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Introduction: Excessive demand, environmental problems, and shortages inmarket-
leader countries have led the citrus (essential) oil market price to drift to
unprecedented high levels with negative implications for citrus oil-dependent
secondary industries. However, the high price conditions have promoted market
incentives for the incorporation of new small-scale suppliers as a short-term supply
solution for the market. Essential oil chemical extraction via steam distillation is a
valuable option for these new suppliers at a lab and small-scale production level.
Nevertheless, mass-scaling production requires prediction tools for better large-
scale control of outputs.

Methods: This study provides an intelligent model based on amulti-layer perceptron
(MLP) artificial neural network (ANN) for developing a highly reliable numerical
dependency between the chemical extraction output from essential oil steam
distillation processes (output vector) and orange peel mass loading (input vector).
In a data pool of 25 extraction experiments, 14 output–input pairs were the in training
set, 6 in the testing set, and 5 cross-compared the model’s accuracy with traditional
numerical approaches.

Results and Discussion: After varying the number of nodes in the hidden layer, a
1–9–1 MLP topology best optimizes the statistical parameters (coefficient of
determination (R2) and mean square error) of the testing set, achieving a
precision of nearly 97.6%. Our model can capture non-linearity behavior when
scaling-up production output for mass production processes, thus providing a
viable answer for the scalability issue with a state-of-the-art computational tool
for planning, management, and mass production of citrus essential oils.
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1 Introduction

The essential oil market is a well-established industry with
interconnections with other industries, such as processed food,
perfume fragrance, and strategic sectors (Maurya et al., 2021;
Sharmeen et al., 2021; Israfi et al., 2022; Navarra et al., 2015; Bora
et al., 2020). The world market has not yet recovered from the massive
collapse of commerce during the COVID-19 pandemic and still shows
signs of deceleration, with orange production dropping from the
principal producers worldwide (Brazil, Florida, and Spain)
(United States Department of Agriculture, 2022). Consequently,
prices of citrus essential oils have reached unprecedented high
levels (Technavio, 2022), making it attractive for newcomer
producers to enter the market at least to cover local demand. The
city of Las Naves in the Ecuadorian province of Bolivar is an attractive
hub for citrus fruit production, with ambitious signs of expansion.
Ecuador’s national institution for statistics and census (Instituto
Nacional de Estadística y Censos—INEC) and the Ecuadorian
minister’s office for agriculture and livestock farming (Ministerio
de Agricultura y Ganadería—MAG) estimate a rise in orange
production to 110.472 tons in upcoming years. At a local level (in
other provinces in Ecuador), citrus fruit from Las Naves attracts high
demand and consumption, guaranteeing a vast source of citrus waste
that could ultimately serve in secondary product production.

Essential oils are organic compounds that provide the
characteristic odor to citrus fruits and are a principal
component of orange rind. The main component of citrus
essential oil is limonene; its empirical formula (C10H16) is a
monoterpene that exhibits two D- and L-limonene optical
isomers and the racemic combination known as dipentene
(González-Mas et al., 2019). Limonene is present in more than
49 volatile organic compounds (90% classified as terpenoid esters),
with concentrations depending on the fruit variety: 30%–40% in
bergamot, 40%–75% in lemon, and 68%–98% in sweet orange
(Moufida and Marzouk, 2003). Most of its chemical and
physical extraction processes rely on essential oil molecular
volatility (Balboa Laura, 2011), although the quality and
quantity of the essential oils in the fruit peel can impact the
extraction efficiency levels independently of the extraction
method (García, 2014). Microwave-assisted hydrodiffusion
stands out because it is solvent-free and highly efficient with a
short extraction time (Bustamante et al., 2016; Bora et al., 2020).
However, for any extraction method, a highly accurate predictive
model capable of determining extraction efficiency is very
important for the optimization and design of scalable extraction
pathways at various levels, such as in the laboratory or industry.

The wide set of variables and their non-linear and complex inter-
relations make predicting the extraction yield of essential oil a
challenging task. A lack of generality for mathematical models
also contributes to this difficulty, with models being extraction
technique-dependent (Berna et al., 2000; Sovová, 2005; Lainez-
Cerón et al., 2022; El Ouaddari et al., 2022). A prediction model
for steam distillation can even become obsolete with a variation in
the essential oil source (Gawde et al., 2014). The inadequacy of a
clear quality standard for a mathematical tool for predictions has led
researchers to use polynomial, exponential, and logarithmic fitting
tools to help at least with predictions in the locality (local space) of
the data points (Zlatev and Shivacheva, 2018; Fakayode and Abobi,
2018). The local space of these basic fitting types comes at the

expense of prediction capability away from the local domain—that is,
extrapolation, a prediction feature required to enable the scalability
of the extraction processes.

Artificial intelligence is a numerical approach that recognizes
internal patterns in data to identify and classify data into larger
sets. Artificial intelligent algorithms can then handle non-linearity
and complexity in data structure and predict outputs of numerical
processes (Meuwly, 2021). Given the complex nature of the variables
in chemical processes, artificial intelligence is a suitable tool for
formulating prediction models in this field. Steam distillation
extraction models with artificial neural network algorithms have
achieved remarkable accuracy in yield prediction of oil extraction
from the soil (Daryasafar et al., 2014). Optimization of operating
conditions in energy-intensive distillation processes can be explored
via a machine learning-based predictive model concluding with
recommendations for optimal steam flow that minimize energy
consumption and maximize production yield (Park et al., 2022).
We focus on developing an artificial intelligence model with a tool
for steam distillation yield prediction of essential oil extraction from
orange peel.

Using state-of-the-art artificial intelligence algorithms, this
work introduces a technique-independent predictive neural
network model for essential oil extraction from orange peel. We
present a multi-layer perceptron (MLP) artificial neural network
(ANN) with supervised learning. The model topological
architecture achieves its best prediction via internal node
adjusting of the model structure, while statistical error
descriptors of the testing set are optimized. The MLP ANN
handles input (orange peel mass) and output (essential oil mass)
data from steam distillation experiments. Steam distillation is the
most common technique at the laboratory level for essential oil
extraction (Ferhat et al., 2006) and works on the principle that oil
molecules diffuse when attached to water molecules in the vapor
state (Chandler, 2002). The mean square error (MSE) and the
coefficient of determination (R2) are the error descriptors of choice
to guide network optimization, as used elsewhere (Park et al.,
2022). A single hidden layer with nine neurons, back-
propagation, and neural weights adjusted using the
Levenberg–Marquardt algorithms optimizes the MSE and R2 of
the oil extraction model. This model approach paves the way for
planning and designing oil extraction processes at larger scales
than in the laboratory.

2 Methodology

2.1 Sample collection

Local farmers from the Ecuadorian province of Bolívar in Las
Naves city, 88 km northwest of Guaranda city, provided the Citrus
sinensis L. raw peel material. This raw peel is waste from the
production processes in the local citrus farms. The oranges used in
production processes at local farms in Las Naves have a °Brix/
Acidity index of 7. “°Brix” is a measure of the dissolved sugar in
aqueous substances. One °Brix is traditionally defined as 1 g of
sucrose in 100 g of water. “Acidity” is defined as titratable acidity,
which measures the total acid concentration of food (also called
total acidity). The reader can refer to Jayasena and Cameron
(2008) for further reading. °Brix/Acidity is a classification step
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taken by local farmers before they use the oranges for food
processing.

After we carefully transported the raw material to the city of
Guayaquil, a visual inspection selected peel material with undamaged
surfaces for the extraction experiments. We used cold water and a
piece of soft tissue paper to wash off strange stains on the orange rind.
The washed peel chunks went through a cut-down process to obtain
smaller regular pieces of approximately 1.5 × 1.1 cm2 to facilitate
essential oil extraction.

2.2 Steam distillation

The steam distillation equipment consisted of three main
parts: a Clevenger-type apparatus, a heat source, and a glass
spiral condenser. The glass tower consisted of two chambers: a
lower chamber containing 1250 L of distilled water and a
subsequent upper chamber containing the peel chunks. The
bottom chamber served as a steam source under heat. We used
five loading mass points (sample weight) of orange peel at 200,
300, 350, 400, and 500 g. Five steam distillation experimental
repetitions per mass point were the statistical baseline of the
artificial intelligence approach. This work performed a total of
25 distillation processes.

In each distillation experiment, the water vapor came from
heating the 1250 L of distilled water in the lower chamber at 120°C.
Vapor entered the upper chamber, separating the essential oil from
the chunks, given the molecular volatility of the desired
compounds. We later let it condense using the glass spiral
condenser at 21°C in a mixture of water and essential oil
molecules. An elapse time of 30 min for distillation proved
optimal, based on previous hydro-distillation studies
(Golmohammadi et al., 2018), to guarantee enough material
after the first condensed drop. The Clevenger-type apparatus
separated the resulting solution after condensation with the
extracted essential oil at the top of a marked two-phase liquid
given by the oil’s lower relative density.

2.3 Orange peel characterization

We followed the 930.15 method described by the Asociación de
Químicos Analíticos Oficiales (AQAO, 2019) for humidity
measurement. The underlying measurement principle was to detect
the weight lost due to evaporation when exposing the sample to 70°C
constant heating after a fixed amount of time. We used heating
intervals of 2 h at a fixed 70°C and measured the mass of the
washed peel pieces before and after the process. The mass value

after the process is the total solid parameter (manual N° 925, 10,
AOAC, 1997), and the mass difference with respect to the initial mass
is the humidity measure.

Potentiometric pH measurements were used to probe the acidity
of the peel samples (pH). The tried-and-tested 780 pH meter by
Metrohm was employed. By comparing a known voltage with an
unknown voltage according to the norm N° 981.12E, G, AOAC, 1997,
the pH is calculated for the sample.

Spectrophotometry (PHARMACIA model Ultrospec 3000)
measured the reducing sugar components of the orange peel in
collaboration with UBA-laboratories (Uba Lab, 2022). The
fundamentals of the principle can be found in Haldar et al.
(2017).

2.4 Computational methods

A multi-layer perceptron (MLP) neural network algorithm is the
artificial intelligence model of choice for our experiments due to its
compatibility with our data structure. MLP is a supervised learning
algorithm implemented and readily accessible in Matlab. A traditional
model architecture consists of numerous hidden layers between the input
and output layers, with some coded neurons per layer. We fixed the
number of hidden layers to one with a sigmoid activation function
between layers. The optimization process of the single hidden layer’s
architecture consisted of varying the internal number of neurons to
optimize a group of error descriptors: the MSE (minimization) and R2

(maximization) (Park et al., 2022)

MSE � 1
n
∑n
i�1

mexp
i −mpred

i( )2, (1)

R2 � 1 − ∑n
i�1 mexp

i −mpred
i( )2

∑n
i�1 mexp

i − �mexp
i( )2 , (2)

respectively. At a given mass loading level, n is the number of data
points in the mass loading set,mexp

i the observed yield values,mpred the
neuron network predicted value for the mass loading point, and �mexp

is the mass loading set mean. Our model used back-propagation to

TABLE 1 Classification scheme to consistently spot similar peel features for oil
extraction experiments.

Parameters (units) Standard

pH 4.84

Total solid (%) 22.92

Humidity (%) 77.08

Reducing sugar (%) 4.42

FIGURE 1
Extracted oil in terms of mass loading showing an extraction rate
faster than expected. The extraction rate scales at a non-linear rate
demonstrated by the first principal component in a PCA analysis.
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reinforce the model learning process, and we weighed the neuron
interconnection using the Levenberg–Marquardt algorithm
(Levenberg, 1944; Marquardt, 1963).

The model required a training and testing data set. The MLP
algorithm processes the mass loading values as input and the essential
oil extraction yield values as output. Of the 20 extraction experiments
(5 per each 200, 300, 400, and 500 g mass loading point), data (mass
loading and extraction yield) from70% (14) of the experiments comprised
the training data set. The remaining 30% (from the other six experiments)
corresponded to the neural network testing set. We also used data from
the testing set to compute the MSE and R2 descriptor in every iteration of
the architectural restructuring. The 350 g set (data from five experiments
are 350 g of mass loading) benchmarked the model’s predictive
capabilities and compared it against traditional linear, logarithmic, and
polynomial fitting curves.

2.5 Principal component analysis

Say we have a data matrix X, of n×p dimension, where the
columns are the data features of interest, and the rows are the
number of measurements for each feature. A principal component
analysis focuses on determining a reduced number of features that
encapsulate most of the information (variance) of the data set. We
achieve this feature-dimensional-reducing property by computing
the equation

M � XV, (3)
whereM is the reduced components representing most of the original
information and V is the normalized eigenvector matrix of the
variance matrix σ, σ � X̂

T
X̂ and T means the real matrix transpose

operation.

TABLE 2 Extraction yield of each mass loading with five repetitions per set. Values in parenthesis are part of the t-distribution confidence interval at the last significant
figure.

Sample weight (g) Extracted oil (g) Yield (%) Mean yield (%)

A B 100*A/B

200 0.1240 0.0620 0.0623(8)

0.1245 0.0623

0.1234 0.0617

0.1265 0.0633

0.1255 0.0628

300 0.2935 0.0978 0.097(1)

0.2925 0.0975

0.2945 0.0982

0.2885 0.0962

0.2902 0.0967

350 0.4058 0.1159 0.116(6)

0.4214 0.1204

0.3981 0.1137

0.4296 0.1227

0.3721 0.1063

400 0.5834 0.1459 0.147(2)

0.5850 0.1463

0.5819 0.1455

0.5960 0.1490

0.5932 0.1483

500 0.8413 0.1683 0.168(1)

0.8315 0.1663

0.8417 0.1684

0.8412 0.1682

0.8342 0.1668
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The matrix X̂ is obtained after subtracting the average value of a
feature from its corresponding feature column.

For our data set, the entries in matrix X are the extracted essential
oil percentages. The matrix is

X �

0.062 0.0978 0.1159 0.1459 0.1683
0.0623 0.0975 0.1204 0.1463 0.1663
0.0617 0.0982 0.1137 0.1455 0.1684
0.0633 0.0962 0.1227 0.149 0.1682
0.0628 0.0967 0.1063 0.1483 0.1668

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (4)

where the columns are, from left to right, the orange peel mass
loadings 200 g, 300 g, 350 g, 400 g, and 500 g. The rows are the five
experiments we performed per mass loading.

After subtracting the average-extracted essential oil percentage for a
givenmass loading value from its corresponding column, we find that σ is

106σ �

1.628 −2.078 3.38 3.88 −0.49
−2.078 2.668 −2.81 −5.02 0.63
3.38 −2.81 163.44 1.27 4.15
3.88 −5.02 1.27 9.64 −0.9
−0.49 0.63 4.15 −0.9 3.82

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (5)

We introduce factor 106 to ease the matrix visualization for the reader.
The eigenvalues of σ are 163.681, 13.934, 3.569, 0.012, and 0 with their
respective eigenvectors.

• (0.8237,−0.695018, 38.801, 0.3574, 1)
• (−2.6767, 3.46971, 0.15437,−6.63946, 1)
• (0.0000611,−0.013081,−0.027326, 0.143118, 1)

• (5.99646,−11.061,−0.27701,−8.0537, 1)
• (50.9817, 30.863,−0.515781,−4.28649, 1)

We choseV to be a column vector with the normalized eigenvector
for the eigenvalue 163.681, which is the first principal component.

With V defined, the matrix XTV reduced the number of
measurements to the one representing the most data so that we
could obtain a reliable representation of the data structure as a
function of mass loading. We referred to the reduced measurement
as the first component measurement.

3 Results and discussion

A homogeneous sample quality guaranteed enhanced statistical
confidence in the data and thus improved the model’s prediction
accuracy. We implemented a quality control scheme where, after the
peel washing step described in Section 2, the regular peel chunks that
fell within a 5% confidence interval relative to the standards in Table 1
were selected for the extraction experiments. High humidity was
desirable so that an even molecular mixture (water + limonene oil
molecules in the orange peel) would boil at lower boiling points than
the separate liquids while steam flowed through the sample in the
steam distillation experiments.

Figure 1 and Table 2 summarize the experimental results at 200 g,
300 g, 350 g, 400 g, and 500 g mass loading levels with the washed
regular chunks of orange rind after the extraction treatment. Yield
figures are comparable with literature reports for steam distillation of
essential oil fromC. sinensis peel (Blanco Tirado et al., 1995; deMoraes
Pultrini et al., 2006).

As the mass loading increases, the extracted essential oil mass should
linearly augment in the distillation process as depicted in Figure 1.
However, the extraction yield scales up with the mass loading at a
faster rate than the linear trend, rendering a positive over-extraction.
This analysis is further supported by a principal analysis component
developed in Section 2.5, with data increasing non-linearly with respect to
the mass loading. This behavior makes the data structure ideal for non-
linear numerical processes such as in theMLP algorithm. A t-distribution
confidence interval analysis with 95% confidence and four degrees of
freedom further supports the over-linear increase of the extraction yield.
The t-distribution estimations (Column 4 in Table 2) suggest a more
efficient extraction with sample weight.

Sun et al. (2017) also reported an over-linear dependency between
the extraction yield and sample weight. Although the reason behind
this dependency is beyond our current scope, we theorize that larger
sample weights render an enhanced molecular diffusion across the
orange peel–water interface. A larger loading mass occupies a larger
space in the mass loading chamber, reducing the mixture’s boiling

FIGURE 2
Results of the MLP neural network learning process with (A) the
optimization process of the fitting parameters MSE and R2 for the testing
set and (B) yield prediction for the verification set - 350 g.

TABLE 3 Neuron network prediction capabilities against other common models.

Model R2 Predicted yield for 350 g Error (%)

Lineal 0.9792 0.130 12.608

Logarithm 0.9795 0.125 8.031

Polynomial 0.9862 0.126 8.377

Neural network 0.9929 0.118 2.443
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point (water vapor + essential oil molecules), thus promoting more
material extraction. We will investigate this in more detail in
subsequent research.

The MLP neural network shows promising results in Figure 2,
predicting the extraction oil yield as a function of the neuron numbers
for the 350-g sample set. Figure 2A shows the evolution of the error
descriptors (MSE and R2) while the number of neurons increases in the
network’s hidden layer. R2 stabilizes after six neurons, reaching a
plateau afterward, while MSE bounces during the neuron number
increment. Figure 2B describes the evolution of the predicted values
from the network given a denser hidden layer.

We observe a clear correlation between the MLP’s predictions in
Figure 2B and MSE in 2A. Numerical analysis demonstrates the MSE’s
correlation with themodel predictions stems from theMSE’s sensitivity to
spiking values in theMLPmodel.We define a spiking value asmpred falling
into the range of more than three sigma errors about �mexp. Conversely,
although R2 exhibits some spiking behavior at low neuron numbers
(Figure 2A), this error descriptor stabilizes as the neuron number
increases, given the weighing denominator in Equation 2. While the
neuron number increases, R2 compounds the effects of both the predicted
and mean values of the sample weight sets, diluting any spiking behavior
from the predicting algorithm. The different sensitivity levels to the
statistical data of both R2 and MSE show the importance of utilizing
more than one error descriptor during the network outcome
optimization. The optimization process demonstrates that the optimal
neuron number to use in the hidden layer is 9, based on two findings: a
stable R2 andMSE and predictive values within themean yield confidence
interval for the 350 g set - (0.110, 0.122).

The predictive capacity of the network outperforms other more
common mathematical models widely used in the literature (Zlatev
and Shivacheva, 2018; Fakayode and Abobi, 2018), as observed in
Table 3, with the highest R2 for the MLP neuron network. Our MLP
model shows clear advantages over other models in accurately
predicting the extraction yield for the 350-g mass loading set
located in the vicinity of the sample weight range (from 200 to
500 g). With larger training sets, MLP should accurately predict the
extraction values far from the training sample weight range. This
feature is relevant for planning and designing scalable industrial
extraction processes and is a valuable approach for initiating the
leap from the laboratory to industrial scale-up.

4 Conclusion

We developed an innovative and alternative approach for an oil
extraction yield predictor using state-of-the-art artificial intelligence
algorithms. We use steam-distilled essential oil extraction data from
orange peel to train a multi-layer perceptron (MLP) neural network in

a supervised learning approach to achieve an accuracy beyond the
standard predicting models in the literature. By simultaneously
optimizing two fitting parameters (R2 and MSE), we demonstrate
that the MLP neural network achieves its optimal architecture with
one hidden layer and nine neurons, obtaining accuracy and predicting
capabilities at R2 = 0.9929 and EMC% = 0.0040 for the validation
sample set. The model developed in this work has the potential to
unlock prediction capabilities in line with scalable design to bring lab-
based production prototypes to an industrial level, thus being a viable
path for a temporary solution for the citrus oil market.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

SF: supervision, writing—review and editing, project
administration, and conceptualization. AF: writing—original draft,
investigation, and formal analysis. MM: methodology. GPF: writing.
GPG: validation, supervision, and writing—review and editing.

Acknowledgments

We acknowledge the support of the chemistry department at the
Universidad de Guayaquil in allowing us to publish this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

AQAO (2019). The AOAC 21st edition of the official methods of analysis available at
official methods of analysis. Rockville, Maryland: AOAC International.

Balboa Laura, M. H. (2011). Obtención experimental de aceite esencial y subproducto a
partir de la cascara de naranja (citrus sinesis). La Paz, Bolivia: Bachelor’s thesis,
Universidad Mayor de San Andrés.

Berna, A., Tárrega, A., Blasco, M., and Subirats, S. (2000). Supercritical CO2 extraction of
essential oil from orange peel; effect of the height of the bed. J. Supercrit. Fluids 18,
227–237. doi:10.1016/S0896-8446(00)00082-6

Blanco Tirado, C., Stashenko, E., Combariza,M., andMartinez, J. (1995). Comparative study
of colombian citrus oils by high-resolution gas chromatography and gas chromatography-
mass spectrometry. J. Chromatogr. A 697, 501–513. doi:10.1016/0021-9673(94)00955-9

Bora, H., Kamle, M., Mahato, D. K., Tiwari, P., and Kumar, P. (2020). Citrus essential
oils (CEOs) and their applications in food: An overview. Plants (Basel, Switz. 9, 357. doi:10.
3390/plants9030357

Bustamante, J., van Stempvoort, S., García-Gallarreta, M., Houghton, J. A., Briers, H.
K., Budarin, V. L., et al. (2016). Microwave assisted hydro-distillation of essential oils

Frontiers in Chemical Engineering frontiersin.org06

Fajardo Muñoz et al. 10.3389/fceng.2022.1055744

https://doi.org/10.1016/S0896-8446(00)00082-6
https://doi.org/10.1016/0021-9673(94)00955-9
https://doi.org/10.3390/plants9030357
https://doi.org/10.3390/plants9030357
https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2022.1055744


from wet citrus peel waste. J. Clean. Prod. 137, 598–605. doi:10.1016/j.jclepro.2016.
07.108

Chandler, D. (2002). Hydrophobicity: Two faces of water. Nature 417, 491. doi:10.1038/
417491a

Daryasafar, A., Ahadi, A., and Kharrat, R. (2014). Modeling of steam distillation
mechanism during steam injection process using artificial intelligence. Sci. World J.
2014, 1–8. doi:10.1155/2014/246589

deMoraes Pultrini, A., Almeida Galindo, L., and Costa, M. (2006). Effects of the essential
oil from citrus aurantium l. in experimental anxiety models in mice. Life Sci. 78,
1720–1725. doi:10.1016/j.lfs.2005.08.004

El Ouaddari, A., El Amrani, A., Jamal Eddine, J., and Antonio Cayuela-Sánchez, J.
(2022). Rapid prediction of essential oils major components by vis/nirs models using
compositional methods. Results Chem. 4, 100562. doi:10.1016/j.rechem.2022.100562

Fakayode, O. A., and Abobi, K. E. (2018). Optimization of oil and pectin extraction from
orange (citrus sinensis) peels: A response surface approach. J. Anal. Sci. Technol. 9, 20.
doi:10.1186/s40543-018-0151-3

Ferhat, M. A., Meklati, B. Y., Smadja, J., and Chemat, F. (2006). An improved microwave
clevenger apparatus for distillation of essential oils from orange peel. J. Chromatogr.
APlant Analysis 1112, 121–126. doi:10.1016/j.chroma.2005.12.030

García, R. T. (2014). Obtención de aceite esencial de citronela (cymbopogon winterianus)
extraído por arrastre con vapor a escala piloto: Estudio de la influencia de variables en el
rendimiento y la calidad del aceite. Master’s thesis, Universidad Tecnológica Nacional -
Facultad Regional Resistencia.

Gawde, A., Cantrell, C. L., Zheljazkov, V. D., Astatkie, T., and Schlegel, V. (2014). Steam
distillation extraction kinetics regression models to predict essential oil yield, composition,
and bioactivity of chamomile oil. Industrial Crops Prod. 58, 61–67. doi:10.1016/j.indcrop.
2014.04.001

Golmohammadi, M., Borghei, A., Zenouzi, A., Ashrafi, N., and Taherzadeh, M. J. (2018).
Optimization of essential oil extraction from orange peels using steam explosion. Heliyon
4, e00893. doi:10.1016/j.heliyon.2018.e00893

González-Mas, M. C., Rambla, J. L., López-Gresa, M. P., Blázquez, M. A., and Granell, A.
(2019). Volatile compounds in citrus essential oils: A comprehensive review. Front. Plant
Sci. 10, 12. doi:10.3389/fpls.2019.00012

Haldar, D., Sen, D., and Gayen, K. (2017). Development of spectrophotometric method
for the analysis of multi-component carbohydrate mixture of different moieties. Appl.
Biochem. Biotechnol. 181, 1416–1434. doi:10.1007/s12010-016-2293-3

Israfi, N. A. M., Ali, M. I. A. M., Manickam, S., Sun, X., Goh, B. H., Tang, S. Y., et al.
(2022). Essential oils and plant extracts for tropical fruits protection: From farm to table.
Front. Plant Sci. 13, 999270. doi:10.3389/fpls.2022.999270

Jayasena, V., and Cameron, I. (2008). °Brix/Acid ratio as A predictor of consumer
acceptability of crimson seedless table grapes. J. Food Qual. 31, 736–750. doi:10.1111/j.
1745-4557.2008.00231.x

Lainez-Cerón, E., Ramírez-Corona, N., López-Malo, A., and Franco-Vega, A. (2022). An
overview of mathematical modeling for conventional and intensified processes for
extracting essential oils. Chem. Eng. Process. - Process Intensif. 178, 109032. doi:10.
1016/j.cep.2022.109032

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least
squares. Q. Appl. Math. 2, 164–168. doi:10.1090/qam/10666

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear
parameters. J. Soc. Industrial Appl. Math. 11, 431–441. doi:10.1137/0111030

Maurya, A., Prasad, J., Das, S., and Dwivedy, A. K. (2021). Essential oils and their
application in food safety. Front. Sustain. Food Syst. 5. doi:10.3389/fsufs.2021.653420

Meuwly, M. (2021). Machine learning for chemical reactions. Chem. Rev. 121,
10218–10239. doi:10.1021/acs.chemrev.1c00033

Moufida, S., and Marzouk, B. (2003). Biochemical characterization of blood orange,
sweet orange, lemon, bergamot and bitter orange. Phytochemistry 62, 1283–1289. Reports
on Structure Elucidation. doi:10.1016/S0031-9422(02)00631-3

Navarra, M., Mannucci, C., Delbò, M., and Calapai, G. (2015). Citrus bergamia essential
oil: From basic research to clinical application. Front. Pharmacol. 6, 36. doi:10.3389/fphar.
2015.00036

Park, H., Kwon, H., Cho, H., and Kim, J. (2022). A framework for energy optimization of
distillation process using machine learning-based predictive model. Energy Sci. Eng. 10,
1913–1924. doi:10.1002/ese3.1134

Sharmeen, J. B., Mahomoodally, F. M., Zengin, G., and Maggi, F. (2021). Essential oils as
natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 26,
666. doi:10.3390/molecules26030666

Sovová, H. (2005). Mathematical model for supercritical fluid extraction of natural
products and extraction curve evaluation. J. Supercrit. Fluids 33, 35–52. doi:10.1016/j.
supflu.2004.03.005

Sun, S.-H., Chai, G.-B., Li, P., Xie, J.-P., and Su, Y. (2017). Steam distillation/drop-by-
drop extraction with gas chromatography–mass spectrometry for fast determination of
volatile components in jujube (ziziphus jujuba mill.) extract. Chem. Central J. 11, 101.
doi:10.1186/s13065-017-0329-6

Technavio (2022). Citrus oils market by application and geography - forecast and analysis
2022-2026. Elmhurst, IL, United States: Technavio.

Uba Lab (2022). Further information about uba-lab. Guayaquil, Ecuador: Analytical
Laboratories Testing & Consulting. Available at: https://www.uba-lab.com/.

United States Department of Agriculture (2022). Citrus: World markets and trade.
Washington, United States: United States Department of Agriculture, Foreign Agricultural
Service.

Zlatev, Z., and Shivacheva, G. (2018). Yield analysis of essential oils extracted by
steam distillation. Appl. Res. Tech. Technol. Educ. 6, 300–305. doi:10.15547/artte.
2018.04.003

Frontiers in Chemical Engineering frontiersin.org07

Fajardo Muñoz et al. 10.3389/fceng.2022.1055744

https://doi.org/10.1016/j.jclepro.2016.07.108
https://doi.org/10.1016/j.jclepro.2016.07.108
https://doi.org/10.1038/417491a
https://doi.org/10.1038/417491a
https://doi.org/10.1155/2014/246589
https://doi.org/10.1016/j.lfs.2005.08.004
https://doi.org/10.1016/j.rechem.2022.100562
https://doi.org/10.1186/s40543-018-0151-3
https://doi.org/10.1016/j.chroma.2005.12.030
https://doi.org/10.1016/j.indcrop.2014.04.001
https://doi.org/10.1016/j.indcrop.2014.04.001
https://doi.org/10.1016/j.heliyon.2018.e00893
https://doi.org/10.3389/fpls.2019.00012
https://doi.org/10.1007/s12010-016-2293-3
https://doi.org/10.3389/fpls.2022.999270
https://doi.org/10.1111/j.1745-4557.2008.00231.x
https://doi.org/10.1111/j.1745-4557.2008.00231.x
https://doi.org/10.1016/j.cep.2022.109032
https://doi.org/10.1016/j.cep.2022.109032
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.3389/fsufs.2021.653420
https://doi.org/10.1021/acs.chemrev.1c00033
https://doi.org/10.1016/S0031-9422(02)00631-3
https://doi.org/10.3389/fphar.2015.00036
https://doi.org/10.3389/fphar.2015.00036
https://doi.org/10.1002/ese3.1134
https://doi.org/10.3390/molecules26030666
https://doi.org/10.1016/j.supflu.2004.03.005
https://doi.org/10.1016/j.supflu.2004.03.005
https://doi.org/10.1186/s13065-017-0329-6
https://www.uba-lab.com/
https://doi.org/10.15547/artte.2018.04.003
https://doi.org/10.15547/artte.2018.04.003
https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2022.1055744

	Artificial intelligence models for yield efficiency optimization, prediction, and production scalability of essential oil e ...
	1 Introduction
	2 Methodology
	2.1 Sample collection
	2.2 Steam distillation
	2.3 Orange peel characterization
	2.4 Computational methods
	2.5 Principal component analysis

	3 Results and discussion
	4 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


