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The global trend toward a green sustainable future encouraged the penetration of

renewable energies into the electricity sector to satisfy various demands of the market.

Successful and steady integrations of renewables into the microgrids necessitate

building reliable, accurate wind and solar power forecasters adopting these renewables’

stochastic behaviors. In a few reported literature studies, machine learning- (ML-) based

forecasters have been widely utilized for wind power and solar power forecasting with

promising and accurate results. The objective of this article is to provide a critical

systematic review of existing wind power and solar power ML forecasters, namely

artificial neural networks (ANNs), recurrent neural networks (RNNs), support vector

machines (SVMs), and extreme learning machines (ELMs). In addition, special attention

is paid to metaheuristics accompanied by these ML models. Detailed comparisons of

the different ML methodologies and the metaheuristic techniques are performed. The

significant drawn-out findings from the reviewed papers are also summarized based on

the forecasting targets and horizons in tables. Finally, challenges and future directions

for research on the ML solar and wind prediction methods are presented. This review

can guide scientists and engineers in analyzing and selecting the appropriate prediction

approaches based on the different circumstances and applications.

Keywords: machine learning, artificial neural networks, forecasting, renewable energy, support vector machine,

extreme learning machine, metaheuristics

INTRODUCTION

Motivation
In response to the environmental crisis and reducing greenhouse gas emissions, governments and
policymakers promoted the penetration of renewable energies into the electricity production sector.
According to the report of the international renewable energy agency, the contribution of renewable
energy resources to electricity generation is projected to reach 85% by 2050, which is mainly due
to the growth of solar-produced and wind-produced power (Global energy transformation: A
roadmap to 2050, 2019). Although renewables are highly efficient, pollutant free, and inexpensive
to produce and distribute, they lack consistency. Unlike the capability of generating conventional
resources (coal and fossil fuels) according to the consumption and at specific and accurate
schedules, the production of renewable energies is variable and renewable energies rely on seasonal
andweather conditions (e.g., temperature, pressure, wind speed, visibility, etc.; Zerrahn et al., 2018).
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These chaotic conditions can change dramatically from time
to time, which enforce difficulties in the scheduling and
management of optimal electricity generation and impose
concerns regarding electricity quality and stability (Zerrahn
et al., 2018). In fact, if the integration of renewable energy into
the electricity sector is not handled and controlled adequately,
it could cause an imbalanced and excess power production,
which may increase the expenses of government instead of
reducing the expenses (Lara-Fanego et al., 2012). Moreover, this
unpredictable stochastic nature of renewables resulted in serious
unit commitment issues (Chakraborty et al., 2012). Therefore,
an accurate prediction of renewables has become an enduringly
worldwide interest in a few literature studies.

Thus far, various research studies have been employed
to tackle the problems of unreliabity and inaccurateness of
renewable power forecasting models. These include persistence
models, physical models, statistical models, artificial intelligence
(AI) models, and hybrid models consisting of a combination of
two or more of these models. Lately, among these forecasting
methodologies, AI-based models, particularly machine learning
(ML) models, have gained the interest of researchers. Unlike
statistical models, ML techniques can capture the non-linearity
in power data. They can be applied for several purposes with only
minor modifications. Therefore, because of their flexibility and
compatibility, ML forecasters could outperform and alternate the
conventional forecasters (Chakraborty et al., 2012; Santhosh and
Venkaiah, 2019).

Nevertheless, despite the flourishing of studies related
to proposed ML-based forecasting models, a review that
summarizes forecasting models of these renewables and
analytically evaluates their performance from a categorization
perspective has not been investigated yet.

Contribution
This paper provides a comprehensive review of the recently
published and proposed wind power and solar power forecasting
ML-based models. In comparison to the existing studies on the
same topic, the contributions of this paper are:

(1) A broad review of ML-based renewable power prediction
methodologies and the metaheuristic optimizers of these
methodologies is, for the first time, performed from a
categorization viewpoint. Categorization, in this paper, is
achieved by systematically allocating the ML prediction
approaches and optimizers based on their similarities and
differences and on the type of forecasted renewable energy.
This will provide an analytical review of the current ML
renewable power forecasting studies based on the approach
and the sorting of renewable energy (wind or solar).

(2) Comparative evaluations of the ML-based renewable
prediction methods and their metaheuristic optimizers
are carried out. The drawn-out results would help other
scholars to decide on the appropriate ML predictors and
metaheuristic optimizers for various forecasting situations
and purposes.

(3) Highlighting the challenges ofML applications for renewable
power forecasting and providing the key directions that

would guide other scholars to focus on the potential issues
that have not been resolved yet.

In summary, this paper analyzes the renewable power prediction
using the ML tools and their optimizers, emphasizes their
weaknesses and strengths, and underlines the challenges
accompanied by them to direct researchers on the issues that have
not been settled yet.

AN OVERVIEW OF RENEWABLE POWER
FORECASTING

In this section, recent structures in a few literature studies for
renewable power forecasting are reviewed. Various schemes and
methodologies plus AI tools are discussed and described.

The term renewable power generally encompasses all
types of power gathered and generated from carbon-free
renewable resources, such as wind, sunlight, rainfall, and waves.
Specifically, wind energy and solar energy are fluctuating
resources because their production rates depend on intermittent,
unpredictable weather conditions (wind speed and direction and
solar irradiation, respectively). Thereby, the renewable power
forecasting studies consider either forecasting the generated wind
and solar power or the wind speed and solar irradiation that
are responsible for this produced power. From that perspective,
this paper will review the forecasting methodologies of renewable
power, including wind speed and/or output power and solar
irradiance and/or output power.

Forecasting Methodologies
Figure 1 illustrates the differences between these horizons and
their electricity sector applications (Santhosh and Venkaiah,
2019).With the inclusion of AI approaches, researchers proposed
different forecasting structures using various methods and from
multiple perspectives. These approaches and related research
work for the forecasting of renewables (mainly wind power and
solar power) are reviewed in the following sections.

Persistence Methodologies
Thesemethodologies simply assume that the values of power data
in a next time step are similar to those values in the current time
step. Although these methodologies are not very practical for
long-term forecasting, they perform well in very short-term and
short-term forecasting (from a few seconds to 6 h-ahead; Nielsen
et al., 1998).

Physical Methodologies
In addition to geographical locations and physical characteristics
and layouts of wind turbines or solar panels, these methodologies
depend on numerical weather predictions (NWPs), such as
temperature, pressure, wind speed, wind density, roughness,
turbulence intensity, etc. (Lei et al., 2009). Although these
methodologies are reliable for medium-term and long-term
forecasting, they cannot perform accurately for short-term
forecasting (Giebel et al., 2011). In addition, they fail to adopt
interferences and are computationally expensive, and require
advanced computing machines (Murata et al., 2018). Giebel et al.
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FIGURE 1 | Forecasting time horizons (Santhosh and Venkaiah, 2019).

(2018) comprehensively reviewed the published studies tackling
short-term forecasting using NWP models. This study was the
last to summarize the applications of NWP-basedmodels because
the implication of these models was no longer attractive for
researchers, and many other recent methodologies started to
flourish and outperform physical models (Lei et al., 2009).

Statistical Methodologies
Statistical-based forecasting models are the mathematical models
that attempt to map and recognize the relationship between
time series historical data and target outputs (Ahmed and
Khalid, 2019). They can clearly describe the linear relationship
of data with basic simple mathematical equations (Santhosh and
Venkaiah, 2019). Furthermore, since they can be formulated
easily, they can deliver timely predictions. Thus, in a few
literature studies, these forecasters aremainly used for short-term
forecasting (Ezzat et al., 2018).

A comprehensive literature review on statistical approaches
for time series and renewable energy forecasting was presented by
Ghofrani and Alolayan (2018). Autoregressive (AR) and moving
average (MA) models are well-known examples of statistical
forecasting systems (Jiang et al., 2018). The hybrid integration
of these two techniques is known as the autoregressive moving
average (ARMA). ARMA is widely used for forecasting and
provides models with a high accuracy for different applications.
Erdem and Shi (2011) compared four other ARMA-basedmodels
for the forecasting of wind speed and direction. Gomes and
Castro (2012) presented a comparative study between ARMA
and artificial neural networks (ANNs) for the prediction of
wind speed and power. They concluded that both approaches
provide the similar results; however, the ARMA performance is
slightly better. In Fentis et al. (2019), a non-linear autoregressive
(NAR) model was suggested for the forecasting of short-term

photovoltaic (PV) power utilizing only historical data of the
PV power (without using the NWP data). When comparing the
performance of an NAR model with the Auto-regressive with an
exogenous input (ARX) model, it was determined that NAR gives
better results than ARX. This conclusion contrasts with the result
obtained by Bacher et al. (2009) where ARX performed better.

Another robust approach known as auto-regressive integrated
moving average (ARIMA) is widely employed for different
purposes in a few literature studies to date. For example, Atique
et al. (2019) used the ARIMA approach to predict the daily solar
energy production. It is noted that the application of ARIMA
models requires the utilized data to be stationary; therefore, in
their work, the non-static seasonal data are transformed into
stationary ones. For longer-term forecasting, Pasari and Shah
(2020) used the ARIMA model for 1-year ahead forecasting of
wind speed and temperature. According to their conclusion, this
generatedmodel is generic and having someminor modifications
such as increasing the size of the input data, this model can be
applied for 2-year ahead forecasting.

A particular parsimonious type of ARIMA, known
as fractional-ARIMA, was studied by Kavasseri and
Seetharaman (2009) for wind forecasting. Fractional-ARIMA
is computationally simple and can capture time series relations
for both long-term and short-term forecasting horizons. In this
paper, this model was employed for forecasting an hourly wind
speed and up to 2 days ahead. The results were promising and
showed that this simple model could improve the forecasting
accuracy by 42% compared to persistence models of forecasting.

In general, statistical models are considered attractive
to researchers to date because they are inexpensive and
straightforward to apply. They presented acceptable accurate
results for short-term horizons up to 2 days; however, they
fail in forecasting and result in very unstable predictions for
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longer-term horizons (Ezzat et al., 2018). In addition, they
require preprocessing of time series data (mostly when the data
are discontinuous) for reliable performance and for providing
accurate prediction models. This preprocessing could cause
issues and requires expensive computation machines. Thus,
researchers started to use a hybrid combination of these statistical
models with AI methods to resolve the preprocessing issues.

Regression Methodologies
This type of model aims to find the best mathematical
representation that relates independent variables (generally NWP
and some physical properties and operation conditions of the
turbines or solar panels) to the dependent variables (wind or
solar power) through curve-fitting hyperparameter optimization
techniques. Multilinear regressionmodels are the simplest case of
regression where the forecast variable is related to the predictors
by a simple linear relationship (Ahmed and Khalid, 2019). For
example, Abuella and Chowdhury (2015b) utilized multilinear
regression to build a solar power probabilistic forecasting model.
In addition, a simple linear quantile regression was used by
Lauret et al. (2017) to create three different probabilistic models
within the day (1–6 h ahead) solar irradiation prediction. For
building the three models, the authors utilized historical data
of solar irradiance as endogenous inputs and the day-ahead
NWP of irradiance as exogenous inputs. The obtained results
showed that the presence of NWP as exogenous inputs improved
the prediction results. However, similar to the results obtained
by Abuella and Chowdhury (2015b), a comparative study of
the performance of a model in two different sites showed that
the probabilistic models are highly dependent on the regional
sky conditions. In a study by Massidda and Marrocu (2017), a
multilinear adaptive regression spline method was used with a
small size of training samples and a limited number of features
to define a model for day-ahead solar power forecasting. This
proposed regressionmodel used historical power output data and
weather forecasts.

Wang et al. (2016) proposed a novel partial functional linear
regression (PFLR) model to forecast the daily output energy of
a PV system. PFLR is similar to a multilinear regression but
it can also represent a non-linearity structure in solar power
data. Unlike statistical models focusing on utilizing historical
data and underestimating the importance of the renewables
data within the day pattern, PFLR incorporates the intra-day
pattern of data and extracts valuable information from them.
This work showed that this novel model that involves a few
parameter estimates was able to outperform the ANNmodels and
the regular multilinear regression. Another regression technique,
known as multitasking Gaussian process regression (MTGP),
was used by Cai et al. (2020) as a post-processing step to
improve the NWP of wind speed. This additional step tackled
the unreliable predictions that yield from the NWP when the
behavior of the wind speed data is very complex and intermittent.
The MTGP technique in this paper improved the forecasting
accuracy of long-term forecasters and shorter-term forecasters.
This improvement of NWP resulted in superior prediction
results compared to the statistical predictors that are well-known
for their accuracy for short-term forecasting. Keshtegar et al.
(2018) performed a comparative study to compare four different

heuristic regression techniques, including Kriging, response
surfacemethod (RSM),multivariate adaptive regression (MARS),
and M5 model tree (M5 Tree) for solar irradiation modeling.
Comparative results showed that Kriging executed a better
performance in comparison to the other three methods.

Overall, although regression methodologies of forecasting
are simple and performed promisingly in some applications,
they lack generalization and highly depend on the input data.
They require too many explanatory variables to increase the
accuracy of their predictions (Akhter et al., 2019). Moreover, the
linear regression models assume a linear relationship between
the independent and dependent variables; this assumption
highly limits the application of these models for renewable
power forecasting.

ML FORECASTING METHODOLOGIES

Artificial intelligence is a subfield of computer science; in
AI, intelligent machines or artifacts are designed and trained
to function like humans by following specific commands
in computer programming systems. AI-based forecasting
models accelerate decision-making, data mining, and clustering
problems because they can robustly handle big data fitting and
develop good representations. In addition, they can employ
complex tasks with moderately short time and without being
explicitly programmed. Thereby, AI forecasters have been
used for various prediction applications in different areas of
engineering, medicine, economy, and agriculture (Mellit and
Kalogirou, 2008). Thus, the focus on proposing AI-based
forecasting models grew a lot in the past few years and even
started to alternate the conventional known predictors (Mellit
et al., 2009).

ML, ANN, and deep learning (DL) all are the subsets of
AI. Figure 2 illustrates the differences and relationships between
these subsets (Sindhu and Nivedha, 2020). The following sections
will review the recent research routes of renewable power
forecasting (both wind power and solar power) based on the used
ML algorithms for forecasting.

ML is an approach for data analysis, which gives computer
systems the power to learn from data through experience. Unlike
statistical-based models, ML techniques can generally capture
the non-linearity and adapt instability in data, resulting in more
reliable predictors (Jiang et al., 2018). Therefore, in the past
few decades, ML tools were employed for forecasting various
problems, such as renewable energy forecasting.

According to our survey, ANN, recurrent neural network
(RNN), support vector machine (SVM), and extreme learning
machine (ELM) are the most used ML techniques for renewable
energy forecasting. Section ANN-Based Methodologies will
review the work of some of the researchers in utilizing ML
approaches for wind power and solar forecasting.

ANN-Based Methodologies
All types of ANNs have layers of neurons: the input layer is a layer
where the network receives the input features and each neuron in
this layer takes an input feature. The output layer is a layer where
the final targets are estimated. The hidden layer, a connection
between the input layer and the output layer, in whichmost of the
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FIGURE 2 | Relationship between artificial intelligence, machine learning, deep learning, and artificial neural networks (Du et al., 2019).

FIGURE 3 | Node structure of an ANN.

required computational operations occur; Figure 3 represents a
structure of the node of hidden layers. As shown in Figure 4, the
outputs of the nodes of an ANN are determined by passing the
input features multiplied by their corresponding weights to an
activation function in the nodes of the hidden layer. There are
several types of ANNs, Figure 4 represents the classical structure
of an ANN. In this section, the applications of ANNs for wind
power and solar power forecasting are reviewed.

ANN for Wind Power Forecasting
A systematic literature review for wind power forecasting by
Maldonado-Correa et al. (2019) confirmed that ANNs are
considered the most frequently applied intelligence models in
the literature studies for wind power forecasting in the past
5 years. These networks provided adequate results because of
their ability to capture non-linearity in wind patterns, especially

for short-term and medium-term forecasting (Du et al., 2019;
Maldonado-Correa et al., 2019). The simplest type of ANNs is
the feed-forward NN (FFNN; Nielson et al., 2020), this network
was used to predict a monthly energy production of 2.5 MW of
a wind turbine. To train this network and increase forecasting
accuracy, Nielson et al. (2020) selected wind speed and density
incorporated with the atmospheric stability (represented in
turbulence intensity, Richardson number, and wind shear) as
input features to this network. This proposed approach reduced
mean absolute error (MAE) of the wind power estimation by 59%
in comparison to the standard estimation method.

On the other hand, Li and Shi (2010) compared the
performance of Feed forward back propagation-ANN (FFBP-
ANN) with other two ANNs, namely an adaptive linear
element (ADALINE) NN and a radial basis function NN (RBF-
NN) for wind speed forecasting. According to the evaluation
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FIGURE 4 | Schematic diagram of ANN structure.

metrics, none of the three networks showed universally superior
performance to the other networks. However, RBF-NN resulted
in favorably accurate predictions when utilized in the hybrid
wind forecasting model (Hong et al., 2019).

Although a logarithmic sigmoid function is the most
commonly exploited transfer function, Grassi and Vecchio
(2010) showed that building of an ANN with two hidden layers
with two different activation functions, a hyperbolic tangent
transfer function in the first hidden layer and a sigmoid transfer
function in the second hidden layer could improve the wind
energy prediction accuracy and exploits the features of data. It is
essential to mention that, in this work, the monthly maintenance
hours were used with metrological data as inputs to this ANN.
Simulation results demonstrated that considering maintenance
hours as an input improved the model reliability since they are
inconsistent from month to month and directly affect the power
production. Another work incorporated a differential polynomial
function in ANN to build a wind speed correction model. The
findings of this work illustrated that a differential polynomial
function could model an existing complex system by solving and
forming differential equations. On the other side, wavelet neural
networks (WNNs) are also well-known powerful prediction
tools when highly accurate predictions and fast convergence are
needed (Bashir and El-Hawary, 2000). For instance, the sine
activation function was incorporated with a rough concept to
build a rough sinusoidal ANN (Jahangir et al., 2020). This work
showed that a rough sinusoidal function handled the dramatic
changes and the erratic stochastic behaviors in wind speed,
especially at the peaks.

Besides integrating the rough concept to the ANN, the
fuzzy concept also showed powerful, promising performance
in wind prediction approaches. Although training an adaptive
neuro-fuzzy inference system (ANFIS) is time consuming and
considered complex, it is considered a universal estimator that
lowers convergence errors (Marugán et al., 2018). For instance,
Liu et al. (2017) employed a hybrid ANFIS approach for 48-
h-ahead short-term wind power forecasting. This approach
combines the predicted power by three different forecasters
and outputs the final forecasted power. By a comprehensive

FIGURE 5 | RNN cell.

performance comparison between the hybrid proposed model
and three individual forecasting models, namely RBF-NN,
BPNN, and LSSVM, the authors demonstrated that their hybrid
methodology has superior performance with respect to reliance
and accuracy. In addition, unlike the three models that their
accuracy differs from season to season, the ANFIS model
significantly improved the forecasting data throughout the
different seasons.

ANN for Solar Power Forecasting
Similar to wind forecasting, solar forecasting is widely achieved
by the different types of ANN approaches. This section will
review some proposed ANN-basedmethodologies for forecasting
solar irradiation and power.
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FIGURE 6 | Schematic diagram of RNN structure.

Abuella and Chowdhury (2015a) showed that the 14 input
FFNNs could outperform a well-known multilinear regression
methodology for hourly solar power forecasting. Despite the
importance of the normalization of input data that is always
discussed in the literature studies, the analysis of this paper shows
that the normalized input data does not significantly improve the
accuracy of the forecasted data. Nevertheless, their investigations
revealed that data preparation and cleansing significantly affect
the results and the ease of training the ANN. Moreover, the
findings showed that eliminating the night hours from the input
data could slightly improve the performance, and as expected,
the predictions for clear sky hours and days were more reliable
than cloudy and rainy days. To overcome the issue related to
sky conditions for solar forecasting, O’Leary and Kubby (2017)
suggest that the input masking technique is used based on the
error clustering in the time domain. They categorized time
frames into four categories [Night, Sunrise, Day: when solar
energy is consistent (on sunny days), and Sunset]. Simulation
results showed that input masking could improve the prediction
outputs of the ANN by 1.3%. They suggest that the same input
masking is performed for different environments and scenarios
to confirm the importance of masking.

The correlation factor of the monthly prediction of solar
energy improved by 9% in Ozoegwu (2019) when the ANN was
hybridized into the NAR method. Besides improving accuracy,
this hybridization reduced the size of inputs to the NAR
approach, which saves memory. To guarantee and prove the
prediction generalization, the method was simulated by using
the data from various sites with different climates in Nigeria.
In general, this model showed adequate results for longer-
term forecasting, which is considered essential for planning and
scheduling solar power applications.

With all of the proposed forecasting techniques in the
literature studies, it became challenging to choose the most
reliable prediction method. To discourse this issue, Yagli et al.
(2019) raised an essential question on how to perform a
fair comparison that reflects the actual superiority of models
concerning the nature of data. This question was addressed by
comparing 68ML and statistical techniques for 1-h ahead global

horizontal irradiance (GHI) forecasting, using the data from
seven stations in five different climate zones in the USA. This
finding of this work contributes to suggest the most appropriate
prediction methodology for each specific climate zone.

Ghimire et al. (2019) reinforced a dramatic influence of feature
selection of inputs on ML-based methodologies. They used
a neighborhood component analysis to select the appropriate
inputs from a pool of 85 different inputs in their work. Their
selection was based on the regularization and minimization of
a specific objective function that gives the most reliable daily
solar irradiation forecasting results. The analysis results showed
that evaporation rate, maximum air temperatures, albedo, cloud
cover, relative humidity at maximum temperature, and specific
humidity at 1,000 hPa are the inputs that resulted in more
accurate predictions. Afterward, they compared the performance
of different ML techniques, including SVM, process Gaussian,
and ANN. According to statistical evaluation metrics, a feed-
forward backpropagation ANN with Levenberg–Marquardt as a
training function shows significantly superior performance in the
five different sites in Queensland in Australia.

RNNs-Based Methodologies
Although the FFNN, as discussed earlier, is adequate for
presenting the pattern that relates a specific output into a set of
inputs, it learns a pattern of the outputs independently without
having any context or memory of the previous outputs (Wang
et al., 2020). To tackle this issue, RNN was introduced and used
for time series forecasting. RNN is a subset of ANN, and it
shows a robust performance when the order or a sequence of
events or data matters and affects the following predictions (Su
et al., 2019). Unlike the ANN, as shown in Figure 5, the RNN
considers the features from the current time step inputs (xt) and
the features from the previous hidden step (ht−1). Figure 6 shows
a simple structure of RNN with respect to node connections
where the hidden neurons take two input sets, one from the input
layer and the other from the output of the hidden layer of the
previous step. Holding and using information from the past time
is considered a memory that relates the prior knowledge to the
current one.
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FIGURE 7 | Structure of GRU.

FIGURE 8 | structure of LSTM unit.

Nevertheless, RNN suffers from short-term memory, i.e.,
it cannot learn properly to preserve important information
for long time sequences (Bianchini et al., 2013). Moreover,
during the training process of RNN, the error gradient starts
to exponentially fall until it vanishes, which interrupts the
training process in the early stages (Kisvari et al., 2021). Two
improved types of RNN nodes were proposed to overcome these
issues, namely gated recurrent unit (GRU) and long short-term
memory unit (LSTM). These two units have inner structures
called gates that can control the contribution of information
from the previous and current time steps. Using this, they
pass significant attributes to long series sequences to predict
and ignore unsignificant information (Bianchini et al., 2013).
The GRU inputs are similar to the RNN ones; however, the
mathematical operation that happens inside the GRU gates is
slightly different. As shown in Figure 7, the structure of GRU
includes two gates, the update and the rest gate. The update gate
decides on what previously stored information to remove and
what new information to add. While the rest gate decides how
much of previous attributes to overlook and forget.

On the other hand, as illustrated in Figure 8, the LSTM has
four different gates (forget gate, input gate, cell state, and output
gate). The forget gate is similar to the update gate in the GRU.
The input gate takes the same inputs as the forget gate and

processes them into sigmoid and tanh functions. The sigmoid
function decides what information should be updated, and the
tanh pounds the information between −1 and 1 to regulate
the flow of information. The outputs of the sigmoid and tanh
functions are thenmultiplied by each other to generate the output
of an input gate. Afterward, the input gate outputs and the forget
gate outputs are added to give a new cell state. Finally, the
result passes to the output gate, which calculates the following
hidden state.

The following section will review some published literature
papers proposing wind power and solar power forecasting
models utilizing RNN, including the regular one units and LSTM.

RNN for Wind Power Forecasting
Since a recursive structure of RNN can handle the complex non-
linearity in time series wind data, RNN has been employed in
various references to manage the forecasting of wind power and
wind speed. This section will review the different classes of RNN
proposed for wind forecasting.

Syu et al. (2020) performed an ultra-short-term (15-min
ahead) wind speed forecasting utilizing the GRU network. To
determine an optimal input size required for training the GRU
models, various input sizes were used. The results showed a
considerable drop in the MAE when the input is the previous
30 time steps. Nevertheless, the values of MAE and root mean
square error (RMSE) start to fluctuate after the 30-input length.
Thus, the 30 previous time steps were considered adequate for
forecasting in this paper. Afterward, to validate the accuracy
of a model, its performance was compared to the simple RNN
and LSTM. Although LSTM was always known for its robust
execution for time series forecasting, it did not perform better
than the GRU approach. In fact, the GRU requires less parameter
tuning and can be trained in a considerably shorter time. In
addition, as expected, a simple RNNwith the fastest training time
performed poorly, especially at peaks where wind speed made a
severe change.

Consequently, it is more reasonable to consider using GRU
when both the performance and training time are essential for
forecasting wind speed. In fact, also for wind power forecasting,
the same results confirming that the implementation of GRU is
similar to the LSTMwith faster convergence and less tuning were
obtained by Kisvari et al. (2021). To speed up the convergence,
i.e., the training time of the LSTM, Yu et al. (2019) proposed
an enhancement technique known as LSTM-enhancement forget
gate (LSTM-EFG). In this approach, four modifications on the
classical LSTM are performed: (1) two peepholes are added,
(2) the tanh function is changed into soft sign, (3) the input
gate is completely removed, and (4) the data update value is
determined by subtracting the output of the forget gate from
one matrix. These modifications directly affect the forget gate
that, in its role, accelerates the convergence. It is also important
to mention that in order to maximize the execution of an
LSTM-EFG approach, a clustering technique combined with a
temporal feature extraction methodology was incorporated into
the system. The conclusions of the work verified the surpassing
performance of the LSTM-EFG compared to the classical one and
other benchmarking models.
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Niu et al. (2020) claimed that the single wind power and speed
predictions in some cases fail to be sufficient for electricity grid
managing and scheduling. From this perspective, they suggested
a multiple-input multiple-output (MIMO) model that forecasts
wind power at different time horizons by a one-step simulation.
In this model, an attention mechanism GRU coupled with a
sequence-to-sequence technique is employed to select features.
Unlike the classical feature selectors, which are applied once to
discover the dependency of a target on the inputs, the attention
mechanism estimates all inputs relevant to the target wind power
outputs and creates weights representing these dependencies.
Besides that, for each time step, hidden activations of the
GRU blocks can extract both the spatial and temporal features,
which contributes to improving the accuracy. Conclusions drawn
from simulations confirmed that these two proposed strategies
enhance the stability and accuracy of forecasting wind power
simultaneously at different time horizons. In addition, the
attention mechanism GRU lessened the error accumulation
problem that was always coupled to the recursive models of
forecasting. In general, this proposed model resulted in the
competitive performance of the LSTM with faster convergence.

RNN for Solar Power Forecasting
Since the recursive construction of the RNN validated its ability
to learn the patterns of time sequence data with seasonal
and unstable trends, utilizing RNN for solar power/irradiance
forecasting also recently attracted the interest of researchers
(Yona et al., 2013). For instance, a comparative study by Aslam
et al. (2019) was carried out to compare different methodologies
for long-term solar radiation forecasting (1-year interval). The
simple RNN network and the RNN with GRU and LSTM
units proved their effectiveness in learning temporal dynamic
behavior between the inputs and outputs for this case study. The
comparison results showed that these methods could accurately
generate highly accurate outcomes with low mean squared error
(MSE) compared to the traditional forecasting techniques, i.e.,
random forest regression (RFR) and the conventional shallow
FFNN. Another recurrent network known as Elman-RNN was
trained by the cooperative neuro-evolution algorithm (Rana
et al., 2016) to forecast the half-hourly PV power output. In
this paper, the suggested approach considered both univariate
and multivariate models. The evaluation results, as expected,
highlighted the improvement of the accuracy when training a
multivariate model and verified the effectiveness of the proposed
model by comparing it to three different persistence forecasting
methodologies. Internal memory in the Elman network that can
deal with the variability of the PV data is considered as a direct
result of this promising performance.

Hosseini et al. (2020) chose to utilize the recurrent networks,
namely GRU and LSTM, to compare the univariate and
multivariate approaches for direct normal irradiance hourly
forecasting. They detected that computational-wise, GRU
exhibited a better performance than the LSTM because LSTM is
computationally time consuming with no significant superiority,
especially for themultivariate approaches. In addition, to confirm
the importance of incorporating wind speed and direction
and the cloud coverage data to the input layer of networks,

they trained the networks with and without these inputs and
compared the accuracy of a model. The comparison results
reinforced the significance and effectiveness of incorporating
these inputs for irradiance forecasting where the accuracy
increased by 23.32 and 8.91% for the simulations with the wind
coverage and cloud coverage data, respectively.

Commonly, the metrological stations categorically report the
daily sky condition without considering the variations from an
area to area throughout the day. These data, when used for
forecasting solar power, negatively affect the accuracy of the
forecasters. Aiming to address this issue and increasing the
reliance on solar power forecasters, Hossain and Mahmood
(2020) proposed an LSTM-RNN-based approach as a forecasting
step. In their model, after performing a statistical correlation
analysis to choose the most suitable predictors for the LSTM, a k-
mean analysis approach was used to tackle the sky type issue. In
this approach, solar irradiance was dynamically clustered for each
hour of the day according to the type of sky. These clusters create
an hourly numerical approximation of the solar irradiances.
Unlike classical sky type information represented for the entire
day, the clustering technique makes an hourly synthetic weather
forecast. These synthetic data are coupled with weather variables
such as humidity, temperature, wind speed, and historical PV
data fed as an input to the deep-LSTM. When constructing a
comparison simulation between the LSTM with the proposed
approach and the other two LSTM networks with the hourly
and daily categorical sky type data, the findings verified the
effectiveness of the proposed approach to increase the precision
of forecasting. Finally, to verify the promising performance
of LSTM, it was compared to a simple RNN, a generalized
regression NN, and an ELM, all of which had the same synthetic
input data. The LSTM followed by RNN outperformed the other
two methodologies; this also supports the usefulness of utilizing
recursive structures for forecasting.

SVM-Based Methodologies
Support vector machine is a powerful supervised ML technique
based on a kernel-learning method that resolves the local minima
issue that appears when training ANN (He and Xu, 2019).
Through a kernel function in SVM, the input data sets are
mapped into linear features with a higher-dimensional space.
This data mapping gives the SVM the ability to capture the non-
linearity in data and accurately predict erratic estimates such
as wind power and solar power (He and Xu, 2019). In general,
SVM is highly efficient in high dimensional spaces, comparatively
memory effective, and resolves the local optimization problems
in training ANN. However, in addition to its poor performance
when the training data sets are relatively large, constrained
optimization of SVM is computationally expensive. To overcome
these drawbacks, a least-square-SVM (LSSVM) was recently
introduced as a type of SVM with a loss function incorporating
the SSE and transforming the inequality constraints to equality
ones. This particular loss function of the LSSVM speeds up the
training process and reduces the computational complexity of
SVM (Huang et al., 1999). Consideration of the appropriate
kernel function has a significant impact on the performance
of both SVM and LSSVM. Linear kernel function, polynomial
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kernel function, radial basis kernel function, and wavelet
kernel function are the most commonly employed functions in
assembling the SVM.

SVM for Wind Power Forecasting
As explained earlier, the choice of the proper kernel function
and tuning its parameters is a significant key when employing
SVM models for forecasting. Thus, He and Xu (2019) suggested
a new kernel function that can be incorporated into the SVM by
holding the advantages of SVM and at the same time improving
its accuracy in forecasting. This hybrid kernel function is a
combination of a wavelet kernel function and a polynomial kernel
function. The authors claim that this combined kernel function
will preserve the good local interpolation ability in the wavelet
function and, at the time, improve its extrapolation by combining
it with a polynomial function. The claim was verified by training
the SVM for ultra-short-term wind speed forecasting using this
integrated kernel function. The cross-validation technique was
used for evaluating the performance, and the results showed that
the hybrid function reduced the mean error by 3.94%. In this
article, the dimensionality of the inputs to SVM was reduced
by using the PCA approach, and the historical wind data were
clustered according to their trend. This preprocessing step also
contributed to improving the reliability of the proposed method.
From a similar perspective, in a study conducted by Wang and
Chen (2020), the density-based spatial clustering of applications
with noise (DBSCAN) clustering technique was employed after
the reduction of dimensionality before using the SVM for wind
speed forecasting. This study also highlighted and reinforced the
importance of clustering the data before implementing the SVM
for forecasting, where the clustering decreased the MAE by 54%.

Because SVM models provide the generalization, utilizing
SVM for wind speed and power forecasting attracted the interest
of the scholars. Nevertheless, optimizing the performance
and tuning the SVM parameters remains challenging, and
no specific optimization algorithm has been highlighted to
have superiority over the other. Accordingly, SVM models
are accompanied mainly by various optimization techniques
creating hybrid forecasting models. More SVM forecasting
approaches hybridized with optimization procedures will be
reviewed later in section Metaheuristic Optimization for Tuning
ML Model Parameters.

SVM for Solar Power Forecasting
In general, SVM models can positively tolerate the noise and the
volatility in data, and they can, in most cases, outperform the
other ML techniques (Tabari et al., 2012). This superiority was
also proven (Quej et al., 2017), where SVM was compared to
ANFIS and ANN for estimating global solar irradiance in humid
areas. The solar irradiance in damp locations is very chaotic and
affected by the cloud coverage and the rainfall, and, in fact, it
is not tackled enough in the literature. Therefore, the research
conducted by Quej et al. (2017) incorporated the rainfall as
an input to the three different ML techniques and tested their
performance. As mentioned earlier, the results confirmed the
superiority of SVM and illustrated the importance of considering
the rain precipitation when forecasting the irradiance in such

humid areas. The performance of ANFIS and ANN was almost
similar, and no considerable supremacy was investigated.

To reduce the uncertainty in PV power generation forecasting
and maintain the appropriate unit commitment in power
plants, Ahmad et al. (2020) suggested four different SVM
forecasting models. Based on the seasons, four SVMmodels were
trained to predict power generation and PV module parameters
independently. Weather and PV power historical data were used
as inputs to the SVM models. RBF kernel and the polynomial
kernel were tested to determine a suitable kernel function for each
model. According to accuracy, reported simulations in this paper
and comparisons showed that the RBF kernel performs better for
PV module parameters forecasting than the polynomial kernel.
In contrast, the polynomial kernel resulted in lower MSE and
MAE for PV power production forecasting. In fact, the work in
this paper can provide beneficial guidance for future work related
to the management and scheduling of PV power plant.

As explained earlier, the time horizon of forecasting can also
affect the accuracy of ML models. For example, Hamamy and
Omar (2019) applied LSSVM with RBF kernel to forecast the
solar irradiance at different time horizons. Among the different
inputs, they utilized sunshine durations and other weather data
as inputs to build the models. The results showed that LSSVM
performs better for short-term forecasting, and the accuracy
of models decreases for longer-term forecasting. In fact, these
results go along with the conclusions obtained by Liu et al.
(2017), where the LSSVM did not result in an adequate model
for 48-h ahead of forecasting. Malvoni and Hatziargyriou (2019)
addressed the weakness of LSSVM in longer-term forecasting by
hybridizing it with the three dimensional (3D) wavelet transform
for a 24-h-ahead PV power forecast. Their proposed approach
handled and reduced the high dimensionality of the inputs to the
LSSVM and considered both the spatial and temporal features,
which improved the long-term forecasting results.

ELM-Based Methodologies
Extreme learning machines are special types of single-layer
FFNN that do not require the backpropagation algorithm for
updating training and weights. Instead, the ELM uses theMoore–
Penrose generalized inverse for estimating the target outputs
(Akhter et al., 2019). Unlike the FFNN, this unique ELM
structure reduces computational complexity and cuts the need
for manually optimizing and tuning multiple parameters (Li
et al., 2019). Nevertheless, since the loss function of ELM is based
on second-order statistics, it fails to perform with the non-linear
or non-Gaussian data. Most of the wind power-related and solar
power-related forecasting models are built based on the chaotic
and non-linear data. Therefore, an individual ELM approach for
both wind power and solar power forecasting is limited in the
literature studies. Generally, when the ELM models are used,
an optimization algorithm or another forecasting technique is
combined with ELM to improve the reliance of predictionmodels
and increase their accuracy.

ELM for Wind Power Forecasting
To improve the ability of ELM in capturing the non-linear
pattern in data and increase the accuracy of a forecasting
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model, Li et al. (2019) proposed a wind power forecasting
model based on ELM with a modified loss function. They
incorporated kernel mean p-power error loss instead of
the classical MAE loss function in ELM. When authors
conducted comparative experiments, they concluded that, from
a performance perspective, this adjustment in loss function
improved the accuracy and provided reliable results compared to
the classical ELM. Nevertheless, it resulted in losing an extreme
computational speed of the ELM, which is considered a primary
advantage when using the ELM. Therefore, as explained earlier,
generally in the literature studies, to preserve the benefit of rapid
learning in ELM and at the same time to generate reliable models,
hybridizing the ELM with optimization algorithm is necessary
and will be discussed later in section Metaheuristic Optimization
for Tuning ML Model Parameters.

ELM for Solar Power Forecasting
Hossain et al. (2017) conducted a comparative study for the
hourly and daily PV power forecasting of three different grids
using various ML techniques. Solar radiation, wind speed
ambience, module temperature, and PV power output data
were used to train the models. RBF kernel SVM, sigmoid
ANN trained with the Levenberg–Marquardt algorithm, and
the ELM all were trained and evaluated. Reported experimental
simulations illustrated that ELM could perform better for longer-
term forecasting and has the highest learning speed than the
other two ML techniques. Nevertheless, the authors highlighted
that this ELM model could not adopt exogenous input data and
suggested addressing this issue in future work.

METAHEURISTIC OPTIMIZED ML
FORECASTING METHODOLOGIES

Generally, metaheuristic algorithms are implemented as a search
guide to find the near-optimal approximate solutions that can
improve the performance of specific systems with moderate
computational costs (Cohoon et al., 2003). Based on the search
strategy, metaheuristic algorithms are mainly classified into
two main algorithm classes: (1) trajectory-based algorithms and
(2) population-based algorithms. Commonly, population-based
approaches are favorable for global optimization since they
can adopt linear and non-linear, fixed and transitioned, and
continuous and discrete objective functions. Thereby, our survey
will focus on the population nature-basedmetaheuristic (namely,
evolutionary and swarm) algorithms integrated into ML systems
for renewable power forecasting.

According to what has been discussed and reviewed in the
previous sections, it is clear that although single ML forecasters
can be trained to forecast renewable power, in some cases,
ML models are inadequate to fulfill the accuracy required for
electricity sector applications. For example, these models can
easily fall in the issues of optimal local values and fail to generate
generalized forecasting models. In addition, determining the
optimal structure of networks and tuning their parameters can be
time consuming and requires an enormous number of trial-and-
error experiments (Sindhu and Nivedha, 2020). Thereby, to build

computationally inexpensive effective ML networks and reliable
prediction results, scholars supplemented variousML approaches
and metaheuristic optimization techniques together.

The metaheuristics are used with ML networks for two
different purposes: (1) tuning and estimating the model
parameters during a training process and (2) tuning the
hyperparameters related to the structure of a network
(Yang and Shami, 2020). The difference between these two
purposes and applications for optimizing them through a
metaheuristic optimization will be considered in sections
Metaheuristic Optimization for Tuning ML Model Parameters
and Metaheuristic Optimization of the Network Parameters of
the ML Systems.

METAHEURISTIC OPTIMIZATION FOR
TUNING ML MODEL PARAMETERS

The optimization of the performance of ML forecasting
methodologies is achieved through optimizing the model
parameters. Weights, biases, and/or penalties of kennel functions
all are examples of ML model parameters. The parameters of
a model are related to the network’s training approach and
how the attributes of these networks change to increase the
accuracy of fitting the targets (minimizing the cost function
that evaluates the error between the fitted and actual targets).
Since most of the ML optimization problems are non-convex, the
choice of an unsuitable optimization approach for training the
ML forecasting system could result in estimating the optimum
local minimum parameters instead of the global (Yang and
Shami, 2020). For example, the Gradient descent algorithm
is the most frequently used algorithm for optimizing the
parameters of ML models (Sun et al., 2019a). Nevertheless,
if the objective function is non-convex, the gradient descent
will fail to reach the globally optimum values in some cases
(Sun et al., 2019a). Therefore, several metaheuristics were
tested and incorporated for optimizing the parameters of
ML systems.

The following section will review some applications of
optimizing the parameters of ML models applied for renewable
power forecasting using two algorithms, the first being
evolutionary optimization algorithms and the second being
swarm-based optimization algorithms.

Evolutionary Optimization for Tuning ML Model

Parameters
Evolutionary optimization techniques utilize a population
of solutions from the solution space to determine the
approximate optimal solution (Alba, 2005). These techniques
imitate the biological evolution in their working mechanism.
Reproduction, mutation, recombination, and selection are the
steps followed by evolutionary optimization approaches to
determine the solutions. Their performance is considered
suitable for various problems because no particular assumptions
are made regarding fitness functions (Cohoon et al., 2003).
Therefore, integrating evolutionary optimization into ML
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approaches has been a research hotspot and attracted the
attention of researchers.

Evolutionary Optimization Algorithms and

ANN-Based Forecasting Methodologies
To forecast themonthly wind power generation of a wind plant in
Iran, Jafarian-Namin et al. (2019) performed a comparative study
to choose the most suitable adequate modeling methodology.
In this study, weather conditions with sunshine hours and
precipitations were considered as inputs to regular standalone
ANN, hybrid ANN with genetic algorithm (GA) in one model,
and particle swarm optimization (PSO) in another model to
forecast the monthly wind power. Using the MATLAB software,
the models were tested, and according to statistics metric
evaluations, it was demonstrated that the hybridized ANN
performs better than the individual ANN. The reported RMSE
of the GA-ANN and PSO-ANN models was 0.4213 and 0.4250,
respectively, whereas the RMSE for the regular ANN was 0.4385.
Nevertheless, when applying the ARIMA model for prediction,
it surpassed the ANN and the hybridized versions of it. This
result supports the drawn-out conclusion from the previous
sections that ML approaches perform poorly for longer-term
forecastings, such as the case of this study. Pedro and Coimbra
(2012) tested the GA-ANN approach for 1 h-ahead and 2 h-
ahead average output power forecasting of a solar plant without
incorporating any exogenous inputs. The GA-ANN system
surpassed the other forecasting approaches, such as ARIMA,
k-nearest neighbors (KNN), and the ANN. Nevertheless, similar
to the drawn conclusion by Jafarian-Namin et al. (2019), a
reduction in forecasting accuracy was reported when testing the
model for longer forecasting horizons.

On the other hand, the study conducted by Flores et al. (2019)
tested various forecasting approaches [including MLP-ANN,
Nearest neighbor (NN), Fuzzy forecasting, Evolving Directed
Acyclic Graph (EVOdag), and ARIMA] for 1-day-ahead wind
speed forecasting. To improve the performance of the AI-based
forecasters, the authors accompanied each technique with an
evolutionary optimization approach. For example, MLP-ANN
was accompanied by a compact GA (C-GA) for estimating the
optimal size of inputs, the number of hidden neurons, and the
appropriate training algorithm. The DE algorithm was used for
estimating the optimum time lag, embedding dimension, and
neighborhood radius size for the NN approach. Forecasting
results for 20 different stations were compared and evaluated;
the NN-DE system shows a superior prediction performance for
most of the stations considered in the study.

Evolutionary Optimization Algorithms and

SVM-Based Forecasting Methodologies
Tuning of the kernel parameters of the SVMs is one of
the previously mentioned drawbacks of this robust ML
approach. Various studies in the literature were conducted
for tackling this issue, specifically through accompanying the
SVM with metaheuristic approaches. For instance, Salcedo-
Sanz et al. (2011) incorporated the Evolutionary Programming
(EP) algorithm and a PSO approach into SVM wind speed
forecasting systems in Spain. This incorporation aims to

explore the kernel function hyperparameter that minimizes the
prediction errors and increases the precision of forecasting.
When comparing the results obtained from these incorporations,
no specific superiority of one of the metaheuristics over the
other was reported. However, both of them clearly increased
the precision of prediction when compared to MLP prediction
systems. These results not only highlight the importance of
tuning the hyperparameters of SVMs but also support the
previously discussed robustness of SVM methodologies. From
a similar perspective of the superiority of SVM, Tian et al.
(2020) conducted a study to recommend the most suitable
optimization algorithm to estimate the optimal structure and
parameters of LSSVM. GA, PSO, and brainstorm optimization
algorithm (BSOA) all are individually supplemented by LSSVM,
and their performances were evaluated and compared. The
findings illustrated that the estimated MAE of the LSSVM-BSOA
is significantly lower than the one for GA-LSSVM and PSO-
LSSVM. When comparing the GA and PSO, MAE of GA is
almost half the MAE for the PSO, and this could indicate that the
evolutionary metaheuristics are superior to the swam ones when
complemented by the LSSVM.

Similarly, inWang et al. (2015), when the evolutionary cuckoo
optimization algorithm (COA) was used for tuning the penalties
factor and gamma of the kernel function RBF in SVM, it resulted
in better predictions of wind speed when compared to the PSO-
SVM approaches. This superiority can be observed mainly for
bouncing samples. Furthermore, the authors concluded that this
COA-SVMcan actually perform promisingly formultistep-ahead
forecasting and can be beneficial for wind station applications.

Evolutionary Optimization Algorithms and

ELM-Based Forecasting Methodologies
As stated in section ELM-Based Methodologies, ELM is usually
coupled with optimization approaches to perform better and
result in reliable models. For example, weights and biases of ELM
were trained by a newly devolved crisscross optimization (CSRO)
algorithm for multistep wind speed forecasting (Yin et al., 2017).
ELM was also integrated with PSO, GA, DE, and the forecasting
results were compared. The CSO-ELM model was superior and
had a higher ability in capturing the chaotic and non-linear
behaviors of wind. In Zhang et al. (2017), ELM was trained
for mean half-hour wind speed forecasting and incorporated its
training process using a hybrid backtracking search algorithm
(HBSA). Real-valued backtracking search algorithm (RBSA)
was used to estimate the optimal weights and biases of the
ELM, and the binary backtracking search algorithm (BBSA)
was exploited as a feature selection after applying the PCA to
choose the suitable input candidate features. It is essential to
mention that, besides optimizing the inputs of the ELM and its
structure, the authors also implemented optimized variational
mode decomposition (OVMD) of the wind data as an additional
denoising step. The HBSA-OVMD-ELM approach demonstrated
a satisfactory execution compared to standalone ELM, SVM,
HBSA-OVMDSVM, and other different combinations of the
optimization algorithms and the ML approaches. This means
that the advantageous computational speed of ELM was lost,
and the balance between both speed and accuracy remains
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a trade-off decision that engineers need to consider when
employing such hybridized models. Another BSA application
was used by Sun et al. (2019b) for tuning the parameters of
different ML approaches for multistep wind power forecasting.
The time series data were decomposed and fed to three ML
forecasting engines (namely, ELM. LSSVM, andWNN). The BSA
algorithm tuned the parameters of these ML models. Afterward,
the optimal weights for combining these forecasters were also
estimated by using the BSA to produce a reliable, highly accurate
forecasting model.

Swarm-Based Optimization for Tuning ML
Model Parameters
Inspired by the natural biological swarm movements, swarm-
based optimization systems consist of agents cooperating with
each other locally. By following simple rules, these agents
search for an optimal solution among a set of possible
solutions in a particular search space (Beni and Wang, 1993).
Swarm-based metaheuristics have been utilized for optimizing
the performances and outcomes in different applications in
engineering, medicine, military, and economy (Martens et al.,
2011).

Swarm Optimization Algorithms and ANN-Based

Forecasting Methodologies
Aiming to improve the accuracy of a multistep wind energy
prediction, Du et al. (2019) hybridized a WNN with different
swarm optimization algorithms, including multi-objective
moth-flame optimization (MOMFO) algorithm, multi-objective
water cycle algorithm (MOWCA), multi-objective multi-
verse optimization (MOMVO), and multi-objective whale
optimization algorithm (MOWOA). The authors tested these
four adopted algorithms for training a WNN using four data
sets and compared their performance according to different
evaluation metrics. According to the comparison results, the
MOMFO surpassed the other algorithms and improved the
precision and stability of prediction which other researchers
sometimes ignore. The authors also claimed that this reliable
forecasting approach could accurately predict in case of its
utilization in different fields.

Swarm Optimization Algorithms and SVM-Based

Forecasting Methodologies
Li et al. (2020) proposed a hybrid optimization approach for
tuning the parameters of unimodal and multimodal functions to
exploit both evolutionary and swarm optimization advantages.
This hybrid optimization was performed by incorporating the
differential evolutionary (DE) optimization into the dragonfly
optimization (DA) algorithm. To validate the robustness
of this hybrid optimization approach, five different kernel
functions were tuned and tested in this study. Further
validation was achieved by estimating the parameters of the
SVM short-term wind power forecaster. The reported results
showed that a DE optimization scheme positively boosted and
supported the optimal search of the swarm-based optimization
approach (i.e., the DA) compared to standalone DA and other
optimization algorithms.

Another hybridization of the swarm optimization algorithm
was proposed by Vinothkumar andDeeba (2020), where PSOwas
integrated into ant lion optimizer (ALO). In this work, to validate
the robustness of this hybrid optimization technique, the authors
used this technique to tune the kernel function of wavelet SVM
and the parameters of LSTM-RNN for the wind speed prediction.
The testing results showed that the proposed metaheuristic
approach provided models approaching a minimal MAE% with
a very reasonable computational time. The incorporation of the
two techniques together was successful in finding the solution by
various appropriate positional updates.

Swarm Optimization Algorithms and ELM-Based

Forecasting Methodologies
To determine the most suitable swarm optimization algorithm
for estimating the optimal parameters of ELM-forecasting PV
power generation, a study conducted by Kumar et al. (2018)
compared the performance of three ELM networks optimized
by PSO, accelerate-PSO (APSO), and craziness-PSO (CRPSO).
The APSO-ELMmodel quickly boosted the performance of ELM
and provided considerably reliable, accurate forecasting results.
Liu et al. (2019) compared the chicken swarm optimizer (CSO)
and an improved chicken swarm optimizer (ICSO) for PV power
short-term forecasting and concluded that ICSO is more efficient
for optimizing the weights and biases of ELM and can outperform
not only the CSO-ELM but also the benchmark approaches such
as SVM.

METAHEURISTIC OPTIMIZATION OF THE
NETWORK PARAMETERS OF THE ML
SYSTEMS

The hyperparameters of ML networks are the variables that are
set to construct a network structure. Tuning these parameters
is essential since they can directly affect the performance of a
training algorithm, which will eventually have a crucial control
on the precision of the prediction model that is being learned
and trained (Hutter et al., 2015). These parameters generally
obtain the structures of networks (i.e., the numbers of units in the
hidden layer, and the type of the activation functions) andweights
and biases of the initializing schemes based on the selected
activation function (Hutter et al., 2015). Unlike the learning-
related parameters, the network’s structure hyperparameter
tuning is mainly favorable to be achieved through grid search,
random search, and Bayesian optimization (Hutter et al., 2015).

The applications of metaheuristics for tuning of
hyperparameters are not notably found in the literature studies.
Only a few scholars reported their application of metaheuristics
for tuning of the hyperparameters of networks. For example,
for wind power forecasting systems, Jursa and Rohrig (2008)
conducted a study to validate the importance of tuning the
number of hidden neurons of a wind power ANN forecaster
through the swarm and evolutionary optimization algorithms.
This study defines the structure of an ANN prediction system
by applying PSO and differential evolution algorithms (DEAs)
through an automated selection approach. The proposed models

Frontiers in Chemical Engineering | www.frontiersin.org 13 April 2021 | Volume 3 | Article 665415

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


Alkabbani et al. Machine Learning for Renewable Power Forecasting

were tested for predicting the wind power of 10 different wind
power stations in Germany. The reported results illustrated that
the proposed automated approach through the two optimization
approaches reduced the prediction error for most power stations
compared to the manually tuned ANN forecasters. The PSO
tuning approach enhanced the prediction by 9.6% and the
DE approach by 6.8. Another application route of this ML
metaheuristics integration can be found by Jahangir et al. (2020),
the GA was employed to determine the optimal configuration
of a stacked denoising autoencoder that was used as a pre-wind
speed forecasting approach to denoise the data before processing
them into forecasting network.

COMPARATIVE DISCUSSION FOR ML AND
METAHEURISTIC METHODOLOGIES

ML techniques (ANN, RNN, SVM, and ELM) have been
successfully utilized for renewable power forecasting. In
many references, and according to statistical evaluation
metrics such as MAE, MSE, RMSE, and R, those techniques
confirmed their ability. They surpassed various traditional
forecasting approaches, especially for short-term and
medium-term forecasting.

Using simple structures, ANN can capture the non-
linear and chaotic features in data and generate reliable,
accurate predictions, especially for short-term and medium-term
forecasting horizons (Pedro and Coimbra, 2012). BPFF-ANN
is a robust ANN; it is known for its ability to map non-linear
patterns usually found in solar and wind power. Nevertheless,
this type sometimes fails to tolerate oscillations and can easily fall
in the local minima (Sözen et al., 2004). In addition, it suffers
from a low convergence rate (Ding et al., 2011). On the other
hand, the RBF-ANN is usually introduced for renewable power
forecasting problems because it is faster in learning, and it is
not computationally expensive compared to the regular BP-ANN
(Rana et al., 2016).

Nevertheless, for the different ANN types, several parameters,
either related to the training process or the network structure,
directly affect the reliability of models (Vinothkumar and
Deeba, 2020). Tuning these parameters requires an integration
of different optimization algorithms that are considered time
consuming in some cases. Besides, sufficiently large historical
data are needed to train the networks.

ANN-based models based on different time horizons and
approaches to renewable power forecasting in the recent
literature studies are summarized in Table 1.

RNNs are special types of ANN that can preserve and utilize
the features from previous time steps, making them able to
learn to attain the temporal relations between the data (Yona
et al., 2013). Although RNNs can generate accurate forecasting
models, short-memory problems associated with them cause
immature training issues. GRU and LSTM are special nodes
introduced to overcome the RNN drawbacks; these nodes process
data in different mathematical activation functions to benefit
from the attributes of the previous time steps with longer
memory terms. They actively confirmed their superiority for

time series forecasting with moderately short training times.
However, this recursive mechanism in all types of RNN results
in error accumulation, which causes exploding gradient concerns
that affect the training process of networks (Niu et al., 2020).
Table 2 summarizes some studies that mitigated these issues,
particularly for renewable power forecasting, and provided
consistent, accurate results.

SVM approaches are also powerful ML techniques that are
well-known for their global approximation abilities. They can
simplify complex mathematical computations, and unlike the
ANN, they can learn patterns with a moderately small size of
data sets with a little dependence on prior knowledge (Voyant
et al., 2017). Nevertheless, their performance highly depends on
the kernel function parameters, which require the incorporation
of optimization algorithms for tuning and training (Liu et al.,
2019). Their prediction stability diminishes for longer forecasting
horizons when the training dataset is extensive (Hutter et al.,
2015). Furthermore, the overfitting issue also comes with the
SVM training process, necessitating different resolutions during
a training process (Akhter et al., 2019).

The system optimization requirement also appears when
utilizing the ELM tools to estimate the appropriate weights
and biases (Malvoni and Hatziargyriou, 2019). Although
the convergence is quickly achieved for ELM training, this
convergence could be premature in some cases. Therefore, the
created model fails to be generalized, and the precision of
forecasting becomes insufficient in some cases. In fact, this
encouraged consideration of DL concepts with ELM approaches
(Mellit et al., 2009). Table 3 summarizes some recent papers
utilizing SVM and ELM tools for wind power and solar
power forecasting.

The hybridizedML approaches with metaheuristic algorithms
are recommended solutions to increase the reliability of
ML models and resolve their limitations. The metaheuristic
approaches are used to tune the parameters of an ML
model and/or the structure of networks. Incorporating
these metaheuristics aims to achieve adequate convergence,
resulting in higher prediction accuracy than standalone
ML methodologies.

Based on our investigations in this paper, the hybridized
ML tools with metaheuristics resulted in predictions with high
accuracies represented in the evaluation metrics such as MSE,
MAPE, MSE, R/R2, SAMPE, and RMSE. Population-based
metaheuristics are usually favorable to be combined with the
ML approaches because they are known for the ability to
determine the optimal global variables for different types of
objective functions. Evolutionary and swarm-based optimization
techniques are subsets of the population-based optimizers
preferable by scholars for optimizing the parameters of ML
models. In addition, hybrid combinations of the evolutionary
and swarm optimizers can also robustly determine near-
optimal values surpassing standalone optimizers. Although the
hybridization resulted in reducing the prediction error and
improved the reliability of ML networks, the exaction time of
these models is noticeably higher than the time needed for the
individual ones and requires robust computation machines in
some cases. Table 4 summarizes some findings from the studies
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TABLE 1 | Summary of artificial neural network (ANN) methods.

References Forecasting target and

horizon

ANN method Important conclusions Accuracy of the

proposed model

Nielson et al. (2020) Monthly wind power FFBP-ANN - The atmospheric effects on wind power curved

could be explained by incorporating wind density

into the input’s features.

Improved MAE% by 59%

compared to IEC*

Chen et al. (2019) Hourly wind speed FFBP-ANN

ADALINE -NN

RBF-ANN

- The time-series input size dramatically affects the

performance of the ANN approaches.

- Different learning rates resulted in considerably

different interpretations.

RBF-ANN: MAE = 1.112

m/s

Grassi and Vecchio

(2010)

Monthly generate wind

power.

Two-layer FFNN with

sigmoid and Tanh activation

functions

- Considering maintenance hours as an input has a

significant impact on increasing the forecasting

reliability.

Training MAE = 0.0109

MWh

Liu et al. (2017) 48 h-ahead of wind power ANFIS combining BPNN,

LSSVM, RBANN

- Utilization of PCC for input selection contributes

to improving accuracy.

- Combining three ANN approaches as inputs to

ANFIS ensures accurate results throughout the

four seasons.

Spring: MAPE = 11.76%

Fall: MAPE = 6.7%

Abuella and

Chowdhury (2015a)

Hourly solar power FF-ANN - Input data pre-processing and clustering improve

results.

- Elimination of night hours results in

better predictions.

Testing R2 = 0.9665

O’Leary and Kubby

(2017)

Hourly solar power ANN - Masking the ANN input data into specific

categories according to the error rate was why

the highly reliable drawn-out forecasting results.

MAE = 5.99 W

Ozoegwu (2019) Monthly mean daily global

solar radiation

Hybridization of non-linear

autoregressive + ANN

- Forecasting results by the proposed model are

satisfactory for longer-term forecasting horizons

(up to 2 years-ahead) under different climate

conditions.

R2 = 0.92

Yagli et al. (2019) Hourly global horizontal

irradiance (GHI)

68ML and statistical

approaches

- This study can offer researchers’ guidance in

using the appropriate forecasting approach based

on the climate conditions for GHI furcating.

N/A

Ghimire et al. (2019) Daily global horizontal

irradiance

FFBP-ANN - Nearest component analysis incorporates in

choosing the appropriate features that result in

better predictions.

- Integrating optimization techniques is

recommended and would increase the reliability of

ANN and ELM forecasting approaches.

R = 0.967

*IEC, The International Electrotechnical Commission.

integrating metaheuristics to ML models for different renewable
power forecasting targets and horizons.

On the other hand, tuning the hyperparameters related to
the ML network structure is another challenge when using ML
forecasters. This challenge is regularly tackled through search
grid, random grid, and Bayesian optimization. It is, in some
cases, a time-consuming process that some researchers prefer
to depend on previous knowledge and experience tuning of
these hyperparameters.

Finally, based on our investigations in this article, to
improve the ML-based forecasting techniques, the following
steps are usually recommended for more reliable, accurate
ML forecasters:

1. Increasing the data set size is usually especially for ANN.
2. Preprocessing and analyzing the data to detect and filter

the outliers and missing data are essential and affect the
prediction results.

3. The presence of NWP as input features to the ML networks is
crucial and improves the forecasting results.

4. Shorter-term forecasting horizons are preferable when using
the ML techniques to ensure higher accuracies.

5. Hybridizing the ML models with optimization techniques
improves the outcomes but might decelerate the training
process in some cases; therefore, it remains a trade-
off process that scholars need to consider based on the
forecasting applications.

6. Hybridizing the ML approaches with metaheuristics improves
the results of a multistep prediction.

Section Challenges and Future Directions will also highlight
some vital challenges accompanied by utilizingML forecasters for
renewable power forecasting, to direct scholars to the problems
that require higher focus and considerations in future studies.

CHALLENGES AND FUTURE DIRECTIONS

Even though many research studies are conducted on the ML
forecasters of renewable power, some remaining significant
questions and problems have not been efficiently tackled:
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TABLE 2 | Summary of recurrent neural network (RNN) methodologies.

References Forecasting targe and

horizon

RNN method Important conclusions Accuracy of the

proposed model

Syu et al. (2020) Ultra-short-term wind speed

Multi-step

GRU - Number of previous steps as inputs to GRU

is essential and affects forecasting results.

- GRU requires less parameter tuning and

shorter training time.

Step 1: MAE = 0.130 m/s

Step 2: MAE = 0.222 m/s

Step 3: MAE = 0.302 m/s

Yu et al. (2019) Short-term wind power LSTM- enhancement forget

gate (LSTM-EFG)

- Proposed approach accelerates

convergence.

- Pre-processing of data represented in

clustering and filtering noticeably improves

prediction results.

Clustering increases the

accuracy by 18.3%

Niu et al. (2020) Wind power at different time

horizons (MIMO) forecasting

Attention mechanism GRU - The proposed model can continuously

extract the spatial-temporal features in data,

which boosts the forecasted power accuracy.

- MIMO model offers stable forecasting results

at different time horizons.

Step 1: MAPE = 4.35%

Step 2: MAPE = 7.97%

Step 3: MAPE = 11.54%

Aslam et al. (2019) Long-term solar radiation

forecasting (1-year interval)

Comparative study between

RNN, LSTM, and GRU and

other ML approaches.

- Reinforce the effectiveness of different RNN

models in forecasting.

N/A

Rana et al. (2016) Half-hourly PV power output Elman RNN. - Multivariate input model to Elman RRN is

more reliable.

- Elman RNN-based model can alternate the

conventional persistence

forecasting methodologies.

Univariate model:

MAE = 90.95 kW

Hosseini et al.

(2020)

Direct normal irradiance. At

different horizons

GRU and LSTM

(multivariate)

- Highlight the effectiveness of incorporating

wind speed and cloud coverage as inputs to

the forecasting networks.

- GRU is adequate, with no superiority

of LSTM.

The multivariate model

outperforms the univariate

model by 34.42%

Hossain and

Mahmood (2020)

Short-term PV power.

(6-12-24 h ahead)

LSTM - Using k-means clustering to create numerical

synthetic approximations of the sky type and

incorporating them as inputs to the LSTM

dramatically improved the forecasting results.

MAE Fall for 24 h: 0.36 MW

1. Minimal studies have been conducted for regional wind
power or solar power forecasting; most studies consider
single locations or stations. Regional electrical grid optimal
scheduling and managing would be achieved by constructing
a model that forecasts the solar or wind power for multiple
locations in a specific region. Hence, constructing a precise
regional wind power or solar power forecasting model is one
of the critical problems to be tackled in the future.

2. Probabilistic prediction of wind energy and solar energy is
not adequately considered in the literature studies. These
predictions can quantify the changes in the resources of
renewable energies. This could improve the scheduling of the
electricity networks based on the estimated odd operating
conditions. Therefore, focusing on probabilistic forecasting of
renewables is a future key direction for researchers.

3. While the one-step-ahead forecasting has been extensively
studied and tested, the multistep ahead forecasting proposed
models remain a complex task that is not considered
adequately in the literature studies and needs to become more
encountered by researchers.

4. Currently, most of the published studies do not look at
the problem of renewable power forecasting through a core
structure of the ML model; the mathematical correlations

between the input features and the renewable power
prediction targets are not fully systematically disclosed and
explained. Moreover, the input attributes that majorly affect
the forecasting behaviors and precision are not entirely
unambiguously indicated. In other words, the appropriate
mathematical way to describe a renewable power forecasting
model needs to be seen by scholars in the future.

5. From a forecasting horizon perspective, it was investigated
that the proposed ML methodologies in the literature studies
mainly focused on very short-term and short-term forecasting.
Although these time horizons of forecasting have various
vital applications related to maintaining the stability of the
microgrid, medium-term and long-term forecasting horizons
are also essential for studying the economic feasibility of the
renewable power integration to the electricity sector. Thus,
a higher focus on longer-term forecasting is expected and
needed and could improve the incorporation of renewables
into the electricity networks.

CONCLUSION

Precise forecasting of the renewables generation will maintain
a stable production of electrical grids, avoid power waste and
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TABLE 3 | Summary of support vector machine (SVM) and extreme learning machine (ELM) models.

References Forecasting targe and

horizon

SVM/ELM method Important conclusions Accuracy of the

proposed model

He and Xu (2019) Ultra-short term wind speed SVM with wavelet +

polynomial hybrid kernel

function

- The SVM model’s combined kernel function can

outperform the single regular functions and

improve the interpolation of the model’s

extrapolation ability.

- Pre-processing of historical data and clustering

also contribute to increased accuracy.

The hybrid function

reduced the mean error

by 3.94 %.

Tabari et al. (2012) Short-term wind power SVM with a linear kernel

function.

- SVM models tackle the issue of local optimality

that appears in other ML networks.

DBSCAN clustering

reduced MAE by 54%.

Quej et al. (2017) Daily global solar irradiance SVM RBF-kernel function - SVM with kernel function can tolerate noisy input

data in humid areas and result in an accurate

model with reasonable computational time. It

outperforms the ANFIS and ANN models.

RMSE = 3.089

MJm−2d−1

Ahmad et al.

(2020)

PV module and power

generation parameters

Polynomial kernel SVM

RBF kernel SVM

- Detailed SVM-based modeling study can offer

helpful guidance for solar power-related problems.

Poly kernel: total RMSE

= 5.1674W

BBFkernel: total RMSE

= 2.342W

Hamamy and

Omar (2019)

Solar irradiance at different

time horizons.

LSSVM with RBF kernel - LSSVM models perform better for short-term

forecasting; the longer the forecasting term, the

lower the predictions’ accuracy.

Not given

Li et al. (2019) Wind power ELM with kernel mean

P-power error loss function

- The ELM model with the special loss function can

outperform the classical BP-ANN; nevertheless,

the fast convergence of ELM is lost when the

proposed loss function is introduced to ELM.

Hybridizing ELM with optimization algorithms to

estimate optimal weights and biases is effective

and recommended.

MAE = 255.4860kW

Hossain et al.

(2017)

Hourly and daily PV solar

power

Classical ELM - ELM can perform robustly for long-term

forecasting with short training time.

Testing R2 = 0.8936

intermittency, and respond to the environmental concerns
regarding pollution and global warming because it will
contribute to integrate environmentally friendly resources into
the electricity sector. The conclusions drawn out from this paper
illustrate that the ML techniques for wind power and solar
power forecasting can outperform the traditional statistical tools,
especially if the optimization algorithms accompany them.

First, a general review of renewable energy forecasting
using mathematical prediction approaches was conducted.
These reviews show that the persistence models to date are
considered adequate and reliable for very short-term forecasting.
However, researchers lost interest in the physical methodologies
because they are computationally expensive and require complex
mathematical operational computations. On the other hand,
the statistical approaches are favorable in many forecasting
cases as they are simple and do not require a massive
preprocessing and filtering of data. ARIMA is a robust example
of the statistical forecasting tools that showed a powerful
performance for short and medium forecasting horizons (up to
2 days).

After that, detailed ML forecasting methodologies (ANN,
RNN, SVM, and ELM) were reviewed and analyzed. These
methodologies consider both the historical data and climate
conditions for forecasting. It was concluded that the ANN
models are adequate for non-linear systems and result in
reliable predictions; however, their training process can fall

in local minima and/or overfitting and requires an enormous
size of training input data. In addition, their ideal weights,
biases, and structures (including the number of layers and
nodes) require tuning and optimization, which might be
time consuming in some cases. RNN, a special type of
ANN, also showed a powerful performance because of its
ability to preserve and capture the information from the
previous time steps. Although this unique structure contributed
to increasing accuracy, it can result in the buildup error
issues that produce gradient vanishing problems and cause
a failure to train the network and update its weights
and biases.

Our survey also investigated that the SVM network can
solve some of the issues that appear in the other ML
methodologies by producing generalized, reliable models with
reduced mathematical complexities. However, the overfitting
problem also complements the SVM applications in some cases.
In addition, a suitable associated kernel function in the SVM and
optimizing their parameters remain the issue that needs various
experiments and studies. Finally, the ELM tool that is known
for its extremely fast convergence was also considered in our
survey for renewables forecasting. The results showed that it is
suitable for simple models only because it fails to capture enough
features and learn adequately. It also requires either optimizing
its initial parameters or extending it to become a deep network
with multiple layers.
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TABLE 4 | Summary of machine learning- (ML-) metaheuristic methods.

References Forecasting target and

horizon

ML method-

metaheuristic

method

Important conclusions Accuracy of the proposed model

Jafarian-Namin

et al. (2019)

Monthly wind power

generation

ANN-GA

ANN-PSO

- Hybridization with optimization algorithms

increases accuracy

- GA is superior to PSO in this case.

ANN-GA:

R2 = of 0.9212

GA reduced RMSE by 3.9%

PSO reduced RMSE by 3.07%

Pedro and

Coimbra (2012)

1 and 2 h-ahead solar

power output

ANN-GA - GA-ANN surpassed ARIMA and KNN approaches

in improving the accuracy of forecasting

1 h ahead R2 = 0.96

2 h ahead R2 = 0.93

RMSE improved by; 32.3% for 1 h

35.1% for 2 h

Flores et al. (2019) Day-ahead wind speed NN-DE - NN-DE approaches resulted in the highest

accuracy predictions compared to MLP-ANN

SMAPE = 33.552 m/s

Salcedo-Sanz

et al. (2011)

Short-term wind speed SVM-EP

SVM-PSO

- Proposed models surpassed the multi-layer

perceptron forecasting approach

EP-SVMr: MAE = 1.7921 m/s

PSO-SVMr:MAE = 1.7823 m/s

Tian et al. (2020) Short-term wind speed LSSVM-BSOA - LSSVM-BSOA is superior to LSSVM-GA,

LSSVM-PSO, and other standalone approaches.

MAE = 0.1113 m/s

Wang et al. (2015) Short-term wind speed and

multi-step ahead

SVM-COA

SVM-PSO

- Implementation of the COA-SVR model is

advanced to that of the PSO-SVR and GA-SVR

methods,

1 step ahead: MAE = 0.6836 m/s

2 steps ahead:

MAE = 1.0051 m/s

Yin et al. (2017) Wind power forecasting and

multi-step ahead

ELM-CSO - CSO can address the premature convergence of

ELM and surpass other algorithms.

1 step ahead: MAE=0.104 m/s

2 steps ahead:

MAE = 0.157 m/s

3 steps ahead:

MAE = 0.186 m/s

Zhang et al. (2017) Wind speed a mean

half-hour

HBSA-ELM - Compared to other approaches, the proposed

model has robust performance in capturing the

non-linear attributes of wind speed

MAE = 0.372 m/s

Du et al. (2019) Short term wind power

multi-step ahead

WNN-MOMFO

WNN-MOWCA

WNN-MOMVO

WNN- MOWOA

- Integration of the multi-objective optimizers

improves the predictions compared to GNN and

WNN

1 step ahead: MAPE = 5.0661%

2 steps ahead: MAPE = 7.7877%

3 steps ahead: MAPE = 10.6968%

Li et al. (2020) Short-term wind power SVM-DA-DEA - The model showed a better performance

compared to other models such as ANN

R2 = 0.9791 for winter dataset

R2 = 0.9544 for autumn dataset.

Vinothkumar and

Deeba (2020)

Short-term wind speed SVM-ALO-PSO

LSTM-ALO-PSO

- The effectiveness of the proposed optimizer

integrated into the ML forecasters is proven

comparing to other benchmarking forecasting

approaches

ALO-PSO MAE = 0.0027 m/s

ALO-LSTM = 0.0126 m/s

Kumar et al. (2018) PV power generation ELM-PSO

ELM-APSO

ELM-CRPSO

- ELM model surpassed BP-ANN

- The hybridized ELM with different PSO

approaches reduced the prediction error.

ELM: MAPE = 2.9417%

PSO-ELM: MAPE = 2.7736%

CRPSO-ELM: MAPE = 2.2207%

APSO-ELM: MAPE = 1.440%

Liu et al. (2019) Short-term PV power

outputs

ICSO-ELM - Improving the CSO considerably enhanced the

forecasting ability of the ELM

MAPE = 5.54%

Afterward, to explore the effect of hybridizing the ML
forecasting approaches with optimization techniques,
we reviewed some hybridized systems in the literature
studies to show how this hybridizing could boost the
performance of ML approaches and ensure reliable,
accurate forecasting. Finally, a comprehensive comparison
between the reviewed models was conducted, and
some crucial drawn-out observations highlighting the
challenges and future trends related to the review
are exemplified.
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