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Introduction: For the implementation of robust bioprocesses, understanding

of temporal cell behavior with respect to relevant inputs is crucial. Intensified

Design of Experiments (iDoE) is an efficient tool to assess the joint influence

of input parameters by including intra-experimental changes.

Methods:We applied iDoE to the production phase of amonoclonal antibody in

a mammalian bioprocess. The multidimensional design space spanned by

temperature, dissolved oxygen (DO), timing of change, and growth category

was investigated in 12 cultivations. We built ordinary least squares (OLS) and

hybridmodels (HM) on the iDoE-data, validated themwith classical DoE (cDoE)-

derived data, and used the models as in silico representation for process

optimization.

Results: If the complexity of interactions between changing setpoints of inputs

is sufficiently captured during planning and modeling, iDoE proved to be valid

for characterizing the mammalian biopharmaceutical production phase. For

local behavior and flexible composition of optimization goals, OLS regressions

can easily be implemented. To predict global and interconnected dynamics

while incorporating mass balances, HM holds potential.

Discussion: iDoE will boost protocols that optimize inputs for different

bioprocess phases. The described key aspects of OLS- and HM-based

analyses of iDoE-data shall guide future applications during manufacturing.
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Introduction

In bioprocess development, the quality-by-design (QbD)

principle asks for representative models that reliably predict

outcomes of future batches (Val et al., 2010). This approach

fosters a better understanding of biological mechanisms and

enables model-based process optimization (Schmidberger

et al., 2015; Kappatou et al., 2018). If adhered to early during

bioprocess development, QbD may accelerate later development

steps by maximizing knowledge gain (Möller and Pörtner, 2017;

Politis et al., 2017).

One versatile tool in the QbD-framework is classical

design of experiments (cDoE). It allows to study the

multivariate influence of input parameters on output

parameters. Inputs are controllable conditions that are

directly adjustable throughout the process. Outputs are

read outs indicating process performance or product

quality that cannot be directly adjusted but are a

consequence of the inputs. In cDoE, combinations of input

parameters can be investigated simultaneously and thus

allows to resolve multivariate interactions. Moreover,

replicates within the multi-dimensional design space

increase the statistical power to detect effects over noise.

These aspects make cDoE more informative and affordable

than one-factor-at-a-time experiments (Politis et al., 2017).

Using fixed process parameter setpoints for each individual

bioreactor, cDoE is well suited to elucidate static relationships

between inputs and outputs. Use cases of cDoE in chemical

manufacturing and control are for example scale-down

models (Legmann et al., 2009), validation of control

parameters in process characterization studies (Moran

et al., 2000), and static optimization (Ling et al., 2015).

Response surface models based on OLS regression are

typical outcomes of cDoE analyses (Ramírez et al., 2001;

Torkashvand et al., 2015).

Opposed to constant input settings throughout the

experiment in cDoE, iDoE permits intra-experimental

setpoint changes of inputs. This changing of setpoints is

possible in experiments that feature a temporal component.

It enables covering of several input combinations within one

bioreactor and thus can increase the efficiency of data

generation. Successful application of iDoE was reported

previously for Escherichia coli processes (Stosch et al., 2016;

Stosch and Willis, 2017; Bayer et al., 2020a; Bayer et al., 2021a).

For the growth phase of mammalian bioprocesses, the technical

and biological feasibility of iDoE was furthermore shown (Nold

et al., 2021). However, the potential of iDoE to study the

production phase and optimize protocols for mammalian

bioprocesses had not been explored.

The overarching goal was thus to test whether iDoE is

applicable to the production phase of mammalian

bioprocesses. One goal of the present study was to validate in

silico predicted optimal input setpoints for the growth phase of

the previously reported mammalian bioprocess (Nold et al.,

2021). The optimization aimed for a higher viable cell density

(VCD) on day six compared to VCDs measured in bioreactors

operated at standard settings.

The second goal was to address whether the cells would

respond to changes of input settings during the production

phase. Our third goal was to determine how iDoE-based data

of the production phase could best be analyzed. Closely related to

this goal is the question (3.1) how the transition from growth to

production phase may be modelled in the context of differing

exposure history and intra-experimental changes to input

settings. (3.2) A critical evaluation step for the suitedness of

analyses is whether the resulting models are predictive for

independently collected data (Rajamanickam et al., 2021).

(3.3) A further aspect is whether the models can be used to

optimize the process they are built for. Two analyses approaches,

OLS regressions and hybrid modelling, had been suggested for

iDoE data and are described head-to-head while addressing the

subtopics of goal 3.

To account for offsets due to intra-experimental changes of

input setpoints, iDoE-stage-wise rebasing was suggested for OLS-

based analyses of iDoE-data collected during the growth phase of

mammalian bioprocesses (Nold et al., 2021). An iDoE-stage is

defined by scheduled changes of input setpoints. In the same

publication, the separate modeling of each iDoE-stage and

subsequent concatenation was shown (Nold et al., 2021). The

potential to combine data of iDoE-stages in a joint model so far

was not explored. Further, the inclusion of different starting

states reflecting different histories of the cultivation as additional

input parameters to the model had not been covered with OLS-

based analyses of iDoE-data. Both options were thus tested in

pursuit of goal 3.1 for OLS modelling.

As alternative to OLS regression, HM which serially

combines machine learning and mechanistic modeling was

proposed to describe iDoE-data (Bayer et al., 2021a). This

combination is thought to overcome the drawbacks of the

individual analysis approaches: limited interpretability of

machine learning-based models and substantial efforts to

gain and express mechanistic knowledge in differential

equations (Saleh et al., 2021). The differential equations

define how change rates estimated from the iDoE-data are

connected (Narayanan et al., 2019; Bayer et al., 2020b).

Additionally, online data can be integrated into the HM.

This helps to account for variations in the inputs. The

suitedness of HM for iDoE-data originating from the
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production phase of mammalian bioprocesses had not been

proven so far (Möller et al., 2019).

Given the complexity of the adapted OLS and hybrid

modelling approach, our fourth goal was to illustrate for

future users how these methods can be applied to iDoE data

collected during the production phase. We describe in detail how

research questions and data structures impact modelling

approaches. As guidance, we furthermore report the critical

points to consider at each step of the workflows. Together,

sophisticated planning and analyzing of iDoE feeds into

reaching the final goal: the use of iDoE as novel tool to speed

up the development of biopharmaceuticals that addresses unmet

medical needs.

Materials and methods

Design planning and evaluation

A D-optimal design for 12 bioreactors was created and

evaluated in Design Expert® Version 13 (StatEase). The design

comprises three numerical input parameters: temperature

(3 setpoints covering a range of 4°C: 32.5°C, 34.5°C, 36.5°C),

DO (3 setpoints covering a range of 80%: 10%, 50%, 90%), and

timing of the setpoint change relative to the culture duration

(3 setpoints: day 6, 9, 11). For each input parameter, the lowest

setpoint is represented as -1, the center point is coded as 0, and

the highest setpoint is coded as + 1. Two levels of the categorical

input parameter growth condition were furthermore considered.

One level, termed “platform growth”, represented the exposure to

standard levels for DO and temperature (both coded as 0), the

second level, termed “optimized growth”, represented the

optimal input levels identified in a previous iDoE to maximize

cell growth (DO at the -.5-level, temperature at the + 1-level)

(Nold et al., 2021). The growth phase lasted from day 0–6. The

remaining days of the culture process (7–14) were divided into

three iDoE stages: stage I lasting from day 6–9, stage II lasting

from day 9–11, and stage III lasting from day 11–14. The

D-optimal design obtained from the commercial software

solution was modified manually to have balanced numbers of

high and low setpoints for temperature and DO across all

samples, but not necessarily within one bioreactor. Two

bioreactors (1 and 10) constituted cDoE-like controls without

scheduled changes of the input settings.

FIGURE 1
Visualization of the Conducted iDoE for the Investigation of the Effect of the Input Parameters Temperature and DO Over Time During the
Production Phase of a Mammalian Cell Culture Process. (A) Coverage of the design space defined by temperature and DO by the varying input
parameter setpoints applied to the bioreactors over the course of the four experimental stages. Only one replicate per stage is depicted, while there
were 7, 7, 3, and 6 sampling time points in the growth phase, iDoE stage I, II, and III, respectively. (B) Visuali zation of the design space coverage in
three dimensions for bioreactors operated at platform (left) or optimized (right) growth settings. Changes of the input parameter setpoints of
temperature (C) and DO (D) during day five and harvest are visualized with a jitter in the y-axis and diagonal connections instead of vertical steps to
avoid overlay of the lines.
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An underlying model structure containing all model terms

representing main, quadratic and two factorial interaction effects

was assumed. The iDoE was evaluated regarding the statistical

power to detect effects of these model terms when assuming

effect sizes of three relative to the noise of measurement

imprecision and setting the significance level to 5%. The

correlations of model terms for the given design were

evaluated in addition and evaluated regarding their criticality.

Moreover, the leverage of the planned design points was checked

and the saturation of the design relative to the degrees of freedom

required for the full model structure was considered during DoE

evaluation. Once the wet-lab data was available, the assumed

underlying modelling structure was adjusted and thus re-

evaluated (see Results section).

Cell culture

A Chinese hamster ovary (CHO)-K1 GS cell line producing

an immunoglobulin G4 (IgG4) monoclonal antibody was

cultivated in suspension using chemically defined media and

feeds. Media and bioreactors are proprietary (Boehringer

Ingelheim Pharma GmbH and Co. KG, Ingelheim, Germany).

Seed cultures were performed in shake flasks until the N-2 stage,

followed by a controlled N-1 batch culture carried out in a 12 L-

glass bioreactor. iDoE experiments were conducted in fed-batch

mode in 3 L-glass bioreactors throughout the 14-day process. All

3 L vessels were inoculated from the same 12 L pre-stage.

Temperature, DO, and pH were controlled using online

sensors. Temperature and DO setpoints were changed

according to the planned iDoE. Feed medium containing

glucose was added with a constant rate of 3% (v/v) per day,

based on the starting volume. If needed to maintain an optimal

concentration, glucose was added as a bolus on a day-to-day

basis.

Process analytics

Routine cultivation samples were taken daily over the entire

culture duration. Additional sampling was performed from day

6–14. Total cell density (TCD), and VCD were measured using

an automated cell counter (Cedex, Roche, Switzerland;

measurement error max. 15%), based on an image

classification following trypan blue exclusion staining and

used to calculate viability. Offline pH, pCO2 and pO2 were

determined with a blood gas analyzer (Rapidlab™, Siemens

Healthcare GmbH, Germany). Glucose and lactate were

measured in cell free samples using photometric assays

combined in an automated wet chemical analyzer (Konelelab

Prime 60i, Thermo Fisher Scientific, United States; measurement

error max. 7%). Titer was quantified with a Protein-A-HPLC

method (Thermo Fischer Scientific, United States; measurement

error max. 6%).

FIGURE 2
Cultured Mammalian Cells Show Different Trajectories for Measured Outputs in the Fed-Batch Process Dependent on the Input Parameter
Setpoints of DO and Temperature. (A) VCD (B) Viability (C) Glucose (D) Titer. Dependent on the input parameter settings the cells were exposed to
during the growth phase from day 0–6, the data of the bioreactors is separated into growth optimized and growth at platform condition.
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Data pre-processing

The output parameters were scaled between 0 and 1 for

reporting purposes. Different approaches were applied to the

input parameters during analysis with OLS and HM. For the

OLS regressions, the input parameters were coded between

-1 and +1. This approach was chosen to align the analysis with

the statistical planning as described (see Design Planning and

Evaluation section). Further, it illustrates that simply using

the design matrix of inputs (instead of processing and using

the measured online data) is possible for iDoE-derived data.

For HM, more details of the actual input parameters per time

point were considered by using the online measurements. A

z-score standardization [also termed autoscaling (Penza and

Cassano, 2004)] was applied to the online data. The z-scores

result from division of the measured values with their

standard deviation. The z-standardization mitigates

quantitative effects. Using z-standardized values for the

HM is an approach to specifically account for the iDoE-

typical changes of input parameter settings over time.

iDoE-adapted ordinary least squares
modeling

Processing, visualization, and analysis of data were

performed using R version 4.0.2. Given the focus of the iDoE

to study the production phase, the output measurements from

day six onwards were used and statistically analyzed. We

accounted for potential offsets originating from previous input

settings by a so-called rebasing. Here, the measurements within

each bioreactor were rebased stage-wise by subtracting the initial

value of the currently investigated stage from the values of the

respective stage. The initial VCD value per stage and bioreactor

was used as additional input parameter. For the model of iDoE

stage I, the initial VCD value served as a proxy for the two

FIGURE 3
Fitting of Concatenated Model Predictions based on iDoE Data with VCD Measurements Obtained During the Conducted iDoE. Measured data
points (colored symbols) are overlayed on mean predictions (solid lines) and the 95% prediction intervals (dashed lines) of the concatenated models
of iDoE stage I and iDoE stage II joint with III for bioreactor 12 (A), 11 (B), and 9 (C). Accuracy of concatenated predictions over scaled measured
values (D).
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different growth categories. For iDoE stage II and III, it served as

a proxy for differing states of the process that would originate

from different input histories. Up to three-factorial interactions

(including quadratic effects of each input parameter) were

eligible to define the complexity of the full OLS model

structure for each individual output. The coded design matrix

for these potential model terms was defined based on the input

parameter setpoints using polynomial contrast coding.

Bidirectional selection of model terms optimizing the

corrected Akaike information criterion was used to select the

final model for each output and iDoE stage I as well as jointly for

stage II and III (Seber et al., 1994; Kletting and Glatting, 2009). A

visual inspection of the model residuals was undertaken to assess

whether the underlying assumptions of the modeling approach

(i.e., homogeneity of variance and Gaussian distribution of the

residuals) were fulfilled. Model validity was assessed numerically

using the root mean squared error (RMSE). Further, the amount

of explained variance (R2), R2
adjusted and R2

predicted which was

obtained by leave-one-out cross validation and PRESS

statistics (Ronchetti et al., 1997; Browne, 2000; Borra and

Ciaccio, 2010; Yarkoni and Westfall, 2017) were computed. In

addition, the mean predictions and 95% prediction intervals (PIs)

of the models per stage were concatenated and plotted alongside

the scaled output parameters. This linking of models has

previously been proposed for modeling biopharmaceutical

process replicas (Zahel et al., 2017; Nold et al., 2021).

Hybrid modeling

The HM was accomplished in the Novasign GmbH (Vienna,

Austria) HM toolbox. It was used to address different research

questions than the OLS-based models. Its suitability on

predicting growth and production phase globally was tested.

Whereas the output parameters are separately modeled in the

OLS-based models, the HM approach jointly described the

outputs TCD, VCD, product titer, and glucose concentration

based on the input parameters temperature, DO, time point, and

glucose feed. Viability was calculated separately as the ratio

between TCD and VCD. Thereby an unnecessary increase of

model complexity is avoided and the bias of the model towards

cell density-associated measurements is reduced. Supplementary

Figure S18 describes the structure of the serial hybrid model in

more detail.

The values of the specific growth rate of all cells μt, the

viable cells μv, the product formation rate vp/x, and the glucose

consumption rate vgluc are estimated by an artificial neural

network (ANN) as a function of the inputs temperature, DO,

and the predictions of the previous time step of each output

parameter (Eq. 1). By using the predictions of the previous

time step, the history was considered. Subsequently, these

rates were used in the mechanistic part of the model (Eqs 2–5)

to provide time-step-based, concatenated predictions of the

output parameters. Further, information on the glucose

concentration in the continuous and the bolus feed was

added to the mechanistic part of the model. The dilution

rate D describes the volume change due to the ratio

between the flow of all volume additions into the reactor

i.e., substrate and glucose bolus feed, and the overall reactor

volume comprising the initial volume plus all these added

volumes. The “−1” in the indices of Eq. 1 indicates that

the value of the previous time point, incorporating the

recent history of the output parameters, is used for the

propagation.

µt, µv, vp/x , vgluc � f temperature, DO,XTt−1,XVt−1 ,Pt−1gcRt−1( )
(1)

dXT

dt
� µt ·XT − D ·XT (2)

dXV

dt
� µv ·XV − D ·XV (3)

dP
dt

� vp/x ·XV − D · P (4)
dgcR
dt

� −vgluc ·XV + D · gcF − gcR( ) (5)

XT = TCD [scaled]

XV = VCD [scaled]

P = product titer [scaled]

t-1 = previous time step

gcF = glucose concentration in the feed [scaled]

gcR = glucose concentration in the reactor [scaled]

D = dilution rate (h−1)

Internal cross validation was performed to find the optimal

hyperparameters of the ANN, namely the number of neurons

and hidden layers. To this end, the data were split into a training

and a test partition. The hyperparameters were selected based on

the minimization of the error in the training and test partition.

Ideally, the data split would consider the distribution of replicates

in a way that a setting included in the training partition is not also

present in the test partition, because this would cause overly

optimistic error estimates (McCarthy, 1976). In a small data set

with discrete input parameter setpoints, this is not always

possible. The omission of entire design points could,

dependent on the leverage of this data point,

disproportionately distort the resulting model (Næs and

Ellekjær, 1993; Meloun et al., 2011; Saeb et al., 2017). Thus,

random data partitioning with a split ratio of ~.83 (ten

experiments for training, two for testing) was used. The ANN,

which minimized the error on the training and test data partition

(measured via R2 and the RMSE normalized to the respective

average analytical value), consisted of an input layer, one hidden

layer comprising eight neurons, and one output layer. Model

training stopped once no further improvement on the

normalized RMSE and R2 in the training and test data

partition was observed. Subsequently, the iteration with the

average best performance on both data partitions was selected.
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Eq. 6 provides how the normalized RMSE is computed by setting

the squared residual difference between the measured, analytical

value y and the estimated counterpart ŷ for each sampling point

(t) in relation to the total number N of observations and the mean

of the analytical values �y.

normalized RMSE %[ ] �
����������������
1/N · ∑ y( t( ) − ŷ t( ))2√

�y
· 100 (6)

In the hidden layer, hyperbolic tangens transformations were

used as transfer functions, while linear transfer functions were

used in the output layer. The Levenberg–Marquardt algorithm

was applied to identify the local minimum in each individual data

partition. Once a minimum was identified, the algorithm got

restarted from randomly initialized weights for the same data

partition twenty times. To ensure sufficient variance for model

training, this procedure, i.e., random data partitioning and

identifying the minimum, was repeated twenty times. The

resulting individual HMs were ranked based on their average

smallest error for both data partitions. Subsequently, averaging of

the top five individual HMs was performed. This averaging

represents a robust way to deal with model uncertainties

(Mendes-Moreira et al., 2012). To assess the predictive

performance and to investigate the grade of overfitting, the

averaged HM was applied to an independent, external

validation set comprising cDoE data. These validation data

were operated without input parameter changes and were not

used for training or testing. Due to this independence, the

assessment is a valuable indicator of the generalized model

performance (external validation). The normalized RMSE, R2,

standard deviation (SD) (Eq. 7) and PI (Eq. 8) were used as

numeric evaluation metrics. ŷaverage is the estimation of the

averaged model, ŷmodel is the estimation of the respective

model, i the index of these models, and n is the number of

observations at each time t.

SD t( ) �
��������������������������
1

n − 1
·∑ ŷ( average t( ) − ŷmodel i( ) t( ))2

√
(7)

PI t( ) � ŷaverage ± SD t( ) (8)

Results and discussion

Creation of an iDoE to study the
production phase of mammalian cell
cultures

The underlying assumption of the iDoE concept is that

cells are responsive to changes of input parameter setpoints.

To test this for the production phase (day 6–14) of a

mammalian bioprocess, an iDoE with three stages was

planned. The impact of changing temperature and DO over

time on process performance was of interest. The setpoints of

these input parameters were on average distributed equally

across the production phase and within each iDoE stage, but

not necessarily within each bioreactor (Figure 1). The

coverage of the design space spanned by temperature and

FIGURE 4
Fitting of OLS Model Predictions for VCD Based on iDoE Data to Internal iDoE Data and External Validation Data. Scatterplots visualizing the
accuracy of model predictions for iDoE data (left) and external cDoE data (right). The error bars represent the 95% prediction intervals.
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DO is visualized in a two-dimensional representation in

Figure 1A. A three-dimensional representation with a split

into bioreactors starting with standard growth conditions vs.

optimized growth conditions is provided in Figure 1B. Figures

1C, D illustrate in a simplified view how on days 6, 9, and

11 setpoints of temperature and DO underwent scheduled

changes, respectively. The design space coverage per stage is

visualized in Supplementary Figure S1. Some vertices of the

design space were not covered per individual stage, which

might limit the power to describe the (interaction) effects of

DO and temperature per iDoE stage.

Increased temperature and lowered DO
are optimal to promote faster VCD growth

To address goal 1, unpaired Welch’s t-tests were applied on

VCD and titer measurements on day 6 from bioreactors operated

at standard vs. putatively “optimized” settings of temperature

and DO during the growth phase (days 0–6). The measured VCD

of the bioreactors operated at “optimized” growth conditions was

significantly higher (0.665 ± 0.045, mean ± SD) than in the

bioreactors exposed to standard settings (0.382 ± 0.033, t

(10) = −12.4, p < 0.00001). Analogously, the titer of these

bioreactors was higher (0.0697 ± 0.00067) than in bioreactors

exposed to standard settings (0.0054 ± 0.0039, t (10) = 21, p <
0.00001). This confirmed that the proposed settings for

temperature and DO on days 0–6, which previously had been

identified using iDoE-based models for the growth phase (Nold

et al., 2021), indeed led to increased VCD and titer compared to

standard growth conditions. The external validation of the

previously reported iDoE-based models for the growth phase

was successful. In the following, these modified settings of

temperature and DO are referred to as “growth optimized” in

contrast to “growth platform” where DO and temperature are

kept at the standard setpoints.

Responsiveness to intra-experimental
changes during the production phase is
fulfilled

Aiming for answering goal 2, the measured data of CHO cells

subjected to intra-experimental setpoint changes of temperature

and DO during the production phase are presented in Figure 2.

In response to changes of temperature and DO, diverging courses

of VCD (Figure 2A), viability (Figure 2B), glucose (Figure 2C),

and titer (Figure 2D) are visible. Supplementary Figure S2 shows

the data trajectories for TCD and lactate. A notable change in

performance is for example observable when the transition from

iDoE stage I to II was initiated on day 9: Bioreactor 9 (grey line)

was exposed to standard settings during the growth phase and

was changed to the -1-DO setpoint but remained at the 0-

temperature setpoint for iDoE stage I. With initiation of iDoE

stage II on day 9, a temperature change towards the + 1-setpoint

was conducted while remaining at -1-DO setpoint. In parallel, a

drop in VCD (Figure 2A left panel) but a steep increase in titer

(Figure 2D left panel) was observed. Another example for a

pronounced response at day 9 is observable between bioreactor 4

FIGURE 5
Performance of the Averaged HM in Predicting the Outputs
of the iDoE and of Independent Validation Data The scatter plots
display the scaled measured data points against the scaled HM
predictions for VCD (A), viability (B), titer (C), and glucose (D),
including the least-square lines. Colors represent the bioreactors.
The symbols group into growth phase settings (circle = platform;
triangle = growth-optimized). For the time-resolved
representation of bioreactor 9 (E), 11 (F), and 12 (G), the scaled
measured data points for VCD (red diamonds), viability (black
circle), titer (blue triangle), and glucose (grey downward triangle)
are overlayed by the scaled predictions of the averaged HM (solid
lines) and the PI (dashed lines) in the respective colors. The timing
of input setpoint changes is indicated as dashed grey lines.
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(yellow line) and 5 (light brown line), which both started with the

optimized growth settings (right panels): Despite the different

settings during iDoE stage I, their viability followed a similar path

until approximately day 9 (Figure 2B). After the initiation of

iDoE stage II, when the setpoint of temperature and DO was

lowered for bioreactor 4 and the temperature of bioreactor 5 was

increased, the viability in the latter dropped and led to the lowest

titer endpoint observed among all bioreactors of the iDoE

(Figure 2D). In sum, the measured process performance

outputs reveal variability that may be correlated to changing

inputs. The results indicate that changes in DO result in smaller

effects regarding process performance than changes in

temperature. Suited models may capture these input-output

associations.

Adaptation of OLS modeling to account
for offsets in iDoE data

To address goal 3.1 for the OLS approach, characteristic aspects

of the iDoE data need to be considered. The improvement of the

process performance by optimized vs. standard growth conditions

led to an earlier (day 7 vs. 9) and narrower peak VCD. These

observations presumably reflect significantly different initial culture

states in iDoE stage I. While stage- and bioreactor-wise rebasing

corrects for numerical offsets (Nold et al., 2021), the difference in

culture states may be accounted for by including ‘initial VCD’ as

additional input parameter in the OLS models. We used numeric

values of initial VCD tomake predictions for bioreactors operated at

different growth conditions. This enables validation of the models

with external data, an essential step to determine generalizability of

model predictions.

Instead of “initial VCD”, the initial values of every to-be-

modelled output could in theory be used during modelling

together with the other input parameters (temperature, DO,

and exposure duration). However, titer usually is too low to

be measured directly after the growth phase. Thus, no initial titer

value would be available and the model for titer could not be

corrected for state-dependent offsets. To promote fairer

comparisons between the models for titer and other outputs,

“initial VCD” was used as approximation of culture state in the

OLS-based models for all output parameters. This modelling

decision was furthermore based on the biological rationale that

the product formation is a function of VCD, with more living

cells potentially producing a higher titer.

After iDoE stage I, the diverging inputs had overwritten the

binary grouping elicited by the two growth phase settings.

Nevertheless, iDoE stage I introduced variability in the cellular

states, which still had to be accounted for during OLS-based

modelling. Therefore, and to ensure better comparability

between the models of iDoE stage I and the later stages, initial

VCD was maintained as eligible input parameter during model

selection. The variability of states is reflected in Figure 2 as a

broad range of values covered throughout iDoE stages II and III.

The measured curves revealed no abnormalities in reaction to

input setpoint changes.

In contrast do iDoE stage I, within iDoE stage II and III the

trends in all bioreactors were quite similar despite the different

timing of the exposure. This and the already applied re-basing

per stage and bioreactor enabled the combination of iDoE stage II

and III in joint OLS-based models. Such a fusion of information

sources can mitigate issues of limited samplings and not covered

vertices of the design space during one stage.

Statistical quality assessment of the iDoE
investigating the production phase

Given the above-mentioned observations in the iDoE and the

resulting updates to the assumed OLS model structure, the

evaluation of the design was revisited. Overall, the evaluation

of the design quality was positive. Most of the considered model

terms were barely correlated (Pearson’s coefficient rho <|.3|,
Supplementary Tables S3, S7). The minor correlation structure

allowed for a good statistical power to separate effects of

temperature, DO, and timing in interaction with each other

and up to quadratic order (Supplementary Tables S1, S5). At

an assumed signal-to-noise ratio of 3, the power was above 80%

except for the quadratic effect of temperature in interaction with

state in iDoE stage I (54%) and the interaction of temperature

with the quadratic effect of DO and state in iDoE stage II joint

with III (73%). The leverage of the individual design points

(Supplementary Tables S4, S8) was judged acceptable since it is

below .35, with only few data points exhibiting a leverage twice as

big as the average leverage. Further, 69 (stage I) and 96 (joint

stage II and III) degrees of freedom were available for the

detection of a lack of fit (Supplementary Tables S2, S6).

Changes of input parameter setpoints
exert different effects dependent on
culture state

Applying the above-described considerations, OLS

regression delivered two models for each output, one for iDoE

stage I and a joint one for iDoE stage II and III. The concatenated

predictions are visualized for the overall course of VCD for three

selected bioreactors and overlayed with the measured and scaled

data points (Figure 3). Quality measures of the OLS models for

the individual process performance parameters are provided in

the supplements (Supplementary Table S9). The results from the

analysis of variance are provided alongside the coefficient

estimates for the AICc-selected model terms based on coded

input parameters (Supplementary Table S10). As expected from

the performance data shown in Figure 2, model terms including

temperature are associated with higher absolute values of
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coefficients than model terms composed of only DO. In line with

the observed dependency on the growth phase, many of the

model terms for VCD and viability represent an interaction of the

initial value of iDoE stage I with temperature, DO, or exposure

duration. This observation was less dominant for the models of

lactate and titer or in themodels for the joint stages II and III. The

predicted vs. actual process performance of all iDoE in a time-

resolved manner is provided (Supplementary Figures S3, S6,

S9, S12).

As validation (goal 3.2), the time-resolved accuracy of

the concatenated model predictions compared to external

data of the same process but obtained from independent

cDoE experiments gathered with another seed train (Nold

et al., 2021) are provided (Supplementary Figures S4, S7, S10,

S13). This cDoE data was generated from experiments

without any changes of input parameter setpoints. It was

previously used to compare the insights that can be obtained

with iDoE vs. cDoE (Nold et al., 2021). Since this data was

never used for the development of the OLS models for the

production phase, it is called external validation data.

Comparing the model predictions to these represents a

good indicator of the generalized model performance.

Figure 4 contrasts in a scatter plot format the model

predictions for VCD of iDoE (the data it was trained on),

and of external validation data from cDoE. Analogous

visualizations are provided for viability (Supplementary

Figure S8), lactate (Supplementary Figure S11), and titer

(Supplementary Figure S14). For cDoE bioreactors that were

FIGURE 6
Considerations during OLS and HM workflows. Different aspects that need to be considered for OLS and hybrid modeling in the context of
iDoE-derived data are provided for each step within the workflow.
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operated at lower temperatures during the growth phase

than the ones studied within this iDoE, the prediction of

stage I deviates from the actual values. The higher PIs for

these extrapolated settings indicate that the reliability of the

model outside of the trained design space might be limited.

This decreased performance on completely independent

validation data than on the data the models were

calibrated on is expected, especially if different

experimental operating procedures were used to generate

the data. Evaluating the model’s performance on external

validation data helps to raise awareness for potential

limitations of the model and which restrictions might

need to be applied when using the model for

optimization. It may, as in the present iDoE, furthermore

provide hints on how to improve the underlying data

foundation and concomitantly the model.

Based on the goodness of fit and suited generalizability to

external data within the covered design space, the OLS models

were judged valid for in silico predictions to find optimal

settings in the response surface (goal 3.3) Klicken oder tippen

Sie hier, um Text einzugeben. The modelled response surface

of VCD over temperature and culture duration during the first

iDoE stage for different setpoints of DO and growth phase

outcomes is provided (Supplementary Figure S15). If optimal

settings during the growth phase (right column) resulted in

high VCD values at day 6, a change to lower temperatures and

lower DO setpoints is favorable to maintain high viability and

VCD values. This restriction might limit oxidative stress and

be critical for cellular survival (Halliwell, 2003; Halliwell,

2014; Kuehne et al., 2015; Chevallier et al., 2020). In

contrast, if the cells were exposed to standard settings

during the growth phase (left column), warmer

temperatures until day 9 are recommended to achieve

higher VCD. The twist in the recommendation emphasizes

that considering the different growth phases can be beneficial

to find recommendations that yield optimal outcomes despite

different states of the culture. These stage-dependent

suggestions could find a valuable application during trouble

shootings if the effects of accidental drifts during the process

need to be overcome.

Towards the end of stage II and III, low temperature seems to

overall be favorable to keep VCD high (Supplementary Figure

S16). A quadratic effect of DO is visible, i.e., if the initial VCD

value was low (left column), setting DO to -1 or +1 would be

predicted to keep VCD high. If the initial VCD was high (right

column), the setpoint of DO has fewer influence and the response

surfaces resemble each other more.

With respect to titer, barely an effect of temperature is

visible (Supplementary Figure S17), but the initial VCD has a

strong impact on titer increase. The shapes of the titer-surfaces

dependent on DO illustrate a quadratic relationship. The

overall recommendation for maximizing VCD and titer

would thus be to fix temperature and DO to the -1-setpoint

from day 9–14. This is in line with previous publications

suggesting lower temperatures to increase productivity

(Darja et al., 2016; Vergara et al., 2018).

Serial HMs allow to jointly describe
readouts of the bioprocess

The effects of growth phase settings are considered

through the concept of HMs where the current prediction

is a function of all the current inputs and the predicted outputs

one time step before (goal 3.1 for HM). Hence, low vs. a high

VCDs at the same timepoint and combination of temperature

and DO setpoints will yield different predictions. This

integrative nature of HM allows to describe possibly

emerging changes in the rates due to the intra-experimental

changes of input setpoints and their history. The joint

predictions for all output parameters obtained with serial

HMs are displayed in Figure 5. The model performance for

each output parameter is given as scatter plots. The model

performs well in accurately predicting the VCD (Figure 5A,

15% normalized RMSE and R2 = .92) but overestimates the

derived viability, since TCD was underestimated (Figure 5B,

16% normalized RMSE and R2 = .84). The titer (Figure 5C, 9%

normalized RMSE and R2 = .99) is predicted accurately and

with wider PIs towards the end of the bioprocess. Glucose is

adequately predicted (Figure 5D, 14% normalized RMSE and

R2 = .73) but with an overestimation until day 5. For the

prediction of glucose and titer, it must be considered that their

production and consumption is linked to the VCD via the

mechanistic part of the HM. Therefore, a high analytical error

of the VCD measurement indirectly impacts the prediction

accuracy of glucose and titer. Details of the time courses in

three exemplary bioreactors are provided in Figures 5E–G. In

these bioreactors, viability and glucose were overestimated by

the HM towards the end of the process and during growth

phase, respectively. Titer and VCD were well predicted. The

time-resolved presentation of the model demonstrates sharp

increases of the glucose concentration after bolus feeding,

which were obtained through the incorporation of

mechanistic knowledge about the bolus strategy using mass

balances. The HM thus can describe highly dynamic time

courses. The data and model predictions for the other nine

iDoE bioreactors are provided in Supplementary Figure S19.

Additionally, the performance of the HM to predict all iDoE

and cDoE measurements (Nold et al., 2021) with respect to

normalized RMSE and R2 is provided in tabular form

(Supplementary Table S11). Scatterplots for the accuracy of

the predictions for the validation cDoE data are provided

in Supplementary Figure S20 (goal 3.2 for HM).

Like seen with the OLS-based models, not covered

regions of the design space limit the predictive accuracy of

the HM.
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Currently, the HM solely utilizes its recent predictions and

controllable input parameters (temperature, DO, and glucose

feed). The focus on controllable inputs has the advantage that

these are suited for process optimization. However, limiting the

number of potential inputs by omitting non-controllable process

parameters (e.g., gas flow or amino acids) could hinder

improvements in the predictive accuracy of the HM. The

additional inclusion of non-controllable inputs could enable

soft-sensor applications (Sommeregger et al., 2017; Bayer

et al., 2021a; Bayer et al., 2021b). Further, metabolic

information about current amino acid compositions can

enable a better transferability during process scale-up

(Torkashvand et al., 2015). Several complex biological

phenomena (e.g., transcriptional or translational changes in

the cell, metabolic differences) were not yet described by

ordinary differential equations, which also contributes to the

overall modeling error. The data-driven ANN may compensate

limitations in mechanistic knowledge to a certain extent but

cannot fully account for them. The current shortcomings in

mechanistic knowledge may be overcome by future

investigations on gene expression or metabolic profiling. Such

data could enhance process understanding and model

performance.

Guide for improving user experience with
iDoE

Related to goal 4, a visual overview of the workflow for

iDoE analyses using OLS and hybrid modelling is provided in

Supplementary Figure S21. A list of associated considerations

that shall guide future implementations of OLS and hybrid

modeling in the context of iDoE applied to the transition and

production phase of mammalian bioprocesses is provided in

Figure 6. Their practical implementation is described and

discussed in more detail in the sections above. Steps that

are common for either modeling approach were omitted in

Figure 6. These steps include e.g., bringing the data into a

tabular format or the need of external confirmation

experiments to test generalizability and overall validity of

the model.

Another shared step is planning of the iDoE and

evaluating the design quality [e.g., power, degrees of

freedom, replicates for pure error estimation, leverage of

modeling points, correlation among model terms, and

aliasing of effects in the context of the assumed

underlying model structure (Welch et al., 1990; Allen and

Allen, 20102010; Goos and Jones, 2011; Montgomery and

Runger, 2018)]. Our adapted OLS regression and HM results

for iDoE confirmed that, independent of the modeling

approach, the quality of the iDoE and data is decisive for

the goodness of the modeling outcome (Antony and Roy,

1999). Non-covered cold temperature settings during the

growth phase were less accurately predicted by both

modelling approaches. Given the importance of good

design quality, critical aspects on the intricacies of

designing iDoE to study mammalian bioprocesses are

discussed in the following.

Prior knowledge and the research question provide a

good orientation on the choice of input and output

parameters and which relationships among them should

be studied. The usage of mechanistic knowledge in HM

allows the simultaneous predictions of multiple outputs

based on current inputs as well as information on

substrate bolus feeds and process history (see Figure 5).

For OLS, prior assumptions are incorporated into the

initial structure of an OLS model by defining the set of

eligible model terms in the desired complexity (Hlaváček

et al., 1984; Böhning, 1986; Aguiar et al., 1995; Uciński and

Patan, 2007; Goos et al., 2016).

Since the OLS-based analysis of iDoE in stages is like

analyzing several DoE, it is important that the number of

sampling points within an iDoE stage ensures adequate

statistical power (>80%). Based on our iDoE-data, a

minimum of 2–3 days with 1-2 sampling points per day

seems suited for mammalian cultures. To maximize the

number of data points that can be analyzed jointly, the

stage-defining setpoint changes should be timed at the

start and end of a culture phase, i.e., growth, transition,

and production phase.

Our observations on the design and iDoE-data (Figures

1, 2, Supplementary Figures S1, S2) furthermore revealed

that in addition to balancing input parameter setpoints

within an iDoE-stage [analogous to within a DoE (Hlaváček

et al., 1984; Böhning, 1986; Aguiar et al., 1995; Uciński and

Patan, 2007; Goos et al., 2016)], also a balance across and

within bioreactors should be aimed for. If a limited number

of bioreactors hinders a fully balanced design, iDoE stages

can be analyzed jointly. A joint analysis of data from several

iDoE-stages is only reasonable if the response directions are

similar enough. This for example could be the case if the

iDoE-stages fall within the same culture phase, as shown for

stage II and III. The timing of intra-experimental changes

within a culture phase should optimally be chosen in a way

that the duration of the resulting iDoE stages is equal to not

introduce bias towards the longer stage.

Conclusion and outlook

Extension of the iDoE concept to the production phase

of mammalian bioprocesses proved feasible. The data at

hand validated growth phase optimal settings for achieving

higher VCD at day 6 compared to standard settings (goal 1).

Further, the cells showed responsivity to changing input

settings during the production phase (goal 2). The models
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of the production phase needed to incorporate differences

originating from the previous time points. To account for

this, several key aspects within the adapted OLS approach

are important (goal 3.1). One is the iDoE-stage-wise

rebasing which allows to combine data of iDoE stages

that fall within the same culture phase. Another aspect is

the inclusion of the initial numerical value of each stage,

which serves as approximation for the culture state. While

the associated main effect accounts for offsets due to

previous input settings, the interactions between the

initial value and the other inputs consider the

dependency of the current settings on the bioprocess’

history. Using these information, representative OLS-

based models that capture the complexity of interacting

inputs in a time-resolved manner were obtained (goal 3.2).

Their predictivity for independent, external data was

shown with a validation data set originating from a

cDoE. Through the parallel analysis using OLS and

hybrid modeling, we could demonstrate that both

analysis strategies successfully describe the iDoE data

and the independent cDoE data within the input ranges

covered in the iDoE. Since characteristic culture dynamics

were accurately described, both model approaches can be

used to make in silico predictions, guiding optimization of

the manufacturing protocols towards more efficient and

robust mammalian bioprocesses (goal 3.3). The modular

nature of OLS models appeared beneficial for

understanding and optimizing local behaviour within

process phases. With separate models, the optimization

goals for different process phases can be individually

weighted by flexibly composing the desirability functions

in a multivariate manner. For HM, the process history and

dynamic online data is incorporated intrinsically in an

overall model of the bioprocess for all output

parameters. Therefore, the HM approach allows for

predicting all outputs at once and facilitates global

optimization for interconnected dynamics. In addition to

optimization, OLS and hybrid models may aid in defining

and monitoring control strategies (Woodall, 1985).

Together with the previous findings on the applicability

of iDoE to the growth phase of mammalian cells (Nold

et al., 2021), our results indicate that a combined

application of iDoE in all culture phases appears feasible.

Therefore, iDoE allow for an efficient characterization of

the whole bioprocess, paving the way to model predictive

control, more consistent process performance, and ensured

product quality. As we see great potential for speeding the

development of biologics using iDoE for the efficient

creation of models early on in the life cycle of a project,

our fourth goal was to share our learnings on modelling

iDoE data. We are the first to provide a head-to-head

analysis of iDoE-data from a mammalian bioprocess

using OLS and hybrid modeling. Our results showed that

good design quality is essential for predictive

models—irrespective of the analysis strategy. The

provided considerations for each step of the OLS and

HM workflows shall guide modeling of future iDoE-

derived data. To ensure that the models are addressing

the question of interest, we would like to emphasize that an

intensive exchange of knowledge between modelers and

users should accompany the data analyses and model

deployment.
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