
AVUBDI: A Versatile Usable Big Data
Infrastructure and Its Monitoring
Approaches for Process Industry
Sabrina Luftensteiner*, Michael Mayr, Georgios C. Chasparis and Mario Pichler

Software Competence Center Hagenberg GmbH, Hagenberg, Austria

The amount of sensors in process industry is continuously increasing as they are getting
faster, better and cheaper. Due to the rising amount of available data, the processing of
generated data has to be automatized in a computationally efficient manner. Such a
solution should also be easily implementable and reproducible independently of the details
of the application domain. This paper provides a suitable and versatile usable infrastructure
that deals with Big Data in the process industry on various platforms using efficient, fast
and modern technologies for data gathering, processing, storing and visualization.
Contrary to prior work, we provide an easy-to-use, easily reproducible, adaptable and
configurable Big Data management solution with a detailed implementation description
that does not require expert or domain-specific knowledge. In addition to the infrastructure
implementation, we focus on monitoring both infrastructure inputs and outputs, including
incoming data of processes and model predictions and performances, thus allowing for
early interventions and actions if problems occur.

Keywords: big data infrastructure, process monitoring, sensor data processing, process industry, containerization

1 INTRODUCTION

It has recently been recognized that machine learning and data analytics play a critical role in
realizing long-term sustainability goals in the process industry. The European Union 2030’s goals
proposed rather ambitious key targets in the https://ec.europa.eu/clima/policies/strategies/2030_en
which includes a 40% decrease in greenhouse gas emissions, 32% share for renewable energy and 32.
5% improvement in energy efficiency. Such goals require the active participation and involvement of
the whole industrial sector, whose energy consumption reached the 24.6% of the total energy
consumption in Europe in 2017, according to the European Environment Agency (2017). However,
these goals cannot be achieved without large scale digitization of the process industry and a
subsequent data management analysis for efficient decision making, which pose significant
challenges for industrial manufacturers, as observed by Zeng and Yin (2017).

Indeed, industrial digitization is expanding with a relatively fast pace, given that sensors are
getting faster, better and cheaper Reis and Gins (2017). This trend is rather evident in every aspect of
our lives, given that the amount of produced and recorded data has reached 60% of annual growth,
according to Srinivasan and Rajeev (2012). To stay competitive while following efficiency targets, an
intelligently supervised and controlled manufacturing production line is a necessity. To enable Big
Data processing in terms of Industry 4.0, further development of the required infrastructures,
concerning loading, processing, storing, and visualizing the data, is required. Furthermore, such
processing cycle should be performed automatically in a near real-time fashion in a versatile, scalable
and easily deployable manner. Such a transformation requires substantial innovation in the context

Edited by:
Davide Fissore,

Politecnico di Torino, Italy

Reviewed by:
Santiago Muiños Landin,

Northwestern Metallurgical Research
Association, Spain

Hector Diego Estrada-Lugo,
University of Liverpool,

United Kingdom

*Correspondence:
Sabrina Luftensteiner

sabrina.luftensteiner@scch.at

Specialty section:
This article was submitted to

Computational Methods
in Chemical Engineering,
a section of the journal

Frontiers in Chemical Engineering

Received: 08 February 2021
Accepted: 17 May 2021
Published: 16 June 2021

Citation:
Luftensteiner S, Mayr M, Chasparis GC

and Pichler M (2021) AVUBDI: A
Versatile Usable Big Data Infrastructure

and Its Monitoring Approaches for
Process Industry.

Front. Chem. Eng. 3:665545.
doi: 10.3389/fceng.2021.665545

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 6655451

TECHNOLOGY AND CODE
published: 16 June 2021

doi: 10.3389/fceng.2021.665545

http://crossmark.crossref.org/dialog/?doi=10.3389/fceng.2021.665545&domain=pdf&date_stamp=2021-06-16
https://www.frontiersin.org/articles/10.3389/fceng.2021.665545/full
https://www.frontiersin.org/articles/10.3389/fceng.2021.665545/full
https://www.frontiersin.org/articles/10.3389/fceng.2021.665545/full
https://ec.europa.eu/clima/policies/strategies/2030_en
http://creativecommons.org/licenses/by/4.0/
mailto:sabrina.luftensteiner@scch.at
https://doi.org/10.3389/fceng.2021.665545
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles
https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org/journals/chemical-engineering#editorial-board
https://doi.org/10.3389/fceng.2021.665545

of Big Data management and analytics. Furthermore, in order to
reach a broader community, it should be deployable on various
systems.

As it will be discussed in detail in the forthcoming related work
section, several researchers have emphasized the need for Big
Data analytics in the process industry and cyber-physical systems,
cf., Ge et al. (2017); Sarnovsky et al. (2018); He andWang (2018);
Wang et al. (2018); Xu and Duan (2019); ur Rehman et al. (2019)
and have described the induced requirements and research
challenges, as in ur Rehman et al. (2019). There have been
several research efforts proposing specific Big Data
infrastructure and deployment solutions, by describing the
necessary technology stack, as for example in Sarnovsky et al.
(2018); Xu and Duan (2019), without however providing details
on the orchestration/configuration of such technologies. In fact,
there has been limited work on providing detailed guidelines on
the deployment and orchestration of Big Data infrastructure,
making its realization a rather difficult task for non-experts.

Indeed configuring and deploying a Big Data infrastructure
requires prior expertize and familiarity with these technologies.
For this reason, our goal in this paper is to present a versatile,
scalable and easily deployable Big Data infrastructure that is
capable of running data processing pipelines as a basis for
advanced machine learning and process mining algorithms.
We identified key necessities for data analytics in the process
industry and developed an infrastructure that covers the full-
stack of data analytics, i.e., data gathering, preprocessing,
exploring, visualizing, persisting, model building, and model
deploying in real-time and historical data. The overall
structure is as modular as possible, enabling the integration of
custom data processing and visualization. It is worth noting that
the focus in this paper is on the infrastructure design and its
deployment, that enables a rather wide range of processing
possibilities and a user-friendly environment for both non-
experts and experts. In addition, all of the employed
technologies/services are open-source. Finally, given that this
paper addresses the issue of designing a versatile and user-
friendly Big Data infrastructure, the specifics of the data
analysis methodologies and the overall computational
complexity of the pipeline are not addressed in this paper.

This research has been conducted under the European Union’s
Horizon 2020 project https://www.cogniplant-h2020.eu/. The
overall goal of this project is the development of an innovative
approach for advancing both the digitization as well as the intelligent
management of the process industries. One of the main tasks of this
project includes the development of a Big Data analytics platform
that would allow for a near real-time data processing, predictive
modeling, and process mining of the industrial processes. The goal is
to improve the performance of those cognitive production plants
through the derivation of corrective actions. The involved industrial
processes include a chemical plant in Austria, an alumina refinery in
Ireland, a cement production plant in Italy, and a metal
manufacturer in Spain. Common Key Performance Indicators
(KPIs) of such plants include energy and resource consumption,
as well as CO2 emissions.

In the remainder of this section, we present related work and
the main contributions of this paper. Methods covers methods in

connection to the existing Big Data infrastructures and
technologies, including a brief insight into their advantages
and disadvantages, especially with respect to their utility in the
process industry. The presentation has been organized into four
main topics: data management, storage, analysis and
visualization. In this section, we also present our main
contribution: a versatile usable big data infrastructure for
process industry. Results presents various monitoring
approaches that provide an insight into the processing results.
Specifically, the input data and the performance predictions are
presented. Finally, Discussion provides a discussion over the
features of the proposed infrastructure and future
development steps.

1.1 Related Work
As pointed out in Venkatram and Geetha (2017), “Big Data is
something like a set of huge data sets which are complex and
requires tedious work to capture, store, process and analyze
them.” The definition may differ in different application
domains, depending on the size and rate of data, the methods/
techniques used for data management, and data analysis. Big Data
has recently attracted significant attention in academia and
industry, and it is expected to play a significant role in
Industry 4.0. It is indeed evident in many several domains
that, in order for organizations to remain competitive, they
have to invest in Big Data technologies with a large variety in
the size and rate of data as well as large variety in data types, as
mentioned in Ardagna et al. (2016).

The large variety of data volume and types, as well as the
different needs of each application domain, may lead to different
Big Data solution architectures. Even for the same application
domain, there might be several alternative solution concepts and
services that could be used. For example, we may use a mixture of
technologies, going from NoSQL databases, like Cassandra or
HBase, data preparation utilities like Paxata, and distributed
parallel computing systems like Hadoop and Spark, as
mentioned by Ardagna et al. (2016) and discussed more
extensively in the forthcoming Methods. This variety in the
availability of technologies and their selection for each
application is one of the hindering factors in using Big Data.
Simultaneously, this variety requires a large set of skills for
implementing and managing a Big Data solution, which makes
its implementation rather costly for many organizations.

Indeed, there has been a large literature on the design of Big
Data management and analysis solutions, including, for example,
the works of Ardagna et al. (2016); Venkatram and Geetha
(2017); Sarnovsky et al. (2018); Xu and Duan (2019). In
particular, Xu and Duan (2019) provides a generic overview of
solutions for data-analytics and Big Data management,
Venkatram and Geetha (2017) lay out an overview of
technologies for an overall Big Data solution, Sarnovsky et al.
(2018) provide the details of the Big Data technology stack, and
Ardagna et al. (2016) which introduces Big-Data-Analytics-as-a-
Service and a general description of the applications that could be
used in the different parts of the Big Data pipeline.

Other relevant work, especially in the context of the process
industry, includes the paper of ur Rehman et al. (2019) that

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 6655452

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://www.cogniplant-h2020.eu/
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

describes requirements and research challenges in Big Data
processing and the paper of He and Wang (2018) that discusses
recent developments and challenges in statistical process monitoring
in manufacturing. Relevant work in other application domains
include the paper of Zhou et al. (2016) that provides findings
regarding various Big Data driven smart-grid management
approaches, the paper of Poddubny et al. (2017) that developed
an approach for a distributed Big Data infrastructure using smart
agents and parallel computing based on heterogeneous sources, and
the paper of Rios and Diguez, (2014) that proposed a Big Data
infrastructure for analyzing data generated by Wireless Sensor
Networks based upon Hadoop and Storm.

Summarizing, we may argue that one common characteristic
of the aforementioned literature is the fact that implementation
aspects and details of the proposed technologies and their
orchestration are not discussed in detail. In a way, expert/
domain knowledge is still required for implementing such Big
Data solutions, rendering this problem an extremely challenging
task for non-experts.

1.2 Contributions
As we discussed in the previous section, current literature offers a
broad range of Big Data solutions, also within the context of the
process industry. However, either they mostly focus on one part
of the infrastructure without offering complete infrastructure
compositions, or, even if they do, expert knowledge is still
required for implementing the proposed solutions. For this
reason, in this paper, our goal is to provide a unified and
comprehensive Big Data Management Schema for tackling a
broad range of machine learning tasks in industrial processes
and with possibly heterogeneous data sources. A detailed
presentation and discussion over the selection of the used
technologies and their configuration/orchestration are also
provided, thus significantly reducing the level of expert
knowledge required. This way, the presented schema can
easily be reproduced and adapted to various use-cases. In
particular, our contributions can be summarized as follows:

1. We provide a detailed insight into state-of-the-art
technologies for building a big data infrastructure;

2. We propose and describe the structure of a versatile usable Big
Data infrastructure, or briefly AVUBDI, relevant for a wide
range of application domains including process industry;

3. We use open-source tools for the structure of AVUBDI and
enable a user-friendly environment for non-experts as well as
experts;

4. We describe in detail the data flow and types within the
proposed AVUBDI;

5. We describe in detail the monitoring approaches for industrial
plants using AVUBDI.

2 METHODS

In this section, we first discuss already existing approaches and
state-of-the-art technologies for Big Data management. We also
provide a comparative analysis of these methodologies with

respect to their versatile usability. This presentation is
organized into four topics, namely data management, storage,
analysis and visualization. In the second part of this section, we
present the structure and implementation of the proposed
versatile usable Big Data infrastructure.

2.1 State-Of-The-Art Technologies
This subsection covers various state-of-the-art technologies needed
for the implementation of a Big Data infrastructure, ranging from
data management to visualization tools. As multiple technologies
exist for various parts of the infrastructure, the advantages and
disadvantages are discussed regarding our setting for a versatile
usable Big Data infrastructure in process industry.

2.1.1 Raw-Data Storage
As it is difficult to deal with high amounts of data in various and
varying formats in traditional database systems, data lakes are likely
used instead. Data lakes used for data storage are more complex to
handle as they may store unprocessed data in its raw format or
unstructured data according to Miloslavskaya and Tolstoy (2016).
At first glance, unprocessed and raw data may be seen as a problem
as it contains a lot of possibly unnecessary information, which is
currently not needed and takes up space. In industrial settings, it
may still be an advantage as the complete data is stored without
trimming, containing all of the available information and therefore
enabling various approaches for further processing. Low-level
sensor data, for example, may be used in different ways to gain
a higher level of abstraction for machine learning. Usually, data
entries also include meta-information about machines or specific
processes. Using higher-level data in combination with available
meta-information allows the generation of event logs, whichmay be
used in process mining to better understand processes, machine
behavior and their deviations.

2.1.2 Data Management and Routing
The management of data is crucial in Big Data infrastructures as it is
not feasible to process BigData in one single application due to timely
or even computational restrictions. Instead, it is reasonable to create
various processing steps, which exchange messages with the needed
data to avoid bottlenecks, to increase performance and to provide the
possibility for extensions and flexible adaptations. We refer to data
management in our setting as 1) the gathering of data using specific
sources and 2) themessage routingwithin the infrastructure as well as
3) data or message format specifications for further processing steps.
Especially for process industry, it is important to create a flexible data
management as it is likely that process paths and/or information
differ over time due to changing requirements.

Apache Kafka.1, ActiveMQ.2 and RabbitMQ.3 are popular
technologies for handling the asynchronous message routing
part of an infrastructure. Apache Kafka is an open-source publish-
subscribe messaging system, which has good horizontal scaling
capability. Message producers send their messages to a topic in a

1https://kafka.apache.org/
2http://activemq.apache.org/
3https://www.rabbitmq.com/

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 6655453

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://kafka.apache.org/
http://activemq.apache.org/
https://www.rabbitmq.com/
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

broker, which are then pulled by consumers. Apache Kafka is able to
persist messages for a pre-defined time, has a high throughput, may
be distributed and acts in real-time (Garg (2013)). ActiveMQ is a
general-purpose message broker that supports several messaging
protocols, e.g., AMQP, STOMP or MQTT. In contrast to Apache
Kafka, ActiveMQ is push oriented, which leads to problemswith slow
brokers as messages are kept in RAM until they are processed.
Furthermore, ActiveMQ is a traditional messaging system in contrast
to Apache Kafka’s distributed processing approach (Christudas
(2019)). RabbitMQ implements a broker architecture, which
queues messages on a central node before they are sent to clients.
This approach enables easy usage and deployment of RabbitMQ, but
also leads to a less scalable and slower system compared to ActiveMQ
and Apache Kafka according to Dobbelaere and Esmaili (2017).
Comparing throughput and latency over those three technologies,
Apache Kafka leads with its ability to handle huge amounts of data
with very low latency. This characteristic is important in an industrial
setting as the amount of data to process may vary heavily between
use-cases.

The next important step, after the definition of a message routing
tool, is the assurance of an appropriate data format that is passed
between different processing steps. It is necessary to check themessage
content as changing environments in industrial settings may lead to
changing content, e.g., new features are added, and existing processing
steps may have problems handling the new data format. For this
reason, Confluent developed a tool called Schema Registry, which
manages message schemas and is directly connected with Apache
Kafka for the surveillance of schema evolution. It provides a serving
layer formetadata, covers a RESTful interface for storing and retrieving
Avro®, JSON Schema, and Protobuf schemas and is able to hold the
whole infrastructure in a consistent state according to https://docs.
confluent.io/current/schema-registry/index.html. Using this tool, it is
possible to define schemas, validate messages and follow the evolution
of schemas, e.g., integration of a new feature. The coordination of
processes in distributed applications requires high effort. AsHunt et al.
(2010) describes, Zookeeper provides a centralized service for the
maintenance of configuration information, the naming and the
provisioning of distributed synchronization and group services.

2.1.3 Data Storage
In most use-cases data has to be stored either temporarily or
permanently into a database. The stored data represents a broad
variety, including data that is later used for further processing,
historical data, and results from prediction models. Various
database approaches also exist for different use-case
requirements. Especially in the field of Big Data, it is necessary
to select the most appropriate technology, given that several
database technologies are excluded due to their poor
performance with respect to capacity and access speed.
Cassandra.4, InfluxDB.5 and CrateDB.6 are capable of dealing
with Big Data, especially data gathered in industrial environments.

Lakshman and Malik (2010) define Cassandra as a distributed
storage system for managing very large amounts of structured
data, which is spread across multiple servers. It provides high
availability, but lacks some features of a relational database.
Cassandra uses replication to achieve high availability and
durability, where each data sample is replicated at a predefined
number of hosts. InfluxDB is an open-source schemaless time-
series database and enables a high throughput regarding write
and read actions, according to Naqvi et al. (2017). It incorporates
so called measurements instead of tables, and it focuses on
timestamps and their corresponding keys and features. In
contrast to Cassandra, InfluxDB does not need a pre-defined
schema and measurement tables are flexible regarding the
integration of new features. This is especially interesting in
changing environments, e.g., industrial plants. CrateDB is a
relatively new database and represents itself as taking the most
advantageous features of SQL andNoSQL databases for industrial
usage. It has a high scalability potential and provides dynamic
schema adaptations, similar to InfluxDB. CrateDB supports
distribution across multiple servers and also covers relational
operations, such as joins.

Those three databases have overall very strong advantages that
address rather well the challenges met in Big Data applications. In
order to choose the best one for an industrial application may not
be a simple task. On the one hand, Cassandra is easily scaleable
and can be distributed across multiple servers, but it lacks the
ability of flexible schemas, which InfluxDB offers. CrateDB
incorporates both advantages of the distributed approach and
the flexible schemas, but it still has several issues regarding its
implementation and its throughput.

2.1.4 Data Processing and Analysis
Another important topic during the development of a Big Data
infrastructure is the selection of the most appropriate data
processing and analysis tool. The integrated tool has to be able
to deal with large amounts of data in a near real-time manner and
provide fast answers regarding analytical evaluations or
predictions. This is especially important in industrial settings
so downtimes of machines, poor quality of products or emissions
during production are minimized. Fulfilling such goals will enable
industries to improve their performance indicators.

Popular tools for data processing and analytical evaluations
are Apache Storm.7, Apache Spark.8, Apache Flink.9, Apache
Samza.10 and Apache Drill.11.

Apache Storm is a real-time distributed processing system,
which can process the streams of data fast, while it still provides
easy usage. It is highly scalable, offers low latency with guaranteed
data processing and allows developers to develop their logic
virtually in any programming language according to Iqbal and
Soomro (2015).

4https://github.com/apache/cassandra
5https://github.com/influxdata/influxdb
6https://github.com/crate/crate

7https://storm.apache.org/
8https://spark.apache.org/
9https://flink.apache.org/
10http://samza.apache.org/
11https://drill.apache.org/

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 6655454

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://docs.confluent.io/current/schema-registry/index.html
https://docs.confluent.io/current/schema-registry/index.html
https://github.com/apache/cassandra
https://github.com/influxdata/influxdb
https://github.com/crate/crate
https://storm.apache.org/
https://spark.apache.org/
https://flink.apache.org/
http://samza.apache.org/
https://drill.apache.org/
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

Apache Spark is a next generation engine for Big Data
analytics and alleviates key challenges of data preprocessing,
iterative algorithms and interactive analytics among others.
The data can be processed through a general directed acyclic
graph of operators using rich sets of transformations and actions.
Apache Spark supports a variety of transformations and eases the
data preprocessing especially for Big Data. Furthermore, Apacha
Spark provides an adapted library of machine learning algorithms
for faster performance, the so called MLLib, Salloum et al. (2016).

Apache Flink is an open-source system for processing
streaming and batch data, where real-time analytics are also
supported. It includes continuous data pipelines, historic data
processing, a. k.a. batch processing, and fault-tolerant dataflow
pipelines. Similar to Apache Spark, Apache Flink also provides its
own high-performance machine learning library called MLFlink,
Carbone et al. (2015).

Apache Samza is a distributed system for stateful and fault-
tolerant stream processing. It is able to scale to massive state sizes,
e.g., hundreds of TB, due to the use of partitioned local state in
combination with a low-overhead background change-log
mechanism. Next to the processing of infinite data streams, it
also allows finite datasets as a stream, e.g., viaKafka or file system,
without having to change the code, Noghabi et al. (2017).

Apache Drill is a distributed system for interactive analysis of
large datasets, which is designed to handle Petabytes of data
spread across numerous servers. Its goal is to respond to queries
in a low-latency manner and it is designed for scalability,
including well-defined APIs and interfaces, Hausenblas and
Nadeau (2013).

Table 1 contains a comparison of the aforementioned
analytical Big Data tools. The categories were chosen upon
their influence in a Big Data system for successful and fast
processing of data, where “++” represents very good
fulfillment and “−” represents no fulfillment. All of the
aforementioned tools support (near) real-time processing and
evaluations, among which Apache Flink and Apache Spark are
more qualified due to their implementation design. Regarding
running analytics and machine learning approaches, all tools are
able to support the analytical tasks involved, e.g., some support to
windowing or joining. In addition, Apache Flink and Apache
Spark may offer their adapted machine learning libraries for
faster performance. The streaming types vary, e.g., Apache Flink

is the only tool among the aforementioned ones that supports real
event streaming. Apache Drill, on the other hand, only supports
mini batches, which may have a stronger impact on the
performance. Apache Spark was originally developed for batch
processing only and recently adapted to also support streaming,
which leads to slightly worse performance compared to Apache
Flink, which was originally developed for stream processing.
Apache Spark has the most detailed documentation and
biggest community as well as a high support for various data
sources such as Kafka.

The selection of the right tool is crucial. When focusing on
industrial plants with high amount of equipped sensors that are
producing a continuous data stream, it is reasonable to look for tools
supporting Event-Streaming or Micro-Batches. Furthermore, to
train prediction models based on historical data, it is also
recommended that the analytical tool supports both machine
learning and also batch processing. Using the comparison in
Table 1, it is reasonable to use either Apache Flink or Apache
Spark for the creation of a versatile Big Data infrastructure, as they
cover most requirements, they provide an integrated high-
performance machine learning library and they are considered
state-of-the-art analytical tools. Depending on whether batch
processing is required, e.g., for the training of prediction models,
it is better to use Apache Spark over Apache Flink.

2.1.5 Visualization
To get a good overview on the running process, it is useful to
integrate a visualization tool into the Big Data infrastructure.
Various approaches are possible to implement visualizations, e.g.,
using R Shiny apps or self-built Python apps. Nevertheless, there
are also some ready-to-use tools for basic and advanced
visualizations. Four popular tools in this area are PowerBI.12,
Tableau.13, Grafana.14 and Chronograf.15.

PowerBI is a versatile platform for analyzing and visualizing
data within live dashboards and reports, aiming at non-
technological users. It supports a variety of sources, e.g.,

TABLE 1 | Comparison of analytical tools for Big Data. The categories are chosen upon influence within a Big Data system and range from “ ++ ” (very good fulfillment) to
“–” (not fulfilled). Additional information is given according to the requirements.

Features Storm Flink Spark Samza Drill Hadoop

Real-Time + ++ ++ ∼ + ∼

Distributed Processing + + + + + ++
Running Analytics + ++ MLFlink ++ MLLib + + +
Streaming Type + Micro batches ++ Event streaming + Micro batches + Micro batches Mini batches ∼ Batch and mini batches
Latency ++ ++ + + + Component
Throughput ++ ++ + ++ + Component
Fault Tolerance ++ Auto-restart ∼ Checkpoint ∼ Checkpoint ∼ Checkpoint ∼ − Replication
Message Delivery ++ Exactly once ++ Exactly once ++ Exactly once − At-least once n.A Component
Documentation Community + − Small ++ Big ∼ Medium + ++ Big
Data sources + + ++ HDFS, kafka ++ kafka, kinesis, . . . ++ schema-free Component
Scalability ++ auto-scaling ++ auto-scaling + ++ + Component

12https://powerbi.microsoft.com/
13https://www.tableau.com/
14https://grafana.com/
15https://www.influxdata.com/time-series-platform/chronograf/

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 6655455

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://powerbi.microsoft.com/
https://www.tableau.com/
https://grafana.com/
https://www.influxdata.com/time-series-platform/chronograf/
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

databases or files, and is based upon business analytics. PowerBI
has a restricted free usage that is expandable by purchasing
licenses. Similar to PowerBI, Tableau is also not free, can be
used without code and is also used broadly in the business
analytics field. It is very fast at processing Excel files and data
groupings, but lacks the ability to process complex needs, various
sources of data and a powerful query builder. Grafana and
Chronograf both are free tools for visualizing data, focusing
on time-series data stored in databases. They are simple to use
for developers with SQL skills since queries are created directly by
the developer himself. This enables the opportunity for more
elaborate and joined queries to visualize complex connections
within data. Chronograf supports as source database InfluxDB
and provides multiple visualization types, e.g., line plots or
gauges, and enables the development of unique dashboards.
Grafana is similar to Chronograf, but it supports more
databases and also enables the integration of additional
visualization plug-ins.

All of the mentioned tools work on top of the infrastructure
and use data stored either in databases or files. They are not
directly connected with message routing and only represent
information previously stored, even though the tools support
live updates. Live updates denote the immediate forwarding of
newly inserted information to the dashboards to be processed and
visualized. The final selection of the visualization tool should be in
coordination with the dashboard developer. If non-technical
people are creating or adapting dashboards, it is reasonable to
use PowerBI or Tableau. With these tools, it is possible to create
insights into data with the downside of less advanced
visualizations. The usage of Chronograf and Grafana enables
further elaborate visualizations and queries on databases to
provide more insight into existing data and is therefore a good
starting point. For more complicated or not supported
visualizations, it is recommended to develop own applications
using, e.g., R Shiny.

2.1.6 Service Orchestration
Orchestration and life-cycle management of the different used
services is crucial but often pose a central problem. In this
context, containerization gained a lot of research interest over
the last few years, Pahl et al. (2019). Efficient development time,
scalability and portability are key enablers for this technology.
The main advantage of wrapping services in containers is the
ability to create predictable software environments that are
isolated from other applications and can run everywhere,
Khan (2017). The two big players in container orchestration
are Docker Swarm.16 (Swarm.17 + Compose.18) and Kubernetes.19

Shah and Dubaria (2019). Both tackle similar problems,
i.e., orchestrating a set of containerized applications; however,
the technologies target different application domains. In short,
Docker Swarm Mode is more appropriate when orchestrating

simpler service stacks where high-availability, fault-tolerancy and
automatic scalability are not of highest priority and Kubernetes in
case of more complex situations Pan et al. (2019). While Docker
provides an open standard for encapsulating and distributing
containerized applications, the complexity can increase quite fast
when hundreds or thousands of containers need to be managed.
The higher the number of containers, the trickier the
coordination, scheduling and communication of the
containers. In that case, Kubernetes can help to mitigate these
problems. It is important to note that these technologies are not
mutually exclusive, and a combination enables developers to use
the best of both worlds.

In Table 2, we identified important features for developing,
deploying and managing Big Data infrastructure stacks and
compared the two technologies side by side.

2.2 Technology Stack Components of
AVUBDI
This sub-section covers used technologies for the development
and structure of a versatile Big Data infrastructure. The
technologies selected, which were presented earlier, are further
described with a special focus on why they are fitting best to
process industry Big Data infrastructures. In addition, tools for
the support of monitoring the complete infrastructure during and
after the development stage are presented to gain further insight
into the dataflow.

2.2.1 Data Management and Routing
Apache Kafka is the core for routing batch and streaming data as
messages between different (processing) steps across our
infrastructure. Among the aforementioned technologies in Data
Management and Routing, it has the highest throughput, lowest
latency and supports batch as well as stream processing. For these
reasons, it fits rather well to process industry environments. In
process industry, it is important to receive information, ranging from
their raw format to predictions, in a timelymanner to avoidmachine
downtimes, scrapmaterial and poor quality. Furthermore, Kafka has
the advantage of being equipped with 1) a well integrated scalable
deployment, which is useful regarding variations in data volumes,
and 2) a long term message storage, which in combination with
message replay improves fault-tolerance.

Another advantage of using Apache Kafka is provided by pre-
configured and customizable Kafka connectors, which are used
for the gathering and storing of messages. Those connectors

TABLE 2 | Comparison of orchestration technologies for Big Data infrastructure
development and deployment. The feature categories are chosenwith respect
to the identified necessities in the infrastructure stack.

Features Docker swarm Kubernetes

User interface 3rd party Yes
Scalability Highly (manual) Highly (automatic)
Complexity Low High
Logging Yes Yes
Environment Development Production
Containers Small (<100) Big (>100)

16https://github.com/docker
17https://github.com/docker/swarmkit
18https://github.com/docker/compose
19https://github.com/kubernetes

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 6655456

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://github.com/docker
https://github.com/docker/swarmkit
https://github.com/docker/compose
https://github.com/kubernetes
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

enable a quick development of source and sink connections
between Apache Kafka messages and other systems, e.g.,
databases such as InfluxDB or Cassandra, and reduce
development time and potential errors. To handle the format
of messages between (processing) steps in the infrastructure, the
Confluent Schema Registry is used. It is able to interact with
Apache Kafka for monitoring the schema and its evolution over
time. Next to its communication with Kafka, it is also able to
handle schemas provided to Kafka connectors for storage issues.
The importance for the integration of such a tool is given by the
likely changes in process industry, e.g., new sensors are added or a
process path changes. For the general coordination of processes in
our distributed applications, Zookeeper is used. It provides a
simple integration with Apache Kafka and other services and
therefore reduces integration problems. Zookeeper is used for
maintaining configuration information, naming, providing
distributed synchronization, and providing group services.

2.2.2 Data Storage
One to enable further usage of data, it is advisable to store it in a
persistent analytical storage. The data stored ranges from raw data
gathered by machines to (pre-) processed data within the
infrastructure and predictions or decisions. A data storage
provides reusability of data for further evaluations, visualizations
and the training of new models offline using historical data. A
versatile infrastructure has to deal with varying amounts of data and
therefore it is the best choice to focus on data storage technologies,
which are developed for the usage in BigData scenarios. As it is likely
that access to recently added data is more important, e.g., for
analytical purposes, than older data, we selected InfluxDB as our
main storage. InfluxDB provides, in contrast to Cassandra, a
schemaless database and is developed on the basis of time-series
data. The schemaless aspect is rather interesting as it allows to store
evolving data, e.g., if new sensors are added to machines.

Apart from storing the data, it is also required to enable the
storage of models within the infrastructure. This topic was not
mentioned in Data Storage as it is a special form of storage type and
requires adapted technologies. The storage and also versioning of
models is important due to steadily changing data, either in its
composition of features or its value, and the resulting demand of
model adaptations. A popular tool in this area is called MLFlow,
which is an open-source platform to manage the machine learning
lifecycle. It covers a central model registry, its deployment and the
recording of experiments and results (Zaharia et al. (2018)). To work
properly, it uses a database of choice in its background, here
Postgres.20. Postgres is a powerful, open-source object-relational
database system that has earned a strong reputation for
reliability, feature robustness, and performance, Momjian (2001).
It fits well to MLFlow as it does not need to handle Big Data and it is
simple to use.

2.2.3 Data Analysis and Visualization
For data processing, analysis and predictions, the versatile usable
Big Data infrastructure is using Apache Spark. Apache Spark is

the best fitting tool out of the one’s presented in Data Processing
and Analysis as it supports batch as well as streaming analysis,
provides a built-in machine learning library with in-memory
processing and a well documented users-guideline. These features
are important as different requirements may be necessary in
different use-cases. The support of batch and stream processing of
data is required so that models can either be trained on historical
data or continuously adapt to streaming data. The analysis part of
the infrastructure consists of a Spark master, which handles the
workload and the overall management, and its worker nodes,
which are used for processing the data. So called Spark Jobs can be
written in, e.g., Scala or Python and incorporate the analysis and
processing part of the infrastructure. The input data of Spark Jobs
is, in our case, received via Kafka topics and further processed
inside the node, e.g., for preprocessing of data or predictions.

For the visualizations at the top layer of our infrastructure, we
decided to use Grafana. As all parts of the infrastructure are in
general open-source, it is a good idea to also include an open-
source visualization tool as Grafana or Chronograph. They also
provide advanced possibilities compared to PowerBI and Tableau,
e.g., due to their customizability and ability to present complex
relations using queries. Furthermore, as process industry is likely to
work with time-series data, Grafana and InfluxDB are the most
reasonable to include in a versatile usable Big Data infrastructure.
Both tools are very similar to use as they receive their data directly
from databases and visualize information using an SQL statement
for data selection and aggregations. The visualization tool can be
easily exchanged as it is atop of the infrastructure and is only
connected directly to the database(s).

2.2.4 Infrastructure Monitoring
For the monitoring during the development of the
infrastructure, and also for later checks, various tools are
used for the structure’s components. On the level of
message routing, Kafdrop is used to monitor messages
passing through the Kafka cluster. It is able to display
information regarding brokers, topics, partitions, topic
consumers and enables us to take a view on messages and
their content. The Kafka Connect UI is used to set up and
manage Kafka Connector instances, which represent Kafka
sink and source connectors as well as transformation
connectors. It already offers a broad variety of sink and
source connectors, e.g., for InfluxDB or Cassandra, but also
accepts customized implementations of connectors. For the
monitoring of message schemas, the Schema Registry UI is a
good choice. It is a fully featured tool for the underlying
Schema Registry that allows visualization and exploration of
registered schemas and their evolution. For the monitoring of
databases, Adminer is used. This database management tool
supports various databases and allows insights into the
database structure, including tables and their contents, and
provides a possibility for the execution of queries.

2.2.5 Dockerization
Docker, as covered in Merkel (2014), consists of Platform-as-
a-Service (PaaS) products, which are using OS-level
virtualization to deliver software in packages and therefore20https://www.postgresql.org/

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 6655457

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://www.postgresql.org/
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

avoid the “dependency hell”. The packages are called
containers and isolate their software, libraries, and
configuration files from other containers, but can still
communicate with each other. Docker Compose, further
covered in Smith (2017), enables the configuration of multi-
container applications in YAML files. Docker Compose,
combined with Docker Swarm, a container orchestration
technology, allows the deployment of multi-container
workloads on a cluster of machines, resulting in a
decentralized, highly scalable and easy-to-deploy Big Data
infrastructure according to Naik (2016). Furthermore, the
micro-service structure, which is provided by Docker
through the usage of containers, enables a more fault-
tolerant and independent infrastructure compared to a
monolith structure. Single services can be restarted faster
and independently from other services. During the
development, and later for monitoring and maintenance
purposes, it is advisable to use a graphical tool, e.g.,
Portainer.21. Portainer is a popular open-source lightweight
management UI for Docker, Docker Swarm, and Kubernetes,
enabling simple management and monitoring of those
environments.

2.2.6 Scaling
Depending on the use-case, infrastructure scaling might be a
necessity. In combination with Docker Swarm, the containerized
architecture allows easy scaling of infrastructure services by adding
host systems. It is important to note that the used services bind to
specific ports of the host system, leading to an issue when trying to
scale up services like Kafka, Zookeeper or Spark automatically
without increasing the number of separate host systems. It is
necessary to manually configure the cluster members of the
mentioned technologies as a separate service definition in the
Docker Compose file (see Container Configuration).

2.3 Deployment and Configuration of
Technology-Stack Pipeline
This subsection covers the implementation of AVUBDI,
including a general overview of the composition of the
infrastructure and an insight into the data processing pipeline.

2.3.1 Deployment Overview
Figure 1 provides an insight into the composition of the Big
Data infrastructure, including the primary services, and the
information flow. The general infrastructure consists of two
central nodes, that can be deployed in a single or multiple
virtual machines (cluster). These two nodes serve two main
functionalities, namely: 1) Data Ingestion and Preprocessing,
and 2) Data Analytics. The communication between nodes is
carried out by Apache Kafka using its publisher and subscriber
mechanism for message routing.

The Data Ingestion and Preprocessing Cluster node
constitutes the basis of the overall Big Data infrastructure.

It contains the central data management components, which
correspond to the Kafka cluster, the Schema Registry and the
Zookeeper. It is responsible for retrieving data from a data
source, e.g., using Kafka source connectors, according to the
use-case requirements. Kafka connectors can retrieve batch
data or micro-batches of data for near real-time use-cases in
streaming scenarios, which are then transformed into data
streams for further processing in the analytics node. Data of
batch scenarios, e.g., for training new models or analyzing
historical data, are delivered as batches to further processing
steps. Apart from the messaging aspects, the node is also
responsible for performing essential data quality and
preprocessing tasks. In particular, raw data are transformed
into the appropriate format for model training or inference in
the analytics node.

The Data Analytics Cluster node covers the processing of
streaming data within the infrastructure. It receives the data
streams generated by the Data Ingestion and Preprocessing
Cluster node and processes it in the assigned Spark Jobs,
which gather their needed data via subscriptions to a Kafka
topic. The Spark Job’s behavior is defined using Scala or
Python code and could range from preprocessing steps to
analytical tasks to predictions. The node is supposed to deal
with data quality tasks and real-time or semi-real-time machine
learning and process mining tasks. It is therefore responsible for
providing indicators and predictions about the status of ongoing
industrial processes. The resulting indicators, predictions and
analytical findings are used for live adaptations in the process and
are stored in InfluxDB using Kafka Connectors. Models used in
this node are loaded using MLFlow.

The Data Analytics Cluster node also provides the possibility of
training models in batches of historical data (i.e., batch processing),
and the trainedmodels can be stored inMLFlow. Spark jobs are used
in combination with MLFlow models for processing the received
batch data to trainmodels for, e.g., predictions. The results are stored
in InfluxDB using Kafka sink connectors to have additional
evaluations of the model performance. The models and
experiment setups are stored using MLFlow and further include
the versioning of the models so evolutions can be followed. The
models generated in this node are used to detect anomalies and for
prediction purposes as part of the streaming processing for live
predictions.

The Data Analytics Cluster provides also the possibility
for visualization tasks. It accommodates Grafana and its
customized dashboards, which are directly connected to
the InfluxDB to enable live or timely defined
visualizations of data stored either by the streaming
processing or batch processing. The dashboards enable
insights into predictions, allowing early intervention in
case of behavior changes. Such visualization tasks are
independent of the infrastructure as they only need access
to the persistent storage and can easily be exchanged if other
visualization tools fit better to the use-case.

2.3.2 Containerized Technology-Stack
Figure 2 provides insight into the concrete containerized
technology-stack and its container communication linkages.21https://www.portainer.io/

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 6655458

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://www.portainer.io/
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

All in all, the stack consists of 12 different services all
containerized using Docker and each of them responsible for
other parts of the stack. A service container’s sample
configuration can be seen in Figure 3. Core components like
Kafka, Kafka-Connect, Schema-Registry and Zookeeper are
interdependent and running at least one instance of every
service at all times is crucial. Kafka is capable of temporarily
persisting data for a certain time, meaning that a crash of
InfluxDB only results in lost data when InfluxDB is
unavailable longer than the configured temporary persistence
period. Data from various external and internal data sources (e.g.,
database, Kafka topic, filesystem) are sourced and sinked using
Kafka-Connect. The data schema of every data-flow is tracked
using the Schema-Registry. Given the schema-defined Kafka
topic, one can easily develop a Spark job in various languages
that reads and writes to and from Kafka topics. Schema-Registry
UI, Kafka-Connect UI and Kafdrop are third party tools used to
monitor and configure the infrastructure. Data visualization is
done by Grafana, however topics of Kafkamay also be consumed
and visualized outside of the infrastructure using tools like R
Shiny, Spring Boot + Angular or JavaScript.

2.3.3 Container Configuration
All docker containers are configured using YAML files, which
allows for establishing the overall definition and orchestration of
these services. YAML files contain configuration definitions for
the dockerized services, the containers and the connections to
other containers. In Figure 3, we provide a simple configuration
snapshot of the YAML container configuration concerning the
Kafka standalone container service. A container is based on a

specific image. Those images can easily be created or adapted
manually, however in this paper we use community and
industrial proven open-source container images from a
centralized image repository.22. Containers run on top of the
host system, meaning that in case of container communication, a
port mapping of the host ports to container ports is a necessity. In
this particular example, Kafka is linked to a Zookeeper container,
as this Zookeeper is a prerequisite for the used Kafka version. The
configuration variables of the services are injected into the
container by using environmental variables. A list of
supported variables and their configurations can be found on
most image vendors’ sites, e.g., Confluent.23. In order to persist
data gathered in the container one has to map host VM volumes
to container volumes using simple path mappings. Also,
container placement constraints, resource restrictions, network
configuration and restarting policies can easily be defined in
the YAML.

2.3.4 Technology-Stack Deployment
In this subsection, we would like to describe the necessary steps
for deploying the previously described technology stack in our
test environment. It is worth mentioning that the selected
Docker platform simplifies deployment of the required
technologies and orchestration of their operation. In
particular, Table 3 provides detailed guidelines for setting up

FIGURE 1 | Big Data Management Schema–Infrastructure layout containing main services and information flow.

22https://hub.docker.com/
23https://docs.confluent.io/platform/current/installation/docker/config-reference.
html

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 6655459

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://hub.docker.com/
https://docs.confluent.io/platform/current/installation/docker/conf-reference.html
https://docs.confluent.io/platform/current/installation/docker/conf-reference.html
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

the overall technology-stack with the necessary deployment
steps. We should note that, as also described in Table 3, the
configuration of the technology-stack is governed by the docker-
compose. yml file which is going to be described in the
forthcoming Container Configuration.

2.4 Deployment and Configuration of Data
Pipeline
In this subsection, we provide additional necessary information
for configuring certain parts of the data pipeline. In order to better
understand the functionality of this infrastructure in terms of the
induced data flow, we identified four main components for
configuration, namely 1) Data Ingestion, 2) Data
Conformance, 3) Data Processing and 4) Data Visualization.

2.4.1 Data Ingestion
The first point of configuration is the data ingestion of the
data pipeline. The AVUBDI uses a customized Kafka Source
Connector to first access and gather data from a data-lake via
a RESTful service. The connector is self-implemented and is
able to pull mini-batches from the source in JSON format.
To avoid complex processing, the nested JSON data is

flattened and mapped on a POJO object for easier further
processing. The data is then routed through the
infrastructure using Kafka and the publish-subscriber
approach for messages.

For the persistence of, e.g., results or raw data, Kafka sink
connectors are used. Table 4 contains the configuration of
such a Kafka sink connector, which stores the received
messages in a local InfluxDB. The configuration enables the
definition of the Kafka topics listened to, the database and
measurement table where data and further settings (e.g., value
conerters) should be stored. Using the connector defined in
Table 4, received messages have to include a schema definition
and a payload using JSON schemas. Another possibility would
be to use Avro schemas in combination with the Schema
Registry. Sink connectors for other database types, e.g.,
Cassandra or Postgres, are also available as well as various
source connectors.

2.4.2 Data Conformance
Schemas, which are used to check data conformance and
evolution in routed messages, are defined in the Schema
Registry. Table 5 contains a configuration example
Schema_1, where a message consists of two string and

FIGURE 2 | Technology pipeline.

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 66554510

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

one double component. Depending on the Kafka settings,
each message has to fit to one schema in the Schema Registry
to be passed on to subscribers or a schema is adapted on the
fly, enabling an insight into its evolution. As already
mentioned above, it is possible to include Schema
Registry schemas into the Kafka connector configuration
to enable conformance checking of incoming messages for
storage or further routing, so only conforming messages are
further processed.

2.4.3 Data Processing
Data processing is conducted within Spark Jobs, which are
deployed on the Spark master. The Spark Jobs are separated
according to their usage to offline or online Jobs. Offline Jobs

cover the generation and training of new models and require
higher computational resources. Models created in this
environment are using historical data stored, e.g., in InfluxDB
and use cross-validation with a training/testing partition of 80/20.
Online Jobs are used to process a continuous flow of data for, e.g.,
predictions.

Spark Jobs are defined using scripts, e.g., written in Scala or
Python. The source of information is either a Kafka source
connector (offline) or the subscription to Kafka topics for the
continuous gathering of data (online). The received data is
converted into a Spark Dataset object and reduced to its main
features, e.g., removing duplicated or non-informational
columns. The filtered data is separated into feature and
target columns using a Spark Vector-Assembler and then

TABLE 3 | Step by step instructions for installing and deploying the AVUBDI stack on CentOS systems.

1. Prerequisites
A. CentOS 8
B. Internet connection (for pulling docker images and git project repository, but later should be done internally)
C. SFTP connection

2. Installation
A. Install the yum-utils package (which provides the yum-config-manager utility) and set up the stable repository
I. sudo yum install -y yum-utils
II. sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
B. Install latest version of docker engine and containerd
I. sudo yum install docker-ce docker-ce-cli containerd.io
C. Start docker
I. sudo systemctl start docker
D. Install docker compose
I. sudo curl -L “https://github.com/docker/compose/releases/download/1.26.2/docker-compose-$(uname -s)-$(uname -m)” -o/usr/local/bin/docker-compose
E. Make docker compose binary executable
I. sudo chmod + x/usr/local/bin/docker-compose
F. Pull git project repository
I. sudo git clone https://github.com/software-competence-center-hagenberg/AVUBDI
G. Switch to project directory
I. cd/AVUBDI

3. Deploy
A. Deploy infrastructure standalone on one hosting VM (standalone)
I. Deploy infrastructure services docker compose up -d --build
B. Deploy infrastructure cluster on multiple hosting VMs (swarm cluster)
I. Open ports (2376,7946 TCP and 7946,4789 UDP) in firewall to allow docker swarm communication across different VM nodes
II. Setup swarm with hosting VM as swarm manager (returns swarm-token): docker swarm init
III. Scale swarm by adding additional VM nodes: docker swarm join < swarm-token> <manager-ip>
IV. Set roles of swarm nodes: docker node update --label-add role � <master, stream_processing, batch_processing or analytics>
V. Deploy infrastructure services to swarm (run on every swarm node): docker stack deploy --compose-file docker-compose.yml cogniplant

TABLE 4 | Configuration of a Kafka Sink Connector for a local InfluxDB.

{
“Name”: “influxDBSinkConnector”,
“config”: {
“connector.class”: “io.confluent.influxdb.InfluxDBSinkConnector”,
“measurement.name.format”: “Results”,
“influxdb.url”: “http://127.0.0.1:8086”,
“topics”: “storeInInfluxDB”,
“tasks.max”: “1”
“value.converter.schemas.enable”: “true”,
“value.converter”: “org.Apache.kafka.connect.json.JsonConverter”,
“influxdb.db”: “database_1”
}
}

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 66554511

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://download.docker.com/linux/centos/docker-ce.repo
https://github.com/docker/compose/releases/
https://github.com/software-competence-center-hagenberg/AVUBDI
http://127.0.0.1:8086
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

further processed according to its usage. Trained and adapted
models are stored together with their preprocessing pipeline as
well as experimental results in MLFlow so processing steps are
reproducible. Results of online Jobs are stored via Kafka sink
connectors.

For the deployment of Spark Jobs within a Docker
container, the Job has to be saved as fat jar (Scala, Java) or
script (Python) inside the data volume. Further operations,
e.g., submitting the job, have to be conducted inside the
container for successful deployment. In this case, the
creation of a script for automatized submissions is useful to
avoid overhead in the development.

2.4.4 Data Visualization
The configuration of data visualizations is dependent on the tool
and use-case. Grafana and Chronograf are both able to provide
dashboards for various use-cases, each of which is configured
independently. The configuration is done by adding panels inside
of dashboards, in which users are able to define queries for data
retrieval out of the database and visualization types. Queries are
directly sent to pre-defined database connections, without the
need for direct integration into the infrastructure. It is possible to
define queries by hand or concatenated via building-blocks,
enabling simple usage for non-experienced SQL users. The
dashboards can be structured as preferred, allowing various
plot types and alignment designs for the overall page.
Dashboards or parts of them can be adapted continuously,
having no influence on other components. Furthermore,
visualized periods of time can be adapted continuously for
historical analysis of data or can be viewed live as they are
inserted into the database.

3 RESULTS

This section covers various use-cases utilizing our
infrastructure in different settings with different targets.
The goal was on the demonstration of the functionality of
the tool. The specifics of the use-cases considered are not

relevant since they are used merely for demonstration
purposes of 1) the monitoring of process parameters and 2)
predicting and modeling performance surveillance. Those
three use-cases are just a sample of usage possibilities for
such an infrastructure in the process industry. Further
possibilities include the integration of alarm systems,
simulation of new scenarios or analysis of machine behavior
using process mining. For the experiments, we used a virtual
machine with the operating system CentOS Linux, an Intel(R)
Xeon(R) Gold 6136 CPU @ 3.00 GHz (4 cores of 12 were used
for the VM), 16 GB RAM and 128 GB disk space, 50% of which
is used for the services in docker.

Even though the presented experiments have been
conducted using the CentOS Linux operating system, it
should be noted that Docker runs natively on both Linux
and Windows. However, native Windows- and Linux-based
containers have to be individually configured. For simplicity
and consistency, we focused solely on the deployment of Linux
containers. It is important to note that for seamless Linux
container stack development on Windows platforms, e.g.,
developer systems, the Windows Subsystem for Linux
(WSL2).24 is used. WSL2 builds upon Microsoft’s Virtual
Machine Platform (Hyper-V), meaning that a Windows
version with the virtualization extension is required. In a
nutshell, WSL2 is a minimal and tightly integrated VM with
a Linux Kernel that runs on Hyper-V and is supported by x64
systems since Build 18,917.25,26. This feature enables generic
development and deployment of Linux containers in Windows
host systems without worrying about platform-specific
container configurations.

3.1 Monitoring of Process Parameters
3.1.1 Setting
The first scenario covers the monitoring and visualization of
process parameters during production. The data is recorded by
various sensors during an industrial process, gathered by
Kafka Connectors as mini or micro-batches in near real-
time and stored in its raw format next to further
preprocessing. The storage of raw data is essential for fault
tolerance, replication possibilities and future analysis tasks.
Preprocessing steps of raw data cover the filtering of
interesting data, flattening of nested structures, aggregations
and the transformation into usable data formats, e.g., Spark
Dataset. The preprocessed data is stored in InfluxDB to respect
its time-series characteristics and simpler handling of it
regarding further analysis. Grafana dashboards are used for
the visualization of process parameters, see Figure 4. They
cover the representation of numerical data as a stacked bar plot
and in the form of a table, which also contains further non-
numerical data, e.g., dates. The dashboards enable insights into
current or live process developments as well as developments
during specific time ranges.

TABLE 5 | Configuration example of a schema in the Schema Registry.

{
“type”: “record”,
“name”: “Schema_1”
“namespace”: “at.cogniplant.schemas”,
“fields”: [
{
“name”: “Value_1”
“type”: “string”
}, {
“name”: “Value_2”
“type”: “string”
}, {
“name”: “Value_3”
“type”: “double”
}
]
}

24https://github.com/microsoft/WSL2-Linux-Kernel
25https://docs.microsoft.com/en-us/windows/wsl/release-notes\#build-18917
26https://docs.microsoft.com/en-us/windows/wsl/install-win10

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 66554512

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://github.com/microsoft/WSL2-Linux-Kernel
https://docs.microsoft.com/en-us/windows/wsl/release-notes\#build-18917
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

3.1.2 Results
Figure 4 contains the dashboard and results of a
demonstration regarding the monitoring of process
parameters using the AVUBDI infrastructure. The
visualized data covers a month of recorded process
parameters, which represent the temperatures in various
temperature zones of a machine hall. The stacked bars give
a good insight into the relations between the variables, support
the identification of the temperature peaks as well as the lowest
values. Furthermore, periods with no recordings of sensor
measurements, e.g., during weekends, can be detected.

3.2 Monitoring of Predictions
3.2.1 Setting
The second use-case scenario of AVUBDI covers the monitoring of
predictions using a machine learning model for a process criterion,
e.g., quality of a product or temperature. Again, the feature data is
recorded by industrial sensors, gathered, stored raw and further
preprocessed. A machine learning pipeline is used for the prediction
or decision part of the infrastructure. The pipeline receives the data
via Kafka and covers the following points:

• Data cleaning, e.g., handling of null values,
• Feature filtering/selection based on training data,
• Formulating predictions/decisions using trained models,
• Storing the results in InfluxDB.

The machine learning models have been previously
trained on historical data and stored as a pipeline for
simple online prediction/decision-making. The processing

of streaming data takes place in the online part of the
infrastructure to provide insights into the target’s current
development.

3.2.2 Results
Figure 5 contains the visual representation of predictions
produced by a regression model within a mock-up scenario
regarding the monitoring of predictions using the AVUBDI
infrastructure. The visualizations cover a line plot, a table and a
gauge with thresholds. The visualized data represents
temperature predictions using a regression model, which was
developed using various settings of a machine and other sensor
measurements. The line plot visualizes the predictions
promptly, either as live predictions or historical predictions
restricted by time ranges. The table covers the textual
representation of the predictions. The gauge calculates the
mean over a given time range, e.g., 5 min, and uses
thresholds to indicate abnormal behavior, e.g., “too hot or
too cold.” Using such visualizations, workers can quickly
respond to suddenly occurring problems and, therefore,
reduce scrap material or low-quality products.

3.3 Monitoring of Model Performance
3.3.1 Setting
The third use-case scenario covers the monitoring of the model
regarding its performance over time. The visualized data
consists of (preprocessed) data gathered in industrial
environments of a process and prediction values as well as
measured, real values of the predictions for comparisons. In
industrial environments, it is not always possible to measure

FIGURE 3 | Example docker-compose service definition for standalone Kafka service.

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 66554513

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

product or process criteria, which makes predictions necessary
to get an overview on it. It is very likely though, that values are
measured in predefined time intervals to check if the prediction
models are (still) fitting. This use-case scenario is a mixture of
the previous ones, whereat for each predicted value, a real value
is available.

In this scenario, we want to check if the model performance is
still suitable or if a model has to be adapted/a newmodel has to be
trained. The dashboard created in Grafana, see Figure 6, compares
the predictions of a regression model with their real-world
counterpart measurements using different visualization types.

3.3.2 Results
Figure 6 contains themonitoring of model performances within a
mock-up scenario using the AVUBDI infrastructure. The
dashboard covers four different visualization types and
illustrates the prediction of temperatures as well as the real
values for the visualizations. The predicted values follow the
same process as the predictions in the previous section and are
compared to the target values gathered in an unscheduled
manner. There are visual and textual comparisons using line
plots and a table, as well as the difference between the values as a
line plot and a gauge with predefined thresholds, thus allowing
us to detect poor fitting. The use-case is rather relevant for
Industry 4.0 as environments, processes and sensors may
continuously change. It is possible to see the precision over
a variable time range, enabling insights into developments
under various circumstances and therefore decide whether a
model was not fitting for a longer period or just recently.

4 DISCUSSION

In this article, we have presented a versatile usable big data
infrastructure (AVUBDI), which is able to handle the full-stack of
historic and real-time data processing, i.e., gathering, transforming,
analyzing and visualizing in a user-friendly manner. Our main goal is
the utilization of AVUBDI to improve the supervision of the
production, through which performance indicators can be

improved. In the first part of this paper, various open-source state-
of-the-art technologies for data management, routing, storage,
processing and visualizations were presented and compared.
The most promising of those technologies were used to describe
the development of AVUBDI in more detail, where we focused
on both the technology stack and the data pipeline. Topics
ranging from data gathering via Apache Kafka to processing
with Apache Spark and visualizations with Grafana were
covered. Finally, we have demonstrated its utility through
two industrial use-cases, namely 1) monitoring of predictions
and 2) monitoring of model performance.

The presented big data infrastructure can easily be deployed and
adapted to various use-cases in industrial environments due to its
versatile and solid structure, focusing on a user-friendly environment
for non-experts as well as experts. In addition, the usage of
containerization enables a straightforward scaling and
management of the infrastructure services. On the other hand,
containerization slightly reduces the overall achievable
performance due to additional software and networking layers on
top of the used services, see Truyen et al. (2019). We have chosen to
provide the infrastructure in Docker as it can be configured, adapted
and deployed in a straightforward manner, contrary to a manual
development/deployment or Kubernetes. Furthermore, the usage of
Docker in combination with WSL2 enables seamless Linux
container development and deployment on Windows and Linux
host systems without extensive adaptations of the used services.
However, in order to address challenges related to fault tolerance and
extensive scalability in a production environment, in the future we
aim to also investigate Kubernetes (instead of Docker Swarm) as a
container orchestrator. Furthermore, it would be part of our future
work to evaluate the computational performance of the proposed Big
Data schema.

DATA AVAILABILITY STATEMENT

The proposed Big Data infrastructure is publicly available at the
following link: https://github.com/software-competence-center-
hagenberg/AVUBDI. The paper has used a synthetic data source

FIGURE 4 | Visualization of recorded process parameters in Grafana using a stacked bar plot. The features of the mock-up scenario resemble temperature
measurements in different temperature zones recorded over a month. Users are able to identify measurement stops as well as correlated sensor data.

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 66554514

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://github.com/software-competence-center-hagenberg/AVUBDI
https://github.com/software-competence-center-hagenberg/AVUBDI
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

FIGURE 5 | Visualization of model predictions in Grafana including line plot, textual representation in table and gauge with thresholds. The predicted value of the
mock-up scenario represents the temperature prediction within a machine hall. The gauge indicates whether the temperature is within a suitable range using the mean
predicted value of the past 10 min.

FIGURE 6 | Model performance visualization in Grafana. This mock-up scenario covers the visualization of predicted and real values when estimating the
performance of a prediction model. The performance surveillance is necessary to initiate changes prior to arising problems and indicates whether amodel still fits or it has
to be adapted.

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 66554515

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

for demonstration purposes, however the functionality of the
infrastructure is independent of the specifics of this data source.

AUTHOR CONTRIBUTIONS

LS andMMhave contributed equally to the design and implementation
of the AVUBDI infrastructure as well as the scientific research and the
documentation process. GC has contributed partially to the design of
the AVUBDI infrastructure, the scientific research and the
documentation process. MP has contributed partially to the
scientific research and the documentation process.

FUNDING

This paper is supported by European Union’s Horizon 2020
research and innovation programme under grant agreement No
869931, project COGNIPLANT (COGNITIVE PLATFORM
TO ENHANCE 360° PERFORMANCE AND
SUSTAINABILITY OF THE EUROPEAN PROCESS
INDUSTRY). It has also been supported by the Austrian
Ministry for Transport, Innovation and Technology, the
Federal Ministry of Science, Research and Economy, and the
Province of Upper Austria in the frame of the COMET
center SCCH.

REFERENCES

Ardagna, C. A., Ceravolo, P., and Damiani, E. (2016). “Big Data Analytics As-
A-Service: Issues and Challenges,” in 2016 IEEE International Conference
on Big Data (Big Data), December, 5-8 2016, Washington, DC. Piscataway
Township, United States: IEEE, 3638.–3644. doi:10.1109/BigData.2016.
7841029

Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., and Tzoumas, K.
(2015). Apache Flink: Stream and Batch Processing in a Single Engine. Bull.
IEEE Computer Soc. Tech. Committee Data Eng. 36.

Christudas, B. (2019). “Activemq,” in Practical Microservices Architectural Patterns
(Springer), 861–867. doi:10.1007/978-1-4842-4501-9_25

[Dataset] Cogniplant (2019). Available at: https://www.cogniplant-h2020.eu/
https://cordis.europa.eu/project/id/869931 (Accessed May 2021).

[Dataset] Confluent Schema Registry (2020). Available at: https://docs.confluent.
io/current/schema-registry/index.html (Accessed May 2021).

Dobbelaere, P., and Esmaili, K. S. (2017). “Kafka versus Rabbitmq: A Comparative
Study of Two Industry Reference Publish/subscribe Implementations: Industry
Paper,” in Proceedings of the 11th ACM international conference on
distributed and event-based systems, June, 19-23 2017, Barcelona Spain.
New York City, United States: ACM, 227–238.

[Dataset] EU Climate and Energy Framework (2020). Available at: https://ec.
europa.eu/clima/policies/strategies/2030_en (Accessed May 2021).

[Dataset] European Environment Agency (2017). Final Energy Consumption
by Sector and Fuel in Europe. Available at: https://www.eea.europa.eu/
data-and-maps/indicators/final-energy-consumption-by-sector-10/
assessment (Accessed May 2021).

Garg, N. (2013). Apache Kafka. Birmingham, UK: Packt Publishing Ltd. doi:10.
5005/jp/books/12257

Ge, Z., Song, Z., Ding, S. X., and Huang, B. (2017). Data Mining and Analytics in
the Process Industry: The Role of Machine Learning. IEEE Access 5,
20590–20616. doi:10.1109/ACCESS.2017.2756872

Hausenblas, M., and Nadeau, J. (2013). Apache Drill: Interactive Ad-Hoc Analysis
at Scale. Big data 1, 100–104. doi:10.1089/big.2013.0011

He, Q. P., and Wang, J. (2018). Statistical Process Monitoring as a Big Data
Analytics Tool for Smart Manufacturing. J. Process Control. 67, 35–43. doi:10.
1016/j.jprocont.2017.06.012

Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. (2010). “Zookeeper: Wait-free
Coordination for Internet-Scale Systems,” in USENIX annual technical
conference. June, 23-25 2010, Boston, USA. Berkeley, United States:
USENIX Association, Vol. 8.

Iqbal, M. H., and Soomro, T. R. (2015). Big Data Analysis: Apache Storm
Perspective. Int. J. Comput. Trends Technol. 19, 9–14.

Khan, A. (2017). Key Characteristics of a Container Orchestration Platform to
Enable a Modern Application. IEEE Cloud Comput. 4, 42–48. doi:10.1109/
MCC.2017.4250933

Lakshman, A., and Malik, P. (2010). Cassandra. SIGOPS Oper. Syst. Rev. 44, 35–40.
doi:10.1145/1773912.1773922

Merkel, D. (2014). Docker: Lightweight Linux Containers for Consistent
Development and Deployment. Linux J. 2014, 2.

Miloslavskaya, N., and Tolstoy, A. (2016). Big Data, Fast Data and Data lake
Concepts. Proced. Computer Sci. 88, 63. doi:10.1016/j.procs.2016.07.439

Momjian, B. (2001). PostgreSQL: Introduction and Concepts, 192, New York:
Addison-Wesley.

Naik, N. (2016). “Building a Virtual System of Systems Using Docker Swarm in
Multiple Clouds,” in 2016 IEEE International Symposium on Systems
Engineering (ISSE), October 4-5, 2016, Edinburgh. Piscataway Township,
United States: IEEE 3.

Naqvi, S. N. Z., Yfantidou, S., and Zimányi, E. (2017). Time Series Databases and
Influxdb. Studienarbeit, Université Libre de Bruxelles. doi:10.17501/wcosm.2017.2106

Noghabi, S. A., Paramasivam, K., Pan, Y., Ramesh, N., Bringhurst, J., Gupta, I., et al.
(2017). Samza: Stateful Scalable Stream Processing at Linkedin. Proc. VLDB
Endowment 10, 1634–1645. doi:10.14778/3137765.3137770

Pahl, C., Brogi, A., Soldani, J., and Jamshidi, P. (2019). Cloud Container
Technologies: A State-Of-The-Art Review. IEEE Trans. Cloud Comput. 7,
677–692. doi:10.1109/TCC.2017.2702586

Pan, Y., Chen, I., Brasileiro, F., Jayaputera, G., and Sinnott, R. (2019). “A
Performance Comparison of Cloud-Based Container Orchestration Tools,”
in 2019 IEEE International Conference on Big Knowledge (ICBK), November
10-11, 2019, Beijing, China. Piscataway Township, United States: IEEE
191–198. doi:10.1109/ICBK.2019.00033

Poddubny, B., Kupin, A., Muzika, I., and Savytskyi, O. (2017). Information Technology
for Processing of Industrial Bigdata with Distributed Infrastructure on the Basis of
Smart Agents and Parallel Algorithms. Int. J. Eng. Tech. Res. 7.

Reis, M. S., and Gins, G. (2017). Industrial Process Monitoring in the Big Data/
industry 4.0 Era: From Detection, to Diagnosis, to Prognosis. Processes 5, 35.
doi:10.3390/pr5030035

Rios, L. G., and Diguez, J. A. I. (2014). “Big Data Infrastructure for Analyzing Data
Generated by Wireless Sensor Networks,” in 2014 IEEE International Congress
on Big Data June 27 - July 2, 2014, Anchorage, United States. Piscataway
Township, United States: IEEE, 816–823.

Salloum, S., Dautov, R., Chen, X., Peng, P. X., and Huang, J. Z. (2016). Big Data
Analytics on Apache Spark. Int. J. Data Sci. Analytics 1, 145–164. doi:10.1007/
s41060-016-0027-9

Sarnovsky, M., Bednar, P., and Smatana, M. (2018). Big Data Processing and
Analytics Platform Architecture for Process Industry Factories. Big Data Cogn.
Comput. 2, 3. doi:10.3390/bdcc2010003

Shah, J., and Dubaria, D. (2019). “Building Modern Clouds: Using Docker,
Kubernetes Google Cloud Platform,” in 2019 IEEE 9th Annual Computing
and Communication Workshop and Conference January 7-9, 2019, Las Vegas,
United States. Piscataway Township, United States: IEEE, 0184–0189. doi:10.
1109/CCWC.2019.8666479

Smith, R. (2017). Docker Orchestration. Packt Publishing Ltd.
[Dataset] Srinivasan, N., and Rajeev, N. (2012). Harnessing the Big Data

Opportunity.
Truyen, E., Landuyt, D. V., Lagaisse, B., and Joosen, W. (2019). “Performance

Overhead of Container Orchestration Frameworks for Management of
Multi-Tenant Database Deployments,” in Proceedings of the 34th ACM/
SIGAPP Symposium on Applied Computing. April 8-12, 2019, Limassol,
Cyprus. New York City, United States: ACM doi:10.1145/3297280.
3297536

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 66554516

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://doi.org/10.1109/BigData.2016.7841029
https://doi.org/10.1109/BigData.2016.7841029
https://doi.org/10.1007/978-1-4842-4501-9_25
https://www.cogniplant-h2020.eu/https://cordis.europa.eu/project/id/869931
https://www.cogniplant-h2020.eu/https://cordis.europa.eu/project/id/869931
https://docs.confluent.io/current/schema-registry/index.html
https://docs.confluent.io/current/schema-registry/index.html
https://ec.europa.eu/clima/policies/strategies/2030_en
https://ec.europa.eu/clima/policies/strategies/2030_en
https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-10/assessment
https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-10/assessment
https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-10/assessment
https://doi.org/10.5005/jp/books/12257
https://doi.org/10.5005/jp/books/12257
https://doi.org/10.1109/ACCESS.2017.2756872
https://doi.org/10.1089/big.2013.0011
https://doi.org/10.1016/j.jprocont.2017.06.012
https://doi.org/10.1016/j.jprocont.2017.06.012
https://doi.org/10.1109/MCC.2017.4250933
https://doi.org/10.1109/MCC.2017.4250933
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1016/j.procs.2016.07.439
https://doi.org/10.17501/wcosm.2017.2106
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/ICBK.2019.00033
https://doi.org/10.3390/pr5030035
https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.3390/bdcc2010003
https://doi.org/10.1109/CCWC.2019.8666479
https://doi.org/10.1109/CCWC.2019.8666479
https://doi.org/10.1145/3297280.3297536
https://doi.org/10.1145/3297280.3297536
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

ur Rehman, M. H., Yaqoob, I., Salah, K., Imran, M., Jayaraman, P. P., and
Perera, C. (2019). The Role of Big Data Analytics in Industrial Internet of
Things. Future Generation Computer Syst. 99, 247–259. doi:10.1016/j.future.
2019.04.020

Venkatram, K., and Geetha, M. A. (2017). Review on Big Data & Analytics –
Concepts, Philosophy, Process and Applications. Cybernetics Inf. Tech. 17,
3–27. doi:10.1515/cait-2017-0013

Wang, J., Zhang, W., Shi, Y., Duan, S., and Liu, J. (2018). Industrial Big Data
Analytics: Challenges, Methodologies, and Applications. https://arxiv.org/abs/
1807.01016.arXiv

Xu, L. D., and Duan, L. (2019). Big Data for Cyber Physical Systems in Industry
4.0: a Survey. Enterprise Inf. Syst. 13, 148–169. doi:10.1080/17517575.2018.
1442934

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., et al.
(2018). Accelerating the Machine Learning Lifecycle with Mlflow. IEEE Data
Eng. Bull. 41, 39–45.

Zeng, Y., and Yin, Y. (2017). Virtual and Physical Systems Intra-referencedModelling
for Smart Factory. Proced. CIRP 63, 378–383. doi:10.1016/j.procir.2017.03.105

Zhou, K., Fu, C., and Yang, S. (2016). Big Data Driven Smart Energy Management:
From Big Data to Big Insights. Renew. Sustainable Energ. Rev. 56, 215–225.
doi:10.1016/j.rser.2015.11.050

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Luftensteiner, Mayr, Chasparis and Pichler. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 66554517

Luftensteiner et al. A Versatile Usable Big Data Infrastructure

https://doi.org/10.1016/j.future.2019.04.020
https://doi.org/10.1016/j.future.2019.04.020
https://doi.org/10.1515/cait-2017-0013
https://arxiv.org/abs/1807.01016
https://arxiv.org/abs/1807.01016
https://doi.org/10.1080/17517575.2018.1442934
https://doi.org/10.1080/17517575.2018.1442934
https://doi.org/10.1016/j.procir.2017.03.105
https://doi.org/10.1016/j.rser.2015.11.050
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

	AVUBDI: A Versatile Usable Big Data Infrastructure and Its Monitoring Approaches for Process Industry
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Methods
	2.1 State-Of-The-Art Technologies
	2.1.1 Raw-Data Storage
	2.1.2 Data Management and Routing
	2.1.3 Data Storage
	2.1.4 Data Processing and Analysis
	2.1.5 Visualization
	2.1.6 Service Orchestration

	2.2 Technology Stack Components of AVUBDI
	2.2.1 Data Management and Routing
	2.2.2 Data Storage
	2.2.3 Data Analysis and Visualization
	2.2.4 Infrastructure Monitoring
	2.2.5 Dockerization
	2.2.6 Scaling

	2.3 Deployment and Configuration of Technology-Stack Pipeline
	2.3.1 Deployment Overview
	2.3.2 Containerized Technology-Stack
	2.3.3 Container Configuration
	2.3.4 Technology-Stack Deployment

	2.4 Deployment and Configuration of Data Pipeline
	2.4.1 Data Ingestion
	2.4.2 Data Conformance
	2.4.3 Data Processing
	2.4.4 Data Visualization

	3 Results
	3.1 Monitoring of Process Parameters
	3.1.1 Setting
	3.1.2 Results

	3.2 Monitoring of Predictions
	3.2.1 Setting
	3.2.2 Results

	3.3 Monitoring of Model Performance
	3.3.1 Setting
	3.3.2 Results

	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

