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The photo-driven reduction of carbon dioxide (CO2) into green and valuable solar fuels
could be a promising solution to simultaneously address energy- and environmental-
related problems. This approach could play an integral role in achieving a sustainable
energy economy by closing the carbon cycle and allowing the storage and transportation
of intermittent solar energy within the chemical bonds of hydrocarbon molecules. This
Perspective discusses the latest technological advancements in photo-driven CO2

conversion via various pathways, namely photocatalysis, photoelectrocatalysis and
photovoltaic-integrated systems. In addition to providing an outlook on unresolved
issues concerning the said technologies, this Perspective also spotlights new trends
and strategies in the structural engineering of materials to meet the demands for prominent
CO2 photoreduction activity as well as spearhead the ground-breaking advances in the
field that lead to the translation of CO2 photo-driven technologies from the laboratory to
industrial-scale applications.
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INTRODUCTION

Greenhouse gases (GHG) emission has been identified as the major cause that leads to climate
change and has remained as the primary challenge in the effort to control the pace of global warming.
The United Nations Framework Convention on Climate Change (UNFCCC) entered into force in
1994 with a pivotal role to oversee and control the emission of GHG as a global effort. In the same
year, the impact of climate change and the need for mitigations to tackle this issue were recognized
and highlighted for the first time in the Convention. Figure 1A depicts key development of climate
change actions by UNFCCC since its establishment. The Kyoto Protocol was initiated in 1997 with all
party members came into agreement to limit and reduce the emission of GHGwith individual targets
tailored for their respective countries. The initiative only entered into force 8 years later and was
amended in 2012 (known as the Doha Amendment) with emission targets renewed for the second
commitment period from 1 January 2013 to 31 December 2020 (United Nations Climate Change).
On the other hand, Copenhagen Accord was established in December 2009 where a target of global
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temperature rises of not more than 2 C above pre-industrial level
was introduced (United Nations Climate Change, 2009). The
global target was highlighted again in Paris Agreement, 2015, to
drive social and economic transformation to control global
warming at preferably 1.5 C above pre-industrial levels (United
Nations Climate Change). In response to the Paris Agreement,
both EU and United Kingdom have set their targets to achieve at
least 55 and 68% reduction in GHG emission, respectively by
2030 with the final goal of zero-carbon emission by 2050 (Gov,
2020; European Commission). This ambitious zero-carbon
emission target requires effort from several stakeholders across
the nations, up from technology advancement and
transformation of current industrial activities down to the
reforming of policies and regulations to facilitate
socioeconomic development sectors associated with GHG
emissions.

To control the emission of carbon dioxide (CO2), the main
culprit of global GHG emission, new technology pathways related
to CO2 capture, utilization and sequestration (CCUS) have been

widely studied over the past decades. Figure 1B illustrates the
potential pathways for the utilization of CO2 in the industry. In
general, CO2 collected on-site can be either: 1) directly used as a
heat transfer fluid or feedstock/solvent in manufacturing
processes or; 2) converted into other derivatives, such as fuels,
hydrocarbons, and building materials following respective
chemical synthesis routes. Currently, the established
technologies are carbon capture with amine process, direct
capture from air with underground deposit, and carbon
capture integrated with bioenergy plant (IEA, 2021a).
According to the recent report by IEA, the overall cost of
carbon capture can be in a broad range of USD15-25/t CO2

(for CCUS from natural gas processing) to USD130-340/t CO2

(for direct capture), subject to the quality of CO2 streams and the
technology applied (IEA, 2021). These technologies are costly but
necessary to achieve a zero-carbon emission goal. Therefore, the
continuous advancement in CCUS technologies is an on-going
process to improve their availability and cost effectiveness for
large-scale, practical deployment.

FIGURE 1 | (A) Timeline of major UNFCCC actions on climate change. (B) Potential pathways for CO2 utilization (IEA, 2019).
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RECENT TECHNOLOGICAL
ADVANCEMENTS IN THE
PHOTOREDUCTION OF CO2

The transformation of CO2 into energy bearing hydrocarbon
compounds has gained incessant research interest in recent years
(Creutzig, et al., 2017; Alsayegh et al., 2020). Converting CO2

generated from a combustion process into hydrocarbon fuels
offers attractive solution to close the carbon-fuel cycle (Ulmer
et al., 2019). Ideally, for the derivation of completely renewable
hydrocarbon fuels from CO2, the entire synthesis route should
have minimal carbon emission and be free from fossil fuel usage.
With this aim, much attention has been placed on using solar
energy as the future energy source. Nevertheless, the practical
implementation of CO2 photoreduction technologies necessitates
the development of highly efficient, robust, photo-driven
materials and systems; these have been hot research areas in
recent years. Thus, in this perspective, the latest technological
advances in the photo-driven reduction of CO2 are summarized
and discussed with comments of their respective advantages and
existing limitations. The three primary CO2 reduction systems
covered are: 1) the photocatalytic CO2 reduction; 2) the
photoelectrochemical (PEC) pathway as well as 3) the
photovoltaic-integrated systems.

Photocatalytic CO2 Reduction
The efficiency of photocatalytic CO2 reduction lies in the design
of the photocatalyst. Therefore, it is of paramount importance to
tailor the electronic structures of photocatalysts, with efforts to
modulate the reaction paths and activation energy barriers,
thereby enhancing the photoactivity and product selectivity
(Wang H.-N. et al., 2021). In recent years, significant research
progress has been witnessed in photocatalysis. A myriad of novel
photocatalysts with 0D (zero-dimensional, i.e., quantum dots),
1D (one-dimensional, i.e., nanotubes, nanorods), 2D (two-
dimensional, i.e., atomic layers, nanosheets, nanoplates) and
3D (three-dimensional, i.e., hollow nanostructures,
nanospheres, microspheres) structures have been developed (;
Kong et al., 2017; Kong et al., 2019; He et al., 2019; Kong et al.,
2020; Sun et al., 2020; Wang J. et al., 2020; Ke et al., 2021; Li L.
et al., 2021). The photoactivities are highly dependent on the
architectures of the photocatalysts as the light trapping capability,
surface active sites, electron-hole pairs separation and
transportation pathways of photocatalysts are greatly affected
by the structures. To improve the photoresponse of catalysts, a
number of strategies have been adopted to reduce the bandgap of
photocatalysts by integration of dopants, sensitizers, co-catalysts,
heteroatoms or inducing surface defects (Chen et al., 2021; Chen
et al., 2020; Lee et al., 2020; Miao et al., 2021; Pan et al., 2021). For
instance, introducing oxygen vacancy (OV) onto bismuth
tungstate could expand the light absorption spectrum of the
photocatalyst from UV to near infrared (Kong et al., 2016).
The OV-induced defect states play indispensable role to trap
photoinduced electrons, hence improving the electron–hole pair
separation and inhibiting the direct recombination of
photogenerated charge carriers. In this photocatalyst structure,
near infrared light was harvested through sub-bands excitation

from OV-induced defect states to the conduction band of
bismuth tungstate (Figure 2A). To promote the separation
and transportation of photoinduced charge carriers, Type-II,
Z-scheme or p-n heterojunctions are often introduced to the
composite photocatalysts to prolong the lifetime of charge
carriers so that more electrons can take part in the CO2

reduction reaction (Jiang et al., 2020; Li S. et al., 2021; Wu
et al., 2021). Since CO2 reduction can only take place on the
surface active sites, many recent researches focus on crystal facet
engineering in order to maximize the exposure of most active
facets (Kong et al., 2018; Jatav et al., 2021). Besides, decreasing the
thickness of 2D materials to ultrathin-nanoscale or even atomic
layers can endow ultrafast transportation of charge carriers from
interior to the surface of photocatalysts along with large exposure
of active sites to boost CO2 adsorption and activation (Han et al.,
2021; Teh et al., 2021).

Other than the conventional semiconductor photocatalysts,
molecular photocatalysts have received much attention in the
past few years. In another reported work, CO production rate of
up to 10,162 μmol g−1 h−1 was obtained using COF-367-Co
nanosheets under visible light illumination with [Ru(bpy)3]Cl2
(bpy � 2,2′-bipyridine) as the photosensitizer (Figure 2B) (Liu
et al., 2019). The Photosensitizer plays a pivotal role where it
absorbs incident light and converts it to photon energy that
activates the nearby photocatalyst. Very recently, a molecularly
engineered, scalable photocatalyst sheet with solar-to-formate
conversion efficiency of 0.08 ± 0.01% and product selectivity
of 97 ± 3% for formate were reported. Notably, in this setup, the
photoreduction of CO2 was realized without using any sacrificial
reagents; however, the photocatalytic system is complex, which
comprises of Rh, La, SrTiO3, BiVO4, RuO2, Au, and
phosphonated cobalt(II) bis(terpyridine) (Wang Q. et al., 2020).

PEC CO2 Reduction
PEC CO2 reduction, which uses electricity as an aide, enables
higher conversion efficiencies and offers more design room owing
to the wider selection of exploitable materials and configurations.
For a commercially competitive device, PEC materials and cell
design should approach high product selectivity with
photocurrent of 7 mAcm−2 (corresponding to a 10% solar-to-
fuel efficiency) and minimum bias requirement in the simplest
possible system (Kumaravel et al., 2020). Although single-
semiconductor configurations in photoanode- or
photocathode-driven CO2 reduction reactions provide the
greatest simplicity, they face elevated requirements, needing
larger biases to achieve high system efficiencies (Kim J. H.
et al., 2019). It is worth recognizing that higher photocurrent
and lower onset potential values have generally been linked to
catalytically-active materials which can overcome the high kinetic
overpotential of the CO2 reduction half-reaction, and by a lesser
degree, the optical and charge transport properties of the
photoelectrode. Single-junction expensive PV-grade materials
such as Si (Fung et al., 2020; Hu et al., 2018; Rao et al., 2018),
GaN (DuChene et al., 2018; Sekimoto et al., 2016), InP (Kaneco
et al., 2006a; Kaneco et al., 2006b; Qiu et al., 2015; Zeng et al.,
2015) and ZnTe (Jang et al., 2014; Jang et al., 2015) with excellent
optical and charge transport properties have been extensively
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studied. Nevertheless, these materials possess poor catalytic sites
for CO2 reduction, which usually offer little to no redeeming
improvements in the PEC activity as compared to those of more
catalytically-active copper-based (Ghadimkhani et al., 2013; Won
et al., 2014; de Brito et al., 2015; Kang et al., 2015; Kang and Park,
2017; Lee et al., 2018) or molecular metal-complex (Arai et al.,
2011; Jeon et al., 2014; Huang et al., 2016; Kumagai et al., 2017)
systems, whose activities have hitherto remained unparalleled.

Recently, integrating microbes and enzymes into biocathodes
(Figure 2C) have shown massive success in lowering bias
requirements due to their innate capacity to catalyze a range
of CO2 metabolic processes (Fu et al., 2018; Kuk et al., 2019; Sokol
et al., 2018; Xu et al., 2021). Despite the high bias requirement in

single-junction configurations, bias-free photoanode-driven CO2

reduction were realized by the microbial TiO/
CdS–Methanobacterium (Xiao et al., 2020) and enzymatic
CoPi/BiVO4–PDA/NADH/FDH (Lee et al., 2016) hybrid
systems, reaching unprecedented single-junction solar
conversion efficiencies of 1.28 and 0.042%, respectively.
Moreover, higher conversion efficiencies and lower biases have
also been achieved in the more complex, dual photoanode-
photocathode tandem configurations, owing to their improved
spectral absorption, cumulative photo-potential and Z-schematic
band arrangement which better meets the voltage and band-edge
requirements for CO2 reduction. A seminal work by Arai et al.
reported among the highest solar-to-chemical conversion

FIGURE 2 | (A) Mechanisms for photocatalytic CO2 reduction over pristine and oxygen-deficient bismuth tungstate (Kong et al., 2016), (B) Mechanisms for
photoreduction of CO2 into CO over COF-367-Co nanosheets with [Ru(bpy)3]

2+ as photosensitizer and ascorbic acid as electron donor (Liu et al., 2019). (C) Biocathode
thin film derived from a polydopamine (PDA) matrix copolymerized with an enzyme (FDH) and its cofactor (NADH) (Lee et al., 2016), (D) Dual-electrodes PEC–PEC
tandem cell consisting a SrTiO3-x photoanode and Ru(MeCN)CO2C3Py-P/TiO2/N,Zn-Fe2O3/Cr2O3 photocathode (Sekizawa et al., 2018). (E) PV–PEC tandem cell
comprising an Au-CdTe@ZnTe@ZnO NR photocathode-perovskite solar cell and a cobalt bicarbonate (Co-Ci) anode (Jang et al., 2016), (F) PV–GDE-based flow
electrolyser cell employing NiFe anode and Au25 cathode (Kim B. et al., 2019), (G) Schematic of CO2 reduction reaction on Au25-anchored GDE (MPL � microporous
layer) (Cheng et al., 2020).
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efficiency of 0.14% to formate, which approaches that of the
biological plant switchgrass (0.2%), using a SrTiO3 photoanode
and InP[RuCP] photocathode (Arai et al., 2013). While more
recently, the combination of SrTiO3-x photoanode and
Ru(MeCN)CO2C3Py-P/TiO2/N,Zn-Fe2O3/Cr2O3 photocathode
(Figure 2D) can yield a comparable efficiency of 0.15%, by
alternately employing more abundant and cheaper multilayer
metal oxides with efficient interfaces (Sekizawa et al., 2018).

Photovoltaic-Assisted CO2 Reduction
Photovoltaic-photoelectrochemical (PV-PEC) schemes are
another attractive option to achieve spontaneous CO2

reduction at the expense of higher system complexity. This is
since voltage requirement for CO2 reduction can be offset by the
additional bias generated from the PV cell. The WO3/dye-
sensitized solar cells tandem photoanode with CuxO wire-
array cathode, is by far, one of the most efficient PV-PEC
systems with a solar-to-CO efficiency of 2.5% (Nath et al.,
2016). On the other hand, an Au-decorated triple layered
ZnO@ZnTe@CdTe core-shell nanoarray photocathode in
tandem with CH3NH3PbI3 perovskite solar cell and a Co-Ci
anode, which produced CO with a 0.35% conversion
efficiency, was reported (Figure 2E) (Jang et al., 2016).
Balancing light absorbance in the PV and PEC cell however
remains a challenging aspect which has prohibitively restricted
conversion efficiencies to mostly below <0.1% (Kuk et al., 2019;
Zhou et al., 2019; Andrei et al., 2020). Zhou et al., on the other
hand, reported an exceptionally high efficiency of ∼10% by PV-
PEC using a buried III-V tandem photoanode GaAs/InGaP/
TiO2/Ni and a Pd/C cathode by means of a bipolar membrane
(Zhou et al., 2016). The use of a bipolar membrane enabled the
seamless coupling between two electrodes and electrolytes at
different pH values, each optimized respectively for oxygen-
evolution (pH 13.7) and CO2 reduction reaction (pH 8.0),
which overall lowered the combined cell overvoltage.

A higher efficiency range of 5–20% has usually been acquired
in PV-EC configurations, where semiconductor-liquid-junctions
are eliminated (Schreier et al., 2015; Bullock et al., 2017; Arai
et al., 2019). Some notable works were by Schreier et al. which
attained a solar-to-CO efficiency of 13.4% by pairing a three-
junction GaInP/GaInAs/Ge PV cell to a CO2-to-CO electrolyser
equipped with a bipolar membrane (Schreier et al., 2017). More
recently, the applications of gas diffusion electrodes (GDE) in
electrolyser flow cell designs have afforded record-breaking
efficiencies. The use of GDEs permit a semi-gas-phase
operation at the cathode compartment, allowing higher
current densities by circumventing the mass-transfer limitation
of CO2 in aqueous system. Through directly connecting a high-
efficiency PV cell and a GDE-based flow electrolyser (Figures
2F,G), Kim B. et al. (2019) and Cheng et al. (2020) have achieved
a CO2-to-CO efficiency of as high as 18.0 and 19.1%, respectively.
Though it should be noted that while higher efficiencies have been
achieved, this comes at the price of greater device complexity and
cost, and a techno-economic assessment is required to ensure that
these enhanced performances offer worthwhile advantages over
the simpler single-junction devices. Ultimately, the ideal choice
for PECmaterials and cell design should strike the perfect balance

between maximizing conversion efficiency and minimizing
system cost.

CHALLENGES AND FUTURE PROSPECTS

Desptite its great significance, the photoreduction technology is
still far from commercialization and the complex reaction
system curtails its practical applications. Technology
readiness level (TRL), a measurement system that assesses
the maturity level of a particular technology, can be used as
an indicator to gauge the readiness of the photoreduction
technology for full commercial deployment. Currently, the
TRL of the photoreduction of CO2 remains low at TRL 3 to
4 (Jarvis and Samsatli, 2018). Most of the research findings
reported are limited to the laboratory-scale and revolve around
the development of photocatalytic materials. There are only a
handful of work on pilot-scale operations at low capacity. To
make this technology feasible for commercial scale production,
the technology must achieve at least TRL 6 or 7 for
demonstrating in the relevant environment. It is anticipated
that at least five to ten years of further research is needed before
carbon photoreduction technology can be practically deployed
(The Global CO2 Initiative, 2016).

Another key aspect is the fabrication of catalyst from
inexpensive, non-toxic and abundantly available elements.
To date, a diverse range of photo(electrochemical)catalysts
has been reported to be efficient for CO2 photoreduction in
various reactor set-ups. The vast majority of these materials
are carefully tailored using multiple dopants to achieve high
efficiency and selectivity. The introduction of rare earth
elements as dopants or co-catalysts, such as Ce/TiO2 (Xiong
et al., 2015), monometallic cerium layered double hydroxides
(Ye et al., 2017), La/g-CNT (Muhammad et al., 2020),
La0.225Bi0.775O1.5 (Wang Y. et al., 2021) and yttrium-doped
H-Titanate (Lu et al., 2019), Re(CO)3(bpy)Cl (Adams et al.,
2018) etc., will increase the overall cost of the photoreduction
and pose environmental issues.

Another challenge of CO2 photoreduction lies within the
product selectivity and yield. Taking methane (CH4) as an
example, CO2 photoreduction under visible light irradiation
could yield 3–12 times more CO than CH4. (Cheng et al.,
2017; Raziq et al., 2017; Thompson et al., 2020). The stark
difference in yield is attributed to the preferred formation of
CO over CH4, as the former only requires two electrons while the
latter requires eight. Interestingly, other researchers have also
reported contrasting results where a higher yield of CH4 was
observed over CO (Wang et al., 2021; Wu et al., 2021). The
difference in the results is due to the unique characteristics of the
photocatalysts used. This prompts the need for selectivity studies
to tailor the photocatalyst to maximise its yield for the desired
products. Additionally, water plays an essential role in CO2

conversion as it serves as both the electron and proton donor.
Therefore, in catalytic CO2 reduction reactions, be it
photocatalysis, PEC or PV-EC, the competing reaction of
water reduction is fundamentally unavoidable. The
aforementioned reaction effectively reduces the yield of the
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intended product by reducing the electrons available for CO2

photoreduction.
The CO2 photoreduction pathway can be regarded as a green

process since the reaction is merely powered by light energy. This,
however, poses an important challenge to the commercialization of
the technology. The incident light intensity is known to be one of
the most important factors that controls the efficiency of a CO2

photoreduction process (Tan et al., 2017). As such, the potential for
industrial-scale operation of CO2 photoreduction is largely
constrained by regional solar intensity which is dependent on
geographical factors. Commercialization of CO2 photoreduction
could be relativelymore challenging in countries or continents with
lower solar intensity. For instance, the United Kingdom is reported
to have an average solar irradiance of 101.2Wm−2, ranging from
71.8Wm−2–128.4Wm−2 depending on the geographical location
in the country (Burnett et al., 2014). This value is much lower as
compared to tropical countries which has an average annual solar
irradiance of approximately 10-fold higher, ranging between 600
and 900Wm−2 (Mohammad et al., 2020). A higher level of solar
irradiance is important to ensure that sufficient photon energy is
available for activation of the photocatalyst to drive the CO2

reduction reaction (Sichel et al., 2017). As such, a higher
performance photo(electrochemical)catalyst is necessary to
overcome this barrier for the countries with lower solar irradiance.

With the increase in the awareness of sustainability processing,
circular economy of the photoreduction system could be another
focus of study. The efficiency of the photo(electrochemical)
catalyst no doubt plays key role to these reaction pathways.
However, one should not overlook the potential environmental
impact of the use of the materials, if we are to upscale these
technologies for large-scale reduction of CO2. In principal, a
suitable photocatalyst material should not have significant impact
to the environment, is green (or less toxic), and easy to handle.
Extensive studies on the lifespan and reusability of photocatalyst
materials could be the next focus to make this technology more
economical and environmentally viable.

CONCLUSION

Photo-driven technologies are undoubtedly the most
sustainable and green solution for the conversion of CO2

into energy-rich hydrocarbon derivatives. These processes

employ the power of the sun as the only resource to attain
the Gibbs free energy of the CO2 reduction reaction; thus
rendering it fossil fuel-free with markedly lower carbon
footprint as compared to the conventional hydrothermal
reactions or electrolysis. With the global pledge to achieve
net zero-carbon emission by 2050, the development of
emerging technologies in CO2 utilization must be fast-
tracked. In addition, with the recent interest in the
exploration of Mars, a planet consisting of 95% CO2 and a
solar irradiation of 586 W m−2, it would be extremely
beneficial to utilize its atmosphere to produce sustainable
fuels for interplanetary travels. Despite great strides made
in the field, the implementation and up-scaling of these
photo-driven technologies for commercial applications
remain a great hurdle even up till today. As highlighted in
the previous sections, this is mainly ascribed to the constraints
of solar energy potential as well as low product selectivity and
yield. Intensified research is needed in the areas of materials
discovery and innovative photoreactor designs. The resolution
of these obstacles could bring about the successful
industrialization of CO2 photoreduction technologies in the
near future, which could ultimately pave the way for a greener
and more sustainable tomorrow.
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