, 2020), the turbulent
Schmidt number was chosen at 0.2.

Gas was introduced at holes in the aeration ring via wall
boundary conditions where slip boundary condition was
selected for the liquid and gas flux for the gas. The feed inlet
was modelled by a small cylinder with radius r = 0.0025 m
closely under the surface, assuming a fully developed flow field
with the corresponding flow rate, to account for a constant
substrate supply. At the upper liquid surface, an outlet boundary
condition was defined for the liquid and gas phases to maintain
a constant operating volume. At all other walls, no slip boundary
conditions were applied for the liquid phase and no gas flux for
the gas phase. Cultivation broth was assumed to have similar
properties as water at 24 °C and atmospheric pressure (density
ρL = 995.6 kg m−3 and dynamic viscosity μL = 7.97 · 10–4 Pa s).
Gas density was calculated from ideal gas lawwith amolecular weight
of Mg = 0.02 kg mol−1 and mean bubble diameter of db = 3mm.
Impeller blades and discs, as well as baffles was modelled as 2D
internals.

Over a period of 60 s 10,000 particles with the same density
of the fluid were traced. Turbulent dispersion of the particles
was considered with a discrete random walk model. Particle
traces over 30 min were created by concatenating 30 of these
fragments such that end and start points of subsequent pieces
are nearest neighbors. This was done systematically applying a
MATLAB script. Lifelines, i.e., time series of substrate
concentration, were determined by aligning the position
information of the particles with the stationary
concentration field of glucose. The lifelines were then
smoothed using a convolution filter of length 10 s. The
dMSCC device can reproduce changes between discrete
glucose levels. Thus, the lifelines were partitioned into
regimes with cs ≤ KS (starvation) and cs > KS (abundance).
In the starvation regime, the concentration was set to 0 g m−3.
In the abundance regime, the concentration was set to a value
so that the mean concentration of the discretized lifeline equals
the average concentration in the bioreactor. This was achieved
by identifying and selecting original and consequently
discretized lifelines that have the same average
concentration as in the bioreactor. Finally, postprocessed
lifelines were selected as dMSCC feed profiles. Glucose
concentration in the bioreactor was 6 g m−3, 10 g m−3 and
16 g m−3 respectively, which corresponds to an average
concentration that is results in steady state in the bioreactor
when 25%, 33 and 42% of maximal glucose uptake by all
cultivated cells is being used as feed rate. In the following,
lifelines 1-2 represent 6 g m−3 average glucose concentration,
lifelines 3-6 represent 10 g m−3 and lifelines 7-8 represent
16 g m−3.

Experimental
Bacterial Strain and Medium
C. glutamicum WT ATCC 13032 was cultivated in defined
minimal medium CGXII (Unthan et al., 2014) at 30°C in a
rotated shaker at 120 rpm (Ecotron, Infors, Germany). The
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minimal medium CGXII for the shaking flasks was supplemented
with MOPS buffer for pH buffering and a final glucose
concentration of 40 g L−1. The preculture was inoculated from
a glycerol stock in a 100 ml shaking flask with 10 ml working
volume and cultivated overnight. The main culture was
inoculated from the preculture with a starting OD600 of
around 0.05. When the main culture had a OD600 of around
0.2, the inoculation of the dMSCC device can be started. The
medium was prepared a maximum of 24 h before the
experiment. For the cultivation in the dMSCC device, no
buffer was needed. The media for lifeline 1-2 were prepared
with 0 g m−3 and 15 g m−3 glucose, for lifeline 3-6 with 0 g m−3

and 20 g m−3 and for lifeline 7-8 with 0 g m−3 and 30 g m−3. Also
perfusion experiments were performed with a final glucose
concentration of 6 g m−3 (25%), 10 g m−3 (33%) and 16 g m−3

(42%). The media were sterile filtrated to prevent channel clogging
during the experiments.

Chip Design and Preparation
Themicrofluidic chip design for the emulation of lifelines has two
inlets, for media with different glucose concentrations. Between
the two inlets are twelve arrays of cultivation chambers (a linear
row of cultivation chambers). The arrays are divided into three
zones, two control zones (left and right) and one oscillation zone
(centre). The different zones are separated by a channel with a
width of 400 μm. The supply channels have a width of 100 μm
and a height of 11 μm. The monolayer cultivation chambers are
80 μm × 90 μm x 700 nm in size. For a detailed description of the
chip design and the flow profiles the reader is referred to Täuber
et al. (2020).

The polydimethylsiloxane (PDMS)-glass chip was
manufactured using soft lithography. PDMS was prepared in a
ratio of 1:10 current agent and linker (Sylgard 184 silicone
elastomer, Dow Corning Corporation, United States) and
placed on a master mold. The PDMS was then baked at 80°C

FIGURE 3 | Simulation results for 200 L bioreactor fed with 33% of maximal glucose consumption corresponding to an average glucose concentration of 10 g m−3

in the reactor. (A) Stationary flow, (B) concentration field, and (C) representative particle trajectory over 180 s.

FIGURE 4 | Computational workflow for lifeline generation: (A) CFD simulation of concentration field and representative particle trajectory over 180 s (scale
maximum is adjusted to KS to visualize the boundary between the regimes), and (B) smoothing and discretization of the lifeline.
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for 2 h. After baking, the PDMS chips were cut from the wafer
and the inlets and outlets were punched using a 0.75 mm biopsy
puncher (Reusable Biopsy Punch, 0.75 mm, WPI,
United States). The PDMS chip as well as the glass slide (D
263 T eco, 39.5 × 34.5 × 0.175 mm, Schott, Germany) were
cleaned with isoproanol and O2 plasma oxidized (Femto Plasma
Cleaner, Diener Electronics, Ebhausen, Germany). After plasma
oxidation, the PDMS chip and the cover glass were pre-sealed
and finally baked for 2 min at 80°C to strengthen the bonding.

Loading and Flow Procedure
The cell suspension at a OD600 of around 0.2 was inoculated
through the outlet of the dMSCC chip with reciprocating motion
of the syringe pistons. After filling a sufficient number of
cultivation chambers, the flow was stopped, and the medium
was connected to the inlets. Precision pressure driven pumps
(Fluigent, Jena, Germany) were used for medium supply, starting
pressures were set to 150 and 50 mbar. The flow profiles were
applied with a specific tailor made lifeline profile implemented in

FIGURE 5 | (A) Microscope images of growing colonies for lifeline six at selected time points. Feed profiles and growth curves (n = 3; biological replicates) for (B)
lifeline 1, 6 g m−3 average concentration, (C) lifeline 6, 10 g m−3 average concentration, and (D) lifeline 7, 16 g m−3 average concentration.
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an automated software tool (microfluidic automation tool
(MAT), Fluigent, Jena, Germany). After loading, the cells were
perfused 2 hours with the starting pressure setting. After the
adaptation phase, the lifeline oscillation started, which has a
length of 30 min. This 30 min lifeline is repeated until the end
of cultivation.

Live-Cell Imaging
A Nikon inverted automated microscope (Nikon Eclipse Ti2,
Nikon, Germany) was used for the live-cell imaging. The
microscope stage was in a cage incubator (Cage incubator,
OKO Touch, Okolab S.R.L., Italy) for optimal temperature
control of 30°C. The dMSCC chip was mounted on an in-
house fabricated chip holder placed in the cage incubator on
the motorized microscope stage. For live-cell imaging a ×100 oil
objective (CFI P-Apo DM Lambda ×100 Oil, Nikon GmbH,
Germany), a DS-Qi2 camera (Nikon camera DSQi2, Nikon
GmbH, Germany) and an autofocus system (Nikon PFS,
Nikon GmbH, Germany) to compensate the thermal drift
during the cultivation was used. For each cultivation
experiment, around 100 cultivation chambers were selected
manually and were targeted with the NIS-Elements Imaging
Software (Nikon NIS Elements AR software package, Nikon
GmbH, Germany) for live-cell microscopy observation.

Image and Data Analysis
Image analysis was performed with the “analyze particle”
function of the open-source software Fiji (Schindelin et al.,
2012). For a detailed image and data analysis protocol, the
reader is referred to Täuber et al. (2021b). The growth rate
was determined by semilogarithmic regression of the cell
number against the cultivation time, using OriginPro 2019b
(OriginLab Corporation, Northampton, United States) for each
colony. Here, the growth rate was calculated over the colony
growth inside the cultivation chamber. For each lifeline
condition, three cultivation chambers were evaluated and the
mean and standard deviation were calculated.

RESULTS AND DISCUSSION

This study targets the impact of heterogeneous substrate supply
in a 200 L pilot-scale reactor on the growth of cultivated C.
glutamicum cells. Computational lifelines were determined from

CFD simulations, based on the stationary flow field, glucose
distribution and particle trajectories (Figure 3). A selection of
discretized lifelines with representative oscillation patterns and
varying glucose availability (Figure 4) was applied as feed profiles
to a microfluidic dMSCC device. Growth rate was observed over
time to examine the influence of environmental conditions
typically observed in large-scale reactors on microbial
physiology (Figure 5).

Computational
Figure 3 shows the cross-sectional stationary velocity field of
the studied bioreactor. As expected, the highest liquid
velocities are observed near the impellers where the fluid is
radially displaced. Between the impellers, recirculation zones
are formed. Gas flow has the highest impact on liquid velocity
between the sparger and the lowest impeller. The sensor
elevator positioned at the top right (invisible as out of the
cross-sectional plane) acts as an additional flow disturber. This
also impacts the concentration field shown in Figure 3B,
where the glucose is not evenly distributed at the top right.
Glucose is consumed at such a high rate at the top of the
reactor, that it hardly reaches the bottom. At an average

TABLE 2 | Key characteristics and maximum growth rates (two technical replicates, each averaged over three biological replicates) for the eight studied lifelines (LL1-LL8).

Average glucose concentration

6 g m−3 10 g m−3 16 g m−3

LL2 LL2 LL3 LL4 LL5 LL6 LL7 LL8

Number of oscillations 28 41 29 51 29 40 41 33
Starvation residence time/s 2–244 5–173 5–178 5–132 5–178 6–101 5–66 5–139
Abundance residence time/s 13–158 6–107 13–151 5–107 13–152 6–105 10–108 10–127

μmax/h
−1 0.25 ± 0.01 0.24 ± 0.01 0.30 ± 0.01 0.31 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.35 ± 0.01 0.36 ± 0.01

μmax/h
−1 0.25 ± 0.01 0.22 ± 0.02 0.29 ± 0.01 0.31 ± 0.01 N/A 0.29 ± 0.01 0.36 ± 0.02 0.35 ± 0.03

FIGURE 6 | Maximum growth rates of C. glutamicum for different
average glucose concentrations under oscillating and constant supply.

Frontiers in Chemical Engineering | www.frontiersin.org March 2022 | Volume 4 | Article 82648510

Ho et al. Reproduction of Dynamic Bioreactor Environment

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


glucose concentration of 10 g m−3 (33% of maximal
consumption), substrate abundance (cs > KS) prevails in
about one third of the reactor. This indicates that the
characteristic uptake time of the cells is much shorter than
the circulation time of the reactor. The concentration fields for
the other two cases (6 g m−3 and 16 g m−3 average glucose
concentration) can be found in the Supplementary Figure S7.
The particle trajectory of lifeline three over a period of 180 s is
shown in Figure 3C.

Figure 4 illustrates the generation and postprocessing of
lifelines by example of lifeline 3. Particle tracing data are
matched with concentration field data (Figure 4A). 30 min
lifelines were obtained by concatenating 30 fragments of 1 min
each. They are smoothed and discretized into starvation and
abundance regimes to obtain suitable input signals for the
dMSCC device with a response time of 10 s. Figure 4B shows
an example of this postprocessing step. For comparison, the
lifelines were also discretized into three regimes (starvation,
limitation, abundance). However, the limiting zones were
mostly passed very quickly, i.e., within 10 s (Supplementary
Figure S10).

Experimental
In microfluidic single-cell cultivation (MSCC) experiments, the
lifelines were applied as feed profiles to a dMSCC device to study
the growth of C. glutamicum. Cultivation chambers containing
growing populations with an initial size of less than five cells were
observed over time. Figure 5A shows a representative colony.
Growth rates were determined by counting the increase in cell
number. The maximum growth rate was derived from the colony
growth.

Table 2 summarises the growth rates obtained for the different
lifelines for two technical replicates. The different characteristics
of the lifelines were compared, such as the number of oscillations
and the starvation and abundance time ranges. It can be clearly
seen that for lifelines with the same average glucose
concentration, the same growth rate was achieved regardless of
the number of oscillations. Comparing the three cases with
average glucose concentrations of 6 g m−3, 10 g m−3 and 16 g
m−3, a clear correlation of the growth rate with glucose
concentration has been observed. A maximum growth rate of
μ = (0.24 ± 0.01) h−1 was determined for 6 g m−3 glucose supply, μ
= (0.3 ± 0.03) h−1 for 10 g m−3, and μ = (0.36 ± 0.01) h−1 for
16 g m−3.

Various scale-down approaches have already been performed
for C. glutamicum under oscillating substrate concentration in
combination with DO concentration. Limberg et al. (2016)
investigated the effect of oxygen deprivation and nutrient
oscillations in STR-PFR and STR-STR devices on L-lysine
production by C. glutamicum DM 1800. They found a
reduction of growth rate of about 25% and an increase in the
formation of L-lactate and L-glutamate as by-products. Under
well aerated batch conditions, μmax = 0.41 h−1 was observed, and
under oscillating conditions, μmax = 0.31 h−1 in the STR-PFR
device and μmax = 0.29 h−1 in STR-STR device (Limberg et al.,
2016). Here, a reduction in growth rate of about 25% under
oscillating conditions was observed compared to batch

conditions. Käß et al. (2014) analysed the effect of fluctuating
oxygen and substrate supply to L-lysine producing C. glutamicum
DM 1933. No effect on the productivity and growth was observed
in this study. In a multi-omics analysis of the strain, no changes
were found in the response to process inhomogeneity (Käß et al.,
2014). The specific growth rate was not shown. Lemoine et al.
(2015) simulated the effect of oscillating substrates and oxygen
concentrations in STR-PFR and STR-PFR-PFR devices in fed-
batch mode. The effects of oscillations on product formation and
growth of C. glutamicum DM1800 with two point mutations in
pycP458S and lysCT311L were investigated. No effects of
oscillation on growth rate were observed. A two-fold higher
production of lactate and succinate and other amino acids was
observed in the STR-PFR-PFR system as compared to the STR-
PFR system (Lemoine et al., 2015). In this study, a higher
reduction of the growth rate of around 40% was observed
compared to 25% in the study of Limberg et al. (2016), which
is not comparable with our scale-down studies, since in these
studies no isolated parameter was considered. In summary,
representative cultivations of C. glutamicum under the
conditions and scales of the present study have not yet been
published. A future study will address the validation of our
microfluidic results with experiments in different large-scale
bioreactors.

For comparison, we performed control experiments
with MSCC (Grünberger et al., 2015). Here, cultivation of
C. glutamicum was performed under continuous perfusion
conditions with the same average glucose concentrations as
during oscillations. The results show a μmax = (0.45 ± 0.02) h−1

for a glucose concentration of 6 g m−3, μmax = (0.50 ± 0.01) h−1

for a glucose concentration of 10 g m−3, and μmax = 0.57 h−1 for
a glucose concentration of 16 g m−3. Figure 6 shows the growth
rates as a function of glucose availability in the reactor for the
conditions of lifelines 1-8 and control experiments performed
in perfusion mode. The results of the perfusion experiments
show a similar trend as under oscillating conditions, as to when
the glucose concentration increases, the growth rate also
increases.

In literature, growth rates μmax between 0.59 h−1 and 0.64 h−1

were obtained in a constant microfluidic perfusion system
(Unthan et al., 2014; Täuber et al., 2021b). In these studies,
the minimal medium CGXII containing 40 g L−1 glucose and
PCA as iron chelator was used. The iron chelator PCA can be
metabolized by the cells in the microfluidic system as an
additional carbon source (Unthan et al., 2014), resulting in
higher growth rates. In our study, citrate was used as an iron
chelator, which cannot be metabolized as a carbon source. This
resulted in lower growth rates of μmax = 0.5 h−1 at 10 g m−3

glucose and of μmax = 0.57 h−1 at 16 g m−3 glucose.
At 6 g m−3 glucose, a growth rate of 0.45 h−1 was obtained

under perfusion conditions. The reason for this lower growth rate
compared to the other perfusion measurements may be the
reduced glucose concentration, which is only slightly above the
Ks value of 3.6 g m

−3, which reflects the concentration at the half
maximum growth rate. Comparing the growth rates achieved
under perfusion conditions with those under oscillation
conditions, a decrease of 45% was observed for 6 g m−3
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glucose, 41% for 10 g m−3, and 38% for 16 g m−3. This shows that
a similar decrease in growth rate of about 40% was measured for
all analyzed glucose concentrations performed in oscillation
mode compared to perfusion mode.

The reduction in growth rate for lifeline conditions
compared to perfusion conditions can be attributed to
oscillating environmental conditions. The oscillations may
have affected various metabolic processes or regulatory
processes, causing the cells to grow slower. It could be
possible that constantly changing glucose concentrations at
non-symmetric intervals causes cells to continuously adjust
their uptake, which requires rapid redirection of intracellular
fluxes. In S. cerevisiae, the regulatory mechanisms for
glucose uptake in the presence of highly fluctuating glucose
availability have already been studied (Busti et al., 2010), but
similar information is still lacking for C. glutamicum.
Maintenance of biochemical functions includes energy
consumed for functions unrelated to the production of new
cellular material. These include changes in stored polymeric
carbon or osmoregulation (van Bodegom, 2007). During
oscillations, it may be necessary for the cell to supply more
energy to components unrelated to growth in order to maintain
cell integrity, as well as to optimally store and utilize the
changing carbon source, thereby showing reduced growth. A
recent study examining growth of C. glutamicum
under symmetrical nutrient oscillations also found a 38%
reduction in growth rate at oscillation intervals < 1 min as
compared to perfusion (Täuber et al., 2020). Here, adjustments
in metabolism due to oscillation could result in a change in
energy conversion of ATP synthase (Jurtshuk, 1996).

Each colony cultivated under lifeline conditions represents a
single cell traveling through the large-scale bioreactor. This
implies that for a feed rate of 25% of maximal glucose
consumption (6 g m−3 average concentration in the bioreactor)
there are cells that grow about half as fast as cells that are
cultivated under constant perfusion glucose supply. The
quantification of the effects of gradients on individual cells
was possible due to the combined and novel application of
two enabling technologies of CFD and dMSCC.

CONCLUSION AND OUTLOOK

The presented computational and experimental framework offers
the opportunity to gain better understanding of scale-up effects
on microbial growth. The difference between growth under
homogeneous and under fluctuating glucose supply is
quantified. Fluctuating conditions are representative for the
environment experienced by cells cultivated in large-scale
bioreactors. The velocity field of turbulent multi-phase flow in
a typical pilot-scale bioreactor was simulated. Based on this,
concentration fields with three different levels of glucose
supply (6 g m−3, 10 g m−3 and 16 g m−3 average concentration
in the bioreactor) and the trajectories of 10,000 microbial
particles were computed. From the resulting data, lifelines
were determined to study the impact of changing glucose
availability from a microbial cell’s perspective. After

smoothing and discretization, the computational lifelines
were applied as feed profiles of a microfluidic system with
rapidly changeable and controllable environmental conditions.
Average microbial growth was analysed on a single-cell level
using live-cell imaging. Growth rates for three average glucose
concentrations (6 g m−3, 10 g m−3 and 16 g m−3) were compared
to growth rates for continuous availability of the same glucose
amount.

The results show that colonies growing on different lifelines,
but with the same average glucose concentration have the same
growth rate. This indicates that frequency and duration of glucose
exposure or limitation play a minor role for growth in the
observed ranges. At very high oscillation frequencies, a nearly
constant supply would be achieved, resulting in different growth
rates. The average glucose concentration of the lifeline or in the
bioreactor significantly influences the growth rate. As the average
concentration increases, so the growth rate increases.
Comparison with constant perfusion shows that colonies
growing under lifeline conditions have a deteriorated growth
by an average of 40%. The cause of the reduced growth rates
cannot be answered in this study. We speculate that the
oscillations may have resulted in altered glucose uptake
leading to energy consuming adjustments in metabolism and
transcriptional programming.

The combination of CFD and dMSCC can provide a basis
for future improvements in strain selection and process
development. The comparison with growth rates determined
in different large-scale bioreactors is important to validate the
presented methodology. A comprehensive study is planned for
the future, where also the role of cell concentration, uneven
cell distribution and cell status should be addressed. In
industrial production, multiple process parameters typically
interact with each other, leading to the formation of complex
gradients in several parameters simultaneously (Lara et al.,
2006). In this study, only the influence of glucose gradients
on the cell behavior was investigated. To improve
representativeness of microfluidic lifeline emulation,
dMSCC systems need to be further developed to allow
simultaneous manipulation of multiple parameters such as
glucose and oxygen. To date, there are no systems described in
the literature covering oxygen oscillations. However, the
possibility to fabricate gas-impermeable chips has been
demonstrated by Sticker et al. (2019). They use a non-
stoichiometric thiol-epoxy polymer to efficiently remove
dissolved oxygen. Integrating this technology into the
dMSCC system will allow investigation of oscillating
oxygen. This will facilitate more complex lifelines with
simultaneous changes in glucose and oxygen.

The current dMSCC determined maximal growth rates are
based on colony growth rates. Although this provides first
estimates of cell growth under oscillating and limiting
conditions, the result can be compromised by gradient
formation within the colony at late cultivation stages under
limiting conditions (Hornung et al., 2018). To enable precise
determination of the growth rate, especially under extreme
limiting conditions (cs < Ks), 1D cultivation chambers
(Yang et al., 2018) in the dMSCC system are most
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promising. Here, up to 4 cells can be cultivated in one chamber
from the start of a single mother cell. Changes in the single-cell
dynamic can be investigated without the influence of gradients
within colonies.
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GLOSSARY

ATP Adenosine Triphosphate

CDW Cell dry weight

CFD Computational Fluid Dynamics

dMSCC Dynamic Microfluidic Single-Cell Cultivation

DNS Direct Numerical Simulation

DO Dissolved oxygen

FR Frozen Rotor

LES Large Eddy Simulation

LL Lifeline

MOPS 3-(N-morpholino)propanesulfonic acid

MRF Multiple Reference Frame

MSCC Microfluidic single-cell cultivation

OD Optical density

PCA Protocatechuate

PDMS Polydimethylsiloxane

PFR Plug flow reactor

RANS Reynolds-Averaged Navier-Stokes

rpm rounds per minute

SM Sliding Mesh

STR Stirred Tank Reactor

vvm Volume air per volume liquid per minute

WT Wild-type

μL Liquid viscosity (Pa s)

μ growth rate (h-1)

ν Kinematic viscosity (m2 s−1)

ρ Liquid density (kg m−3)

ε (Turbulent) Dissipation rate (m2 s−3)

C Clearance (m)

cS Substrate concentration (g m−3)

cX Biomass concentration (g m−3)

D Diffusion coefficient (m2 s−1)

d Impeller diameter (m)

db Mean bubble diameter (mm)

F Feeding rate of substrate (gS h
−1)

H Reactor height (m)

h Aeration ring height (m)

k (Turbulent) Kinematic energy (m2 s−2)

kLa Volumetric mass transfer coefficient (h−1)

KS Half-velocity constant (g L−1)

Mg Gas molecular weight (kg mol−1)

N Agitation rate (s−1)

Qg Gassing rate (Nm3 h−1 or vvm)

qS, max Maximum substrate uptake rate (g m−3 s−1)

qS Substrate uptake rate (g m−3 s−1)

r Inlet radius (m)

ScT Turbulent Schmidt number (1)

T Reactor diameter (m)

tRing Aeration ring diameter (m)

V Reactor liquid volume (m3)
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