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We describe the use of artificial intelligence techniques in heterogeneous catalysis. This
description is intended to give readers some clues for the use of these techniques in their
research or industrial processes related to hydrodesulfurization. Since the description
corresponds to supervised learning, first of all, we give a brief introduction to this type of
learning, emphasizing the variables X and Y that define it. For each description, there is a
particular emphasis on highlighting these variables. This emphasis will help define them
when one works on a new application. The descriptions that we present relate to the
construction of learning machines that infer adsorption energies, surface areas, adsorption
isotherms of nanoporous materials, novel catalysts, and the sulfur content after
hydrodesulfurization. These learning machines can predict adsorption energies with
mean absolute errors of 0.15 eV for a diverse chemical space. They predict more
precise surface areas of porous materials than the BET technique and can calculate
their isotherms much faster than the Monte Carlo method. These machines can also
predict new catalysts by learning from the catalytic behavior of materials generated
through atomic substitutions. When the machines learn from the variables associated
with a hydrodesulfurization process, they can predict the sulfur content in the final product.
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learning

INTRODUCTION

The creation of predictive models in the oil industry is of the utmost importance. For example,
models have been developed for oil production (Li and Horne, 2003; Irisarri et al., 2016; Hutahaean
et al., 2017) and oil transformation (Farrusseng et al., 2003; Wang et al., 2019). These models,
however, have not been entirely successful (Cai et al., 2021). Therefore, they have been constantly
evolving and have now included artificial intelligence techniques. Examples of this are the models to
find new catalysts (Günay and Yıldırım, 2021; Goldsmith et al., 2018; Lamoureux et al., 2019; Yang
et al., 2020), the models to control oil exploitation (Davtyan et al., 2020; Liu et al., 2020; Tsvaki et al.,
2020), and the models to analyze oil transformation (Al-Jamimi et al., 2019; Sircar et al., 2021).

In recent decades, models based on artificial intelligence techniques have performed impressive
predictions in different knowledge fields. For example, in exact sciences (Sauceda et al., 2021;
Hajibabaei and Kim, 2021; Cerioti et al., 2021; Bahlke et al., 2020; Chmiela et al., 2020; Saar et al.,
2021; Artrith and Urban, 2016; Ch’ng et al., 2017; Shallue and Vanderburg, 2018; Sadowski et al.,
2016), in social sciences (Ng et al., 2020; Lattner and Grachten, 2019), in technology (Bae et al., 2021;
Cunneen et al., 2019; Feldt et al., 2018; Huang et al., 2014), and health sciences (Bashyam et al., 2020;
Zhou et al., 2019; Themistocleous et al., 2021; Lagree et al., 2021).
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The models based on artificial intelligence techniques contrast
with the traditional models used for predictions in the oil
industry. These techniques learn from the data associated with
the process under study and generate relationships between the
variables representing the process. It is important to remark that
the learning mechanisms in artificial intelligence are generic, as it
is the calculus, regardless of the source of the data to which it is
applied. For example, the data to feed the learning system can be
images of different types of objects (Wang et al., 2021; Torralba
et al., 2008), or people´s tastes in movies (Keshava et al., 2020;
Lash and Zhao, 2016), or the buyer behavior of shopping
(Overgoor et al., 2019). The data may also come from words
in a text (Devlin et al., 2019) or be associated with virus detection
assays of people with Covid-19 (Zaobi et al., 2021), or come from
a set of hydrodesulfurization experiments (Al-Jamimi et al.,
2019).

The manuscript presents some applications of artificial
intelligence techniques in heterogeneous catalysis. It includes
the use of these techniques in the study of the
hydrodesulfurization process. First, we present a brief
overview of these techniques to give the reader, without
experience in these techniques, the essential elements to
understand the applications.

The first application shows the use of artificial intelligence
techniques to predict the binding energy when a molecule
interacts with a solid. In particular, the binding energy of CO
or H when adsorbed by metals. The following application
describes a learning machine that predicts surface areas and
compares them with those obtained with the BET technique.
The subsequent application searches for new nanoporous
materials of interest in catalysis. The data comes from
modeling the surface area of 6,500 zeolite structures.

In the following applications, the data come from experiments
in research laboratories or production plants. First, we describe a
learning machine that predicts new catalysts based on Ru for
ammonia decomposition. In this case, to generate the data,
ruthenium is replaced with three different elements (one at a
time) to create catalysts that decompose ammonia under different
experimental conditions. These experiments produced a data set
to train the learning machine that predicts new Ru-based
catalysts.

The applications that follow are related to the process of
hydrodesulfurization. These kinds of applications were the first
to be used in heterogeneous catalysis. For example, in 1996, one of
these applications (Berger et al., 1996) predicted the
hydrodesulfurization of atmospheric gas oil.

The last described application in the manuscript refers to the
control of the hydrodesulfurization process in a production plant.
In this case, the control occurs by using an online prediction
based on time sequences.

MATERIALS AND METHODS

A Basic Introduction to Machine Learning
As mentioned above, artificial intelligence techniques generate
learning machines using data sets produced during the analysis of

a topic of interest. As a result, these machines predict events that
could occur in this topic.

Of the learning techniques, two stand out: supervised learning
and unsupervised learning. Since everything presented in the
paper is related to supervised learning, we describe the essential
elements of this learning method for the non-specialist in
artificial intelligence. Our presentation of this learning method
does not follow any traditional way of presenting it. Instead, we
explain the method using an example of heterogeneous catalysis,
where the reader is a specialist.

When we develop a new catalyst for hydrodesulfurization, the
goal is to bring out a product with low sulfur content. This
content (which we describe as the variable Y) is the variable that
determines the formulation of the catalyst, as well as the
temperature, pressure, amount of hydrogen, and other
variables related to the process that will use the catalyst. We
mark out these last quantities with the vector X � (X1, X2,
X3,. . ., Xn).

The use of artificial intelligence techniques to develop a new
hydrodesulfurization catalyst requires a set of events, called
samples, with values (X, Y). They can be obtained by
modeling the hydrodesulfurization process or performing
experiments in a laboratory or from the variables associated
with the process in an industrial plant. Typically, 80% of the
samples are used for training the machine, and the rest for testing
the machine’s effectiveness to predict new catalysts.

The basic principle of learning is the following. First, we
construct the function F(W, X), which estimates the sulfur
content and is defined by the parameters W � (W1, W2,
W3. . .). We create a metric to estimate the difference between
the prediction of the sulfur content, F(W, X), and their values, Y,
in the samples.With the average of these differences, we construct
the loss function, J (W, X, Y), whose gradients with respect to
each parameter permit updating the parameters. This updating
continues until the loss function reaches its minimal value.
Figure 1 depicts a general sketch of such a learning machine.

FIGURE 1 | Sketch representing a learning machine. F(W, X), fed with
the variable X, is represented by the left square. Its output (blue arrow)
provides the right square, together with the variable Y, to form the error
function, J(W, X, Y), during training . The parameters W are modified in
this square to bring the function F(W, X) up to date.
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There exist various algorithms to construct a learning machine
(Breiman, 2001; Dhillon and Verma, 2020; Scherer et al., 2020;
Schütt et al., 2018; Shazeer et al., 2018; Shawe-Taylor and Sun,
2011), from the simplest ones like the Random Forest (Breiman,
2001) which requires only a few samples, to algorithms based on
artificial neural networks (Shazeer et al., 2018), which could
require a large number samples for training. These last
algorithms could contain millions of parameters (Krizhevsky
et al., 2017). Going into detail on these algorithms is beyond
the purpose of the present manuscript. However, the references
for these algorithms are a good start for readers who want to
dabble in them.

RESULTS AND DISCUSSION

Adsorption Energy Prediction
When a molecule nears a solid, its interaction with the atoms on
the solid’s surface determines the adsorption energy. If the solid is
a catalyst, this energy determines many catalytic properties.
Consequently, the analysis of this energy could help to
develop new catalysts.

Although quantum mechanical calculations can provide this
energy, they require long calculation times and much computing
power. Therefore, the use of only this methodology to search for
new catalysts generates a bottleneck.

An alternative to avoid this bottleneck is to generate these
energies with the techniques of artificial intelligence. For example,
through supervised learning using the Deep Learning technique.
In this case, the constructed learning machine correlates the local
atomic distribution and the properties of the atoms with the
adsorption energy through the function F(W, X).

In this type of learning, it is necessary to define the target
variable (the variable Y), which, in the present case, is the
adsorption energy. It is also important to propose the
variables from the system that determine this energy. For
example, these variables can be the atomic properties of the
atoms and their local atomic order (Behler, 2011; Back et al., 2019;
Gómez-Peralta and Bokhimi, 2021). These variables can also
correspond to relationships between the atomic radii (Gómez –
Peralta and Bokhimi, 2020).

The function, F(W, X), generated with the Deep Learning
technique, contains many parameters with values optimized
during the training. Therefore, this learning procedure requires
a considerable number of samples obtained from experiments or
models. In the present case, each sample (X, Y) contains
information related to the local distribution of the atoms and
their chemical properties (variableX). In addition, it also includes
the adsorption energy generated by quantum mechanical
calculations (variable Y).

Thousands of samples (X, Y) are created by building atomic
distributions used to perform quantum mechanical
computations. The function F(W, X) maps X in Y through the
relationship that lies between them without explicit modeling; for
one sample, this function outputs a value that compares with the
adsorption energy Y generating a difference value. For all
samples, the average difference value gives the loss function J

(W, X, Y), used to update the parametersW of the function F(W,
X). This process repeats until the loss function reaches its
minimal value to complete the learning process. It is
important to note that the computations include the
interaction between the molecule with catalytic and non-
catalytic sites.

Of the samples, a percentage, about 80%, is used for training,
and the rest to check the ability of the function F(W, X) to predict
adsorption energies. This prediction allows finding new catalysts
for specific catalytic processes related to the molecule adsorbed on
the solid.

As an example of this methodology, (Back et al., 2019) used the
Deep Learning technique to predict the adsorption energy
(variable Y) of CO or H when they interact, each separately,
with various surfaces of pure metals, metal alloys, or intermetallic
compounds. Their model is a modification of the previously
reported model for the prediction of the physicochemical
properties of crystalline compounds (Xie and Grossman, 2018;
Chen et al., 2019).

Back et al. identified (variable X) each atom with the group
and period to which it belongs, its electronegativity, its covalent
radius, its number of valence electrons, its first ionization energy,
its electron affinity, the block to which they belong, and its atomic
volume. They model the interaction between an atom with its
local environment with its associated Voronoi polygon (Blatov,
2004).

The number of samples used by Back et al. for training was
43,237 for each adsorbate on the solid. Each sample had 37
different elements and 96 stoichiometries. In these samples, the
number of different spatial groups was 110, while the number of
crystal facets was 41.

The learning machine for CO adsorption had 4,938
parameters W, while the machine used for H adsorption
utilized 6,738 parameters W.

For 12,000 samples excluded from the training set, the learning
machine predicts adsorption energies for CO and H with a Mean
Absolute Error (MAE) of only 0.15 eV. This value is lower than
that obtained in previous studies by the authors usingmany alloys
as the solid (Tran and Ulissi, 2018).

Surface Area Prediction
In heterogeneous catalysis, nanoporous materials are of particular
interest because they have a large surface area. Hence, to help to
understand the catalytic properties, this area should be
determined accurately. The traditional method to get this area
is the Brunauer-Emmett-Teller (BET) method, where for
measuring this area, the material adsorbs inert molecules at
low temperatures. But, the surface area estimation using this
method is not always precise, especially for materials with large
surface areas, where some of the adsorbed molecules are no more
on a monolayer. Thus, for example, the reported surface areas of
metal-organic frameworks (MOFs) are exaggerated (Gómez-
Gualdrón et al., 2016; Sinha et al., 2019).

Datar et al. (Datar et al., 2020) developed a machine learning
approach for estimating surface area to correct this problem.
They combine machine learning with molecular modeling to
derive argon isotherms at 87 K for over 300 metal-organic
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frameworks from the CoRE-MOF database (Chung et al., 2014;
Chung et al., 2019). They use a Lennard-Jones potential with a cut
radius of 12 Å (Rappe et al., 1992). Finally, they applied the BET
theory to these isotherms to determine the surface area of these
MOFs by using the SESAMI algorithm (Sinha et al., 2019),
focusing primarily on the true monolayer area (Gómez-
Gualdrón et al., 2016).

Their machine learning model relates the features that
describe the adsorption isotherms and the surface area
(variable Y). The isotherm features (variable X) were
constructed by dividing the pressure into seven regions on a
logarithmic scale. These regions are related linearly to the true
monolayer areas. Themodel parameters were optimized using the
Least Absolute Shrinkage and Selection Operator (Tibshirani,
1996). It includes regularization to reduce overfitting. For the
training, Datar et al. used 40% for the samples for the training and
60% for the testing. The training evolution was analyzed using the
cross-validation method (Zhang, 1993).

The learning machine predicts more precise surface areas than
the BET method. For example, for samples with surface areas
greater than 3,500 m2/ g, with the learning machine, only 2% of
the structures were predicted with surface area errors more
significant than 20%, while for the BET method, the latter
figure was 54%.

With the trained learningmachine, the surface area of 68MOF
structures of the CoRE-MOF database was obtained, modeling
the isotherms with the adsorption of N2 (77 K). The predictions
of the surface area using these isotherms with the learning
machine trained with the isotherms generated with the
adsorption of Ar also gave better results than those obtained
by the BET approach. The estimated areas with the learning
machine were scaled to a ratio of 1.148 since the area associated
with the N2 molecule is 0.163 nm2, while the one associated with
the Ar atom is 0.142 nm2 (Mikhail and Brunauer, 1975).

Adsorption Isotherm Prediction
Discovering new materials is of the utmost importance from
both technological and scientific points of view. That is why, in
recent years, the use of artificial intelligence techniques to speed
up their search has proliferated (Goldsmith et al., 2018; Gupta
et al., 2018; Gómez-Peralta and Bokhimi 2020; Chen et al., 2021;
Cho and Lin, 2021; Konno et al., 2021). Of particular interest is
the finding of nanoporous materials because they have a large
surface area that is attractive in heterogeneous catalysis (Cho
and Lin, 2021).

These materials can exist in hundreds of thousands. However,
nowadays, selecting those with an attractive surface area for
heterogeneous catalysis occurs through the slow procedure of
trial and error. As an alternative to this discovery procedure, Cho
et al. (Cho and Lin, 2021) developed a learning machine based on
convolution neural networks (CNN) that predicts the surface area
of such materials.

Their methodology analyzes methane adsorption on zeolites,
but it applies to any molecule adsorption in any nanoporous
material. In their research, Cho et al. used 6,500 zeolite structures
with lattice parameters less than 24 Å, selected from the Predicted
Crystallography Database (Pophale et al., 2011).

They calculated the methane adsorption isotherm (variable Y)
at 300 K on every zeolite structure for 14 different pressure values
between 0.0005 and 200 bar. For that, they employed the Monte
Carlo method approach, using a Lennard-Jones type interaction
potential (García-Pérez et al., 2007) with a cut-off radius of 12 Å.
Their learning machine had the LeNet-5 architecture (LeCun
et al., 1998), commonly used to detect objects in two-dimensional
images (Qin et al., 2020; Jain et al., 2021).

Each zeolite structure was modeled with a three-dimensional
image equivalent to a cubic cell with 24 Å per side. Each of the
24 × 24 × 24 image voxel values (variable X) corresponded to its
potential as a methane adsorption active site. Filters of 2 × 2 × 2,
3 × 3 × 3, and 5 × 5 × 5 voxels built the different layers of the
convolutional neural network. Of the total samples, 90% were for
training and 10% for testing the model. The use of data
augmentation techniques (Shorten and Khoshgoftaar, 2019)
decreased the loss values, achieving squared means errors of
up to 0.015 mol/ kg.

Their learning machine predicts adsorption isotherms in
fractions of seconds, which contrasts with the times required
by using the Monte Carlo method, where to calculate the
adsorption isotherm in a zeolite requires dozens of CPU
hours. This difference in time is significant since there are
hundreds of thousands of such zeolite structures from which it
is interesting to obtain their adsorption isotherms.

These studies show the potential of convolutional neural
networks to develop other applications in heterogeneous
catalysis. For example, for the capture of carbon dioxide or
removing H2S or SO2 during sour gas sweetening.

Prediction of Novel Catalysts
The learning machines described above, for their learning, were
fed with features defined by the properties of the elements and
features obtained with calculations based on the atomic
distribution. This methodology allowed generating a
considerable number of samples for the training.

In contrast, Williams et al. (Williams et al., 2020) describe a
learning machine in which part of the content of the samples
comes from experiments, which limited the number of samples to
less than 500.

InMachine Learning, when the number of samples is tiny, and
the goal is to have a minor error in the predictions, it is
convenient to choose an algorithm that learns correctly with
this number of samples. One of these algorithms is the Random
Forest (Breiman, 2001), which Williams et al. used to create their
learning machine based on 100 tree predictors.

Their learning machine looked for new catalysts based on
ruthenium for ammonia decomposition. They started with the
ruthenium catalyst Ru4K12, promoted with potassium, and
supported on gamma-alumina. Their research sought to
predict new catalysts by substituting Ru with 33 different
elements (Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr,
Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Hf, Ta,W, Re, Os, Ir, Pt, Au,
Pb, Bi).

To develop their first learning machine, they prepared
catalysts by replacing one Ru atom with an M atom (M � Ca,
Mn, In). The composition of the catalysts was 3 wt% Ru, 1 wt%M
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and 12 wt% K. For each catalyst, they measured the ammonia
conversion at 250, 300, and 350°C; this conversion is the target
variable (variable Y) that supervises the learning. It is to notice
that selecting these elements to replace Ru maximizes the
difference between the features used in the learning.

The features (variable X) used to characterize the ammonia
decomposition process were the catalyst composition, the
operating conditions, the synthesis variables, and the atomic
properties. Only five of these features were necessary to get
accurate predictions, being the reactor temperature the most
important. The other four features were related to the
electronic structure of the atoms: the number of d-shell
valence electrons, the electronegativity, the covalent radius,
and the adjusted work function. It is important to remember
that in 1985 Falicov et al. proposed that the number of d-shell
valence electrons was essential to describe the catalytic activity
(Falicov and Somorjai, 1985).

When evaluating the learning machine by replacing Ru with
an atom M of the remaining 30 elements, the best ammonia
conversions occurred with M � Sr, Mg, Sc, or Y.

These predictions motivated the authors to synthesize
different catalysts by substituting Ru with the following 19
elements: Cu, Ni, Cr, W, Hf, Zn, Bi, Pd, Mo, Y, Sc, Sr, Mg,
Os, Pt, Au, Nb, Fe, and Rh. When they catalyzed ammonia
conversion, the highest conversions corresponded to the
substitution of Ru with Sr, Mg, Sc, or Y, which matches the
learning machine’s predictions, and demonstrates the usefulness
of this machine to predict novel catalysts.

Williams et al. extended their model by generating new sets of
catalysts using, for each set, three different atoms to replace Ru,
selecting the atoms from the 19 elements mentioned in the
previous paragraph, plus Ca, Mg, and In.

With these 22 elements replacing Ru, 60 different sets of three
catalysts were built, generating 60 different learning machines.
These machines predominantly predict that the catalysts that
produce a high ammonia conversion are those in which Ru is
replaced by Ca, Sr, Sc, Y, and Mg. These predicted conversions
have a 10% error compared with those measured in experiments.

The results show that artificial intelligence techniques and
relatively few experiments are sufficient to save both cost and
time to discover new catalysts.

Sulfur Content Prediction After
Hydrodesulfurization
Since the inception of machine learning techniques, they have
been used to predict sulfur content after hydrodesulfurization
(HDS). In 1996, Berger et al. (1996) constructed a learning
machine based on a Feed-Forward Neural Network with only
one hidden layer containing three nodes. Their experiments
provided the 25 samples utilized to train and test this learning
machine. Eighteen of them were for its training and seven to test
it. For all the hydrodesulfurization experiments, they employed a
catalyst with 4.2 wt% Co, 16.7 wt% Mo and 0.4 wt% S, with a
hydrogen to oil volume ratio of 500.

The target variable (variable Y) was the sulfur content after the
hydrodesulfurization process, with values between 10 and

1870 ppm. The features (variable X) that characterized the
process were: temperature, with values between 348 and
360°C, pressure, with values between 600 and 1,200 psi, liquid
hourly space velocity with values between 0.4 and 6.0 h−1, and the
sulfur content of the heavy atmospheric gas oil, with values
between 7,500 and 12,000 ppm. Since, in this study, the
experimental sulfur output values have little change in the
pressure range used, the study shows that, in this case, the
pressure does not have a significant effect on the sulfur output
predictions.

Despite the tiny number of samples used in training, the sulfur
content predictions with the test samples were within 10% of the
experimental values.

Another learning machine, developed by Al-Jamimi et al. (Al-
Jamimi et al., 2019), predicts the sulfur content after an HDS
process. They used a Support Vector Machine (Shawe-Taylor and
Sun, 2011) combined with a genetic algorithm (Katoch et al.,
2021) as the learning technique.

The ultimate sulfur content in the product (variable Y), with
values between 0.0 and 1,258 ppm, is the variable that supervises
the learning. The features (variableX) that characterized the HDS
process were temperature, with values of 200 300 and 400°C,
pressure, with values between 25 and 75 bar; hydrogen dosage,
with values between 0.4 and 0.8 g, the initial sulfur concentration,
with values between 439 and 1,500 ppm and the type of fuel. The
authors generated 34 samples performing HDS experiments, 24
to train the learning machine, and 10 to test its prediction
capability. After its training, the machine delivered predictions
regarding the product’s sulfur content within 5.5 percent of the
experimental results.

In the literature, some publications also report the use of
artificial intelligence techniques to examine the evolution of the
HDS process in industrial plants over time (Ma et al., 2020) or the
evolution of this process in a refinery, with temperature, pressure,
and hydrogen dosage (Arce-Medina and Paz-Paredes, 2009; Al-
Jamimi et al., 2018). The literature also covers the use of these
techniques for predictions in other oil industry processes
(Sagheer and Kotb, 2019; Liu et al., 2020).

CONCLUSIONS

We describe some applications of artificial intelligence
techniques in heterogeneous catalysis. Since they all
correspond to supervised learning, first, we give a brief
introduction to this kind of learning, emphasizing the
variables X and Y that define it. Then, when we use this
learning to analyze a problem, the essential point is to find
these variables to represent it. Therefore, for each of the
described applications, there is a particular emphasis on
finding these variables. This emphasis will help extract this
information when one is interested in a new application. In the
end, the description intends to give readers some clues for using
these techniques in their research or the industrial applications
related to hydrodesulfurization.

The reported applications describe the building of learning
machines that infer adsorption energies, surface areas, adsorption
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isotherms of nanoporous materials, novel catalysts, and the sulfur
content after hydrodesulfurization.

The learning machine that predicts the adsorption energy
learns from the interaction of CO or H on surfaces of pure metals,
metal alloys, or intermetallic compounds. The one that predicts
surface areas learns from the adsorption of argon on 300 different
metal-organic frameworks. The machine that forecasts
adsorption isotherms learn from the adsorption of methane on
6,500 zeolite structures. The machine that infers novel catalysts
based on ruthenium learns from the ammonia decomposition
using catalysts generated by the partial substitution of Ru with 22
different atoms. Finally, the machine inferring the sulfur content
after hydrodesulfurization learns from the variables used to
perform the experiments: temperature, pressure, hydrogen
dosage, and initial oil sulfur concentration.

Learning machines can predict adsorption energies with mean
absolute errors of 0.15 eV for a diverse chemical space. They
predict more precise surface areas of porous materials than the
BET technique and can calculate their isothermsmuch faster than
the Monte Carlo method. These machines can also predict new
catalysts by learning from the catalytic behavior of materials

generated through atomic substitutions. When the machines
learn from the variables associated with a hydrodesulfurization
process, they can predict the sulfur content in the final product.
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