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The highly competitive nature of the chemical industry requires the optimisation of the
design and exploitation of (bio-)chemical processes with respect to multiple, often
conflicting objectives. Genetic algorithms are widely used in the context of multi-
objective optimisation due to their overall straightforward implementation and
numerous other advantages. NSGA-II, one of the current state-of-the-art algorithms in
genetic multi-objective optimisation has, however, two major shortcomings, inherent to
evolutionary algorithms: 1) the inability to distinguish between solutions based on their
mutual trade-off and distribution; 2) a problem-irrelevant stopping criterion based on a
maximum number of iterations. The former results in a Pareto front that contains redundant
solutions. The latter results in an unnecessary high computation time. In this manuscript, a
novel strategy is presented to overcome these shortcomings: t-domination. t-domination
uses the concept of regions of practically insignificant trade-off (PIT-regions) to distinguish
between solutions based on their trade-off. Two solutions that are located in each other’s
PIT-regions are deemed insignificantly different and therefore one can be discarded.
Additionally, extrapolating the concept of t-domination to two subsequent solution
populations results in a problem-relevant stopping criterion. The novel algorithm is
capable of generating a Pareto front with a trade-off-based solution resolution and
displays a significant reduction in computation time in comparison to the original
NSGA-II algorithm. The algorithm is illustrated on benchmark scalar case studies and a
fed-batch reactor case study.
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1 INTRODUCTION

To maintain a competitive position in the current worldwide market, companies need to operate
their processes as optimally as possible with respect to different, often conflicting, objectives. These
objectives can include for instance optimality with respect to societal, environmental and economical
aspects. In such case, not just one optimal solution exists and decision makers need to resort to trade-
off (or Pareto-optimal) solutions. The optimisation of a process with respect to different conflicting
objectives is called a multi-objective optimisation problem (MOOP) and the solution of such a
problem is the Pareto set or Pareto front, comprising all equally optimal trade-off solutions.
Computing (an approximation of) this Pareto front is the main goal when solving a MOOP.
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The human decision maker will choose one optimal solution
from the Pareto front as an operating point. It is desirable to
produce a diverse Pareto set in a minimal computing time
(Vallerio et al., 2015). MOOPs are mathematically challenging
problems and are generally solved via the use of dedicated
algorithms. The two major algorithm categories are
scalarisation methods and vectorisation methods (Logist et al.,
2010).

Scalarisation methods employ deterministic algorithms and
translate the MOOP into a set of single objective optimisation
problems (SOOPs) via the use of weight factors (Haimes et al.,
1971; Das and Dennis, 1997, 1998; Messac et al., 2003; Marler and
Arora, 2010; Logist et al., 2012). The SOOPs are then minimised
independently from the other objectives. This renders one non-
dominated solution for each SOOP. Sequentially solving the set of
SOOPs eventually results in the calculation of several solutions
that are expected to be located on the Pareto front (Logist et al.,
2010). The most intuitive scalarisation method is the weighted
sum method (Das and Dennis, 1997). It converts the MOOP into
a SOOP by making a convex combination of the objectives with
the use of weight factors wi. Its main drawbacks are that points in
the non-convex part of a Pareto front cannot be computed and an
even spread of the weights wi does not necessarily produce an
even spread of points on the Pareto front. More advanced
scalarisation methods like normal boundary intersection (Das
and Dennis, 1998) and enhanced normalised normal constraint
(Messac et al., 2003) circumvent these drawbacks. Typically,
deterministic gradient-based algorithms are used for solving
the SOOPs generated by scalarisation methods. The advantage
of these types of methods is that these can handle large numbers
of decision variables and constraints. The major drawback of
deterministic algorithms is that they incline to converge to local
optima. Other drawbacks of some deterministic algorithms are
that they cannot reach non-convex areas of the Pareto front or
that these algorithms generate non-Pareto solutions
(i.e., solutions that are not located on the Pareto front but are
dominated by others) (Logist et al., 2010). Their major advantages
are that they can be easily run computer wise, accompanied with a
relatively short computing time.

Vectorisation methods use stochastic algorithms to solve a
MOOP and tackle the MOOP as a whole (Bhaskar et al., 2000;
Deb et al., 2002; Deb et al., 2005; Reyes-Sierra and Coello, 2006;
Suman and Kumar, 2006; Jain and Deb, 2014). Vectorisation
methods can be easily implemented and do not tend to converge
to local optima, but are mostly unable to deal with complex
constraints. Because all the objectives must be repeatedly
compared, the algorithm can be time consuming when
handling many-objective problems (i.e., multi-objective
problems with four or more objectives). Thus, vectorisation
methods are practically limited to low dimensional search
spaces (Logist et al., 2010). A sub-field of the stochastic
algorithms are the evolutionary algorithms (EA), on which the
overall focus of this article will be. One of the main features of
evolutionary multi-objective optimisation algorithms is that they
are able to simultaneously generate multiple Pareto-optimal
solutions (i.e solutions located on the Pareto front). This
makes them an excellent choice to solve multi-objective

optimisation problems, especially if the decision maker is
interested in a diverse set of solutions. Additionally, EAs have
no need for derivative information which makes them suitable for
black box optimisation (Munoz Lopez et al., 2018; Yuen et al.,
2018).

Early evolutionary algorithms were lacking elitism and had a
high computational complexity. Elitism allows the algorithm to
keep the best solutions of the previous iteration unchanged in the
current one, which significantly increases the convergence speed
of the algorithm. In order to maintain a decent spread in
solutions, the user had to define a sharing parameter.
However, the overall efficiency of the algorithm was highly
dependent on the value of this sharing parameter. The lack of
elitism of the first evolutionary algorithms prevented a fast
convergence to the Pareto front. More contemporary
evolutionary algorithms like non-dominated sorting genetic
algorithm II (NSGA-II) resolved the shortcomings of the early
algorithms (Deb et al., 2002). Non-dominated sorting genetic
algorithm III (NSGA-III) is based on the framework of NSGA-II
but was especially developed to handle many-objective problems
(Deb and Jain, 2014). As in this article no many-objective
problems will be discussed, the NSGA-III algorithm will not
be further considered. Although both NSGA-II and NSGA-III
were a substantial step in the right direction, numerous
improvements can still be made.

The NSGA-II algorithm has already been subjected to
numerous improvements or adaptions tailored for specific
problems. These include, i.a., hybridising the NSGA-II
algorithm with a gradient-based descent direction search to
improve convergence, as presented by Yu et al., (2011) or
introducing chaotic map models to improve the distribution of
the initial random parent population, as presented by Liu et al.,
(2017). Controlled-NSGA-II, on the other hand, was developed as
an answer on the potential over-emphasizing of NSGA-II on
elitist solution, and was proposed by Deb and Goel (2001).

The overall goal of this article is therefore to point out some
additional shortcomings of the widely popular NSGA-II
algorithm and to propose solutions for these shortcomings by
presenting a novel algorithm. The emphasis will be on two
aspects: 1) the solution density in high and low trade-off
Pareto areas, and 2) the introduction of a novel and problem-
relevant stopping criterion.

When the decision maker switches between Pareto-optimal
solutions, a trade-off will occur: the new Pareto-optimal solution
will have gained in certain objectives and will have become less
favourable with regard to others compared to the previously
selected Pareto-optimal solution. Solutions located in high trade-
off regions of the Pareto front display a significant trade-off
amongst each other, i.e., switching between these solutions results
in significant changes in the objective function values. These high
trade-off solutions are of bigger interest to the decision maker
than the low trade-off solutions, which are located in the low
trade-off regions of the Pareto front (Mattson et al., 2004).
Adapting the solutions’ resolution on the Pareto front, based
on the trade-off, would result in less cluttered Pareto front, which
in turn is more informative for the decision makers as it only
displays solutions of interest. The decision makers can often
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quantify the trade-offs they deem to be significant for each objective
functionwithout needing to have prior knowledge on the shape of the
Pareto front. Especially when the optimisation is considered of a
process already operating in a non-optimal condition. In practise,
changing theworking point of a process often also introduces an extra
cost as machinery might have to adapted, more full-time equivalents
will required, etc. This knowledge often enables the decision makers
to be able to quantify which minimum trade-off is required to make
these changes worthwhile. For instance, when optimising the overall
profit of a process and the current profit equals €100 per unit
produced, a predicted profit gain of €1 will probably not trigger
the decision makers to change the process accordingly, whereas a
predicted profit gain of €10 probably would, resulting in a minimally
required trade-off of 10.00% for that particular objective.

The second aspect this article will focus on, is improving the
stopping criterion that is used. Most currently available genetic
algorithms, NSGA-II included, employ an arbitrarily chosen
default stopping criterion which has little relevance to the main
goal of the multi-objective optimisation, i.e., generating Pareto-
optimal solutions. The stopping criterion currently employed in
NSGA-II consists of reaching a pre-defined number of iterations.
As it is difficult for decision makers to assess upfront how many
iterations will be needed to obtain a satisfactory Pareto front, a
cautious stance is often assumed which, more often than not,
results in the considerable over-estimation of the amount of
iterations that are required. Especially for bigger optimisation
problems, considering the optimisation of complex (bio-)
chemical processes, and optimisation problems that are linked
with process simulations, it is of the utmost importance that the
amount of iterations that are required are kept to minimum to
avoid the unnecessary loss of (computational) time. Genetic
algorithms especially are extremely well-suited for optimising
complex black-box problems. Several optimisation toolboxes
already exploit this by providing decision makers with a suite of
(adapted) genetic optimisation algorithms and an easy linkage
between the optimisation platform and the simulation platform.
Examples include the work by Ernst et al., (2017) and the in-house
developed optimisation toolbox by Munoz Lopez et al., (2018).

The remainder of this article is structured as follows. Firstly,
the mathematical formulation of a multi-objective optimisation
problem is presented. Subsequently, the concept of evolutionary
algorithms is introduced, followed by an in-depth discussion of
NSGA-II, also addressing its major shortcomings. Next, the novel
tDOM-NSGA-II is presented. Both algorithms will be applied to
five scalar case studies (four bi-objective optimisation problems
and one three-objective problems) and one dynamic benchmark
case study, the Williams-Otto reactor (Williams and Otto, 1960).
The obtained results are examined and an overall discussion is
presented. To conclude, the main findings and contributions are
summarised and perspectives for future work are presented.

2 MULTI-OBJECTIVE OPTIMISATION
PROBLEMS

The following multi-objective optimisation problem formulation
is used throughout this article (Das and Dennis, 1997):

min
x ∈ C

F(x) � {f1(x) . . . fM(x)} (1)

with:

C � {x : h(x) � 0; g(x)≤ 0; a≤ x ≤ b} (2)

In Eq. 1 fi : Rn1R is the ith objective function and x ∈ Rn

represents the vector of optimisation variables. The set of
constraints that have to be satisfied is denoted by C in Eq. 2,
with h : Rn1Rne the equality constraints, g : Rn1Rni the
inequality constraints and a and b being the respective lower
and upper boundaries of the optimisation variables. Only the
values of the optimisation variables that are part of C will provide
a feasible solution of the optimisation problem. M stands for the
number of objectives, n is the number of optimisation variables,
ne is the number of equality constraints and ni is the number of
inequality constraints (Das and Dennis, 1997).

A solution x* of the MOOP is Pareto optimal or non-
dominated if there exists no other solution x for which
F(x)≤ F(x*), and additionally for this solution x at least one
of the objectives fk(x)< fk(x*) with k ∈ {1 . . .M}. If there exists
such a solution x, then x* is not Pareto optimal but dominated by
x. The Pareto front of an optimisation problem is the set of Pareto
optimal solutions (Das and Dennis, 1997).

3 EVOLUTIONARY ALGORITHMS

3.1 General Outline
An evolutionary algorithm (EA) is a population-based
optimisation method which draws its basic philosophy from
biological evolution. Mechanisms such as reproduction,
selection of the fittest, mutation, etc. that are commonly linked
to biological reproduction and evolution, are also found in an
evolutionary algorithm (Back, 1996).

The first step of an EA consists of generating an initial random
set of population members. In the context of solving a MOOP,
these populationmembers are feasible solutions of theMOOP. In a
next step, the EA enters its main loop. The main loop of an EA
starts with the generation of new offspring population members.
These offspring population members are obtained by mutating
and/or recombining (via a crossover) the parent population
members of the previous generation of the main loop. In elitist
algorithms, like NSGA-II, the offspring set of population members
and the set of parent population members are merged into a
combined set of populationmembers. The fitness of the population
members of the combined set is evaluated and these are
subsequently sorted accordingly. The fitness of population
members is determined by their level of convergence to the
Pareto front and their contribution to the overall solution
diversity. The level of convergence of a solution is assessed by
sorting the whole population into their corresponding non-
dominated fronts. The first non-dominated front contains all
the population members that do not dominate each other but
dominate other population members. The population members of
the second non-dominated front are dominated by at least one
population members of the first front, do not dominate each other,
but dominate the population members of the third front and so on.
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Solutions’ contributions to the overall solution diversity is assessed
by quantifying the average distance between consecutive solutions
of the same non-dominated front. The last step of the main loop of
an EA comprises of the selection of the fittest population members.
The other population members are discarded. The acquired set of
fittest population members forms the parent population members
set for the next generation of the main loop. This process is
repeated until a termination parameter is satisfied. Because after
each generation only the fittest population members are retained,
the population members will eventually converge to the most
optimal scenario, i.e., the Pareto front (Knowles and Corne,
1999; Deb et al., 2002). This process is graphically displayed in
Figure 1.

The solutions displayed in Figure 1 as the solutions of the first
iteration, are the randomly generated solutions within the feasible
space. Via subsequent selection, mutation and crossover actions
during the following generations, the generated solutions move
closer to the Pareto front. The solutions of the final nth iteration
are located in the close proximity of the Pareto front. Non-convex
areas of the Pareto front can be reached as well as convex areas.
Additionally, while scalarisation methods tend to converge to
local optima, evolutionary algorithms generally produce global
optima of the concerned MOOP.

The high computational complexity of the early evolutionary
algorithms was a consequence of the used non-dominated sorting
approach. Computational complexities reached as high as
O(MN3) (with M the number of objectives and N the size of
the solution-population). These computational complexities were
reduced in newer algorithms via the use of less complex sorting
approaches. Other improvements seen in these algorithms, are
their use of elitism and crowded comparison. The sharing
parameter of the early algorithms was replaced by the
crowded comparison approach to keep enough diversity
amongst the solutions in a set (Deb et al., 2002).

Thanks to these three major improvements, new algorithms
like NSGA-II and NSGA-III have grown very popular and are
commonly used. Nonetheless, further improvements can still be

made. For instance, it would be desirable to create a Pareto front
with a trade-off based adaptable solution resolution. The Pareto
front can namely be subdivided in areas containing high trade-off
solutions and areas containing low trade-off solutions. High
trade-off solutions are of bigger interest for the decision maker
and are located on steep segments of the Pareto front while
solutions with a low trade-off are located on the flat sections
(Hashem et al., 2017).

In the following, the trade-offs of generated solutions will be
investigated more deeply and the question on how to eventually
obtain a Pareto front with an adaptive resolution will be
addressed. Firstly, the NSGA-II algorithm is thoroughly
discussed.

3.2 NSGA-II
3.2.1 Algorithm Outline
The flow sheet of the NSGA-II algorithm is depicted in Figure 2.
NSGA-II is a multi-objective evolutionary algorithm developed as
an answer to the shortcomings of the early EAs. It uses non-
dominated sorting and sharing, like all other EAs, but it was one
of the first EAs to employ elitism and crowded comparison.
NSGA-II uses a fast non-dominated sorting mechanism which
allowed the reduction of the computational complexity of the
algorithm to O(MN2) (Deb et al., 2002).

During the first iteration, N initial random solutions are
generated and are added to the parent set P0. The initial
random parent solutions are used to generate the offspring set
Q1 (Q1 � Pc,1∪Pm,1 and |Q1| � N). Offspring solutions are
achieved via recombinations and mutations of the solutions in
the parent set (Deb et al., 2002).

Considering the t-th generation of the algorithm, the elitist
step of the NSGA-II algorithm consists of merging the parent set
Pt−1 and the corresponding offspring set Qt into a combined
population Rt, with |Rt | � 2N . This enables the algorithm to
retain the fittest solutions of the previous generation
unchanged in the current one. All the 2N solutions of the
combined population are subsequently sorted in their
corresponding non-dominated fronts and their crowding
distances are calculated. Then, based on the rank of the non-
dominated front to which they belong and their crowding
distance, only the best N solutions are retained. Solutions that
are located in the first few non-dominated fronts and have a high
crowding distance are favoured. These solutions form the parent
set Pt, i.e., the parent set of the (t + 1)-th iteration. The iteration
process is repeated until a maximum number of iterations is
reached (Deb et al., 2002). Note that during the solution selection
process, the fact whether or not solutions are of interest to the
decision maker is not taken into account. Moreover, there is no
possibility for the decision maker to provide any prior knowledge
or preferences to the algorithm.

To solve a MOOP using NSGA-II, the number of iterations,
the size of the solution population and the conventional EA-
parameters, like the crossover probability and mutation
probability, must be pre-defined by the user. For more details
on the different steps of the algorithm, the interested reader is
referred to (Deb et al., 2002; Deb et al., 2005; Jain and Deb, 2014;
Valadi and Siarry, 2014; Liagkouras and Metaxiotis, 2017).

FIGURE 1 | General representation of a solving method for multi-
objective optimisation problems based on an evolutionary algorithm. Both
objective functions are minimised.
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The stopping criterion used in NSGA-II is a default stopping
criterion which is commonly used in other evolutionary
algorithms as well: when a pre-defined number of iterations
tmax are reached, the algorithm is stopped. However, this
stopping criterion has no relevance to the optimisation
problem itself, while it does not take the quality of the
solutions into account. Under-estimating the number of
iterations required will result in a poor solution convergence,
whereas an over-estimation will result in wasted computational
time. A problem-relevant stopping criterion can be used to assess

the performance of the optimisation algorithm and save
computational time. Marti et al., (2016) mention that in case
of evolutionary optimisation algorithms, a global stopping
criterion that assesses the algorithm’ performance can become
as complicated as the optimisation problem itself. Additionally,
they point out that although the need for a problem-relevant
stopping criterion has been previously frequently suggested as a
research need, it has not received much attention in research
concerned with the development of evolutionary algorithms.
Most evolutionary algorithms bypass the need of developing a
problem-relevant stopping criterion by resorting to the already
mentioned default, but problem-irrelevant, stopping criterion.
Marti et al., (2016) have introduced a novel global stopping
criterion for evolutionary optimisation algorithms, which is
based on information gathering techniques. When developing
the stopping criterion, Marti et al., (2016) especially focussed on
many-objective optimisation problems. A simpler, yet still
problem-relevant stopping criterion will be presented in
section 3.3.2, with a focus on low-dimensional optimisation
problems.

3.2.2 Shortcomings
Based on the discussions above, two major shortcomings of the
NSGA-II algorithm can be identified:

1. The solution selection process does not take into account if
solutions are of interest to the decision maker. The latter has,
additionally, no possibility to provide the algorithm with prior
knowledge and/or solution preferences.

2. As a result of a problem-irrelevant stopping criterion (reaching
a pre-defined number of iterations), a large part of the
computational time will be uselessly spent on the
continuation of the iteration process, even once all solutions
have converged to the Pareto front.

Considering the shortcomings mentioned above, the main
objective of this article is to present a novel genetic algorithm that
is capable to assess the added value of solutions to the decision
maker. This will done based on their mutual trade-off.
Additionally, the novel algorithm will be equipped with a
problem-relevant stopping criterion to avoid the unnecessary
continuation of the optimisation process once all solutions have
converged sufficiently.

3.3 tDOM-NSGA-II: Exploiting Trade-Off to
Improve Efficiency
The tDOM-NSGA-II algorithm is developed to remedy the major
shortcomings of the constrained NSGA-II algorithm. The main
focus during the development of the tDOM-NSGA-II algorithm
was to introduce a problem-relevant stopping criterion in order
to avoid unnecessary excess iterations. Due to their design
features, genetic algorithms are widely used in the context of
complex black-box optimisation problems as, amongst others,
they do not require derivative information. These black-box
optimisation problems are often coupled with process
simulators to generate solutions (i.e., simulate the process’s

FIGURE 2 | Flow sheet of the NSGA-II algorithm.
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response on the proposed controls and settings in order to calculate
the objective costs). In this scenario, the generation of solutions
becomes the computationally expensive step, rather than the
optimisation itself. Reducing the number of solutions that have
to be generated becomes the main focus in the context of these
complex optimisation problems. Therefore, during the
development of the tDOM-NSGA-II, the main focus was on
developing a genetic algorithm (using the original NSGA-II
structure) that can assess if solutions have converged sufficiently
and the optimisation process can be stopped, so that excess
iterations are avoided. The fact that the proposed stopping
criterion requires more solution comparison per iteration, is
point not considered as an issue, as the anticipated significant
decrease in iterations required would vastly outweigh the added
computational cost due to the extra comparison required.

Additionally, the tDOM-algorithm is capable to distinguish
between solutions based on their trade-off. This is achieved by the
introduction of regions of practical insignificant trade-off (PIT-
regions). If a solution is located in the PIT-region of another
solution, both solutions are not considered to be significantly
different by the decision maker. The crowdedness of the PIT-
region of a solution is thus measure for its trade-off. The less
crowded the PIT-region of a solution is, the higher its trade-off.
The density of the PIT-region of a solution is accordingly
introduced as a second crowding distance, making it an
additional selection parameter.

The problem-relevant stopping criterion is based on the same
concept by extrapolating it to the entire solution population: if
two subsequent solution populations are entirely located in each
others PIT-regions, they are not considered to be significantly
different from one another by the decision maker. If this is the
case, no significantly different solutions have been generated. As
the framework of the NSGA-II algorithm is used as the backbone
structure of the tDOM-NSGA-II algorithm, elitism is ensured.
This implies that with evolving iterations, selected solutions are at
least equally well converged and diverse as the solutions selected
during the previous iteration. Therefore, once the algorithm starts
repeatedly generating solutions that display little differences with
respect to the previous solution generation, it can be concluded
that the solutions have converged to the Pareto front. The concept
of PIT-regions, or t-domination, is used in the context of the
tDOM-NSGA-II algorithm to quantify the point when the
difference between two subsequent solution generations
become negligibly small and the algorithm can be terminated.

Hashem et al., (2017) already presented the idea of using the
trade-off of solutions as a stopping criterion. In their divide and
conquer scheme for deterministic algorithms, the exploration of a
certain area of the Pareto front is ceased if the generated solution
no longer displays the required trade-off or distribution. The
tDOM-algorithm, which is presented in the remainder of this
section, adapts the concept stated above to genetic algorithms.

In the remainder of this section, the novel tDOM-algorithm is
presented. Firstly, the concepts PIT-region and t-domination are
introduced. Subsequently, the trade-off function is presented
which enables the algorithm to select solutions based on their
trade-off and generate a trade-off based algorithm termination
parameter.

3.3.1 PIT-Region: Trade-Off as a Second Crowding
Distance
The trade-off Δt and distribution Δr of a solution p can be seen as
properties imposed on the spatial distribution of other solutions
around solution p, and show therefore great resemblances to the
crowding distance of a solution, as used in NSGA-II. The crowding
distance of a solution is defined as the average length of the edges of
the cuboid formed around the concerned solution, with its
neighbouring solutions as vertices. Because the desired solution
trade-off Δt and distribution Δr are generally different for each
objective function, the spatial form that they describe will often be
much more complicated than a cuboid. Mattson et al., (2004)
presented in this respect the region of practically insignificant
trade-off, or the PIT-region. The PIT-region of a solution is
depicted in Figure 3 for a bi-objective optimisation problem.
Solutions that are located in the PIT-region of a solution p (red
solutions) have no significant trade-off in regard to solution p and
also to do not contribute to the overall solution diversity. They
render no added value to the solution population and can therefore
be discarded. The solutions located outside of the PIT-region of the
concerned solution p are kept in population (green solutions).

The PIT-region, as presented by Mattson et al., (2004) has a
cross-like shape in case of a bi-objective problem. The PIT-region
presented by Mattson et al., (2004) only consisted out of the
shaded sections. Because in the presented trade-off function, the
trade-off and distribution of solutions will be determined one
non-dominated front at a time, the PIT-region can be simplified
to a complete cross, built up out of rectangles circumventing the
concerned solutions. Solutions that are located in sections 1) or 2)
of the PIT-region will be part of a lower or higher non-dominated
front respectively. As already mentioned, note that the
dimensions of the PIT-region, defined by Δt and Δr, are not
necessarily the same for each objective.

Mattson et al., (2004) used the PIT-region to reduce the size of
a initially large solution population to eventually obtain two
population sets: one set P1 that contains all the discarded

FIGURE 3 |Graphical representation of the PIT-region of a solution p for
an optimisation problem with normalised objectives F ′1 and F ′2 [adapted from
Mattson et al., (2004)].
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solutions and another set P2 consisting out of the selected
solutions that meet the required trade-off Δt and distribution
Δr. For this purpose, all the solutions are sorted in ascending
order according to the objectives. Subsequently the solutions are
visited in ascending order and the PIT-region is constructed
around the concerned solution. While the visited solution is
allocated to the population set P2, all the solutions that are
located in its PIT-region are discarded and are allocated to
population set P1. The discarded solutions are not visited and
their PIT-region is therefore not constructed.

The main disadvantage of such an a posteriori selection step
however is that this method requires a large number of solutions,
of which a substantial fraction is discarded at the end of the
selection process. Removing those solutions from the population
set simultaneously implies that a large amount of computing time
is used to generate useless solutions. To avoid this, the trade-off of
a solution is introduced as an inherent solution property (like its
objective cost, optimisation variables, etc.) in the tDOM-
algorithm, based on which it can be sorted. The tDOM-
algorithm constructs the PIT-region of all the generated
solutions, one non-dominated front at a time, and assess the
solution density of each PIT-region. The number of solutions

located in the PIT-region of a concerned solution p is defined as
its trade-off counter. The lower the value of this trade-off counter,
the higher the trade-off of the concerned solution p is.
Accordingly, during the sorting and selection step of the
tDOM-algorithm, the solutions are additionally sorted in
ascending order based on their trade-off counter. This results
in emphasising solutions with a sparse PIT-region or with a high
trade-off, a high crowding distance and a low non-dominated
rank. After each iteration step of the tDOM-algorithm, only theN
fittest solutions are selected for the parent set of the next iteration,
eventually resulting in a solution population which largely consist
out of diverse, non-dominated solutions with high trade-offs.

3.3.2 t-Domination: Trade-off as a Stopping Criterion
In the previous section, the concept of the PIT-region and how
the trade-off of a solution can be used as a second crowding
distance, was introduced. Up until this point, the minimal
required trade-off Δt and distribution Δr have only been used
as an additional crowding distance or diversification measure.
The trade-off of solutions can, however, also be used as a stopping
criterion. In order to do so, two additional inherent properties of
the solution must be considered. In a first instance, the algorithm

FIGURE 4 | Graphical representation of non-domination (A), t-domination (B) and t-domination as a stopping criterion (C) in case of a bi-objective problem.
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must be able to determine if a concerned solution is generated in
the current iteration or in the previous one. The second additional
inherent solution property is used to determine if the tDOM-
algorithm can be stopped. To explain how the trade-off of a
solution is used as stopping criterion, the concept of t-domination
is introduced in the remainder of this section. For the ease of
formulation, solutions that are generated via a tDOM-algorithm,
will be further denoted as tDOM-solutions.

The concept of non-domination or Pareto-optimality has been
mathematically introduced in Section 2. As a reminder: a
solution x is non-dominated or Pareto-optimal if there exists
no solution xp for which for all i ∈ {1, . . . ,M} : fi(xp)≤ fi(x) and
there exists at least one i ∈ {1, . . . ,M} : fi(xp)< fi(x) with
fi, i ∈ {1, . . . ,M} the M objective function of the concerned
optimisation problem. Figure 4A graphically represents the
concept of non-domination in case of a bi-objective problem.
Based on the above non-domination definition, solution p1 is
dominated by solution q4. q4 is therefore a non-dominated
solution. t-domination however also takes the PIT-region of
the solution into account. A solution z is t-non-dominated if
there exists no solution zp for which ∀i ∈ {1, . . . ,M} :
fi(zp)≤ fi(z) and ∃i ∈ {1, . . . ,M} : fi(zp)< fi(z) and
zp ∉ PIT(z), with fi, i ∈ {1, . . . ,M} the M objective function of
the concerned optimisation problem. t-domination is graphically
represented in Figure 4B in case of a bi-objective problem.
Although q2 dominates p1, it does not t-dominate p1 while it
is located in the PIT-region of p1. q1 on the other hand does
t-dominate p1, and is therefore t-non-dominated.

In section 3.3.1, it was mentioned that if a solution q is located
in the PIT-region of another solution p, there is no significant
difference between the two solutions. Because solution q does not
display the required trade-off Δt or distribution Δr in comparison
to solution p, it does not contribute to the diversification of the
solution population, nor does it represent a significantly different
process design than solution p. There is therefore no need of
keeping q in the solution population and it can be discarded or
downgraded.

If the concept of t-domination is extended to the whole
solution population, it can be turned into a stopping criterion:
if all the solutions of two subsequent solution populations are
located in each others PIT-regions, there is no significant
difference between the two populations and therefore the
algorithm, or iteration process, can be stopped. This is
graphically represented in Figure 4C. Because all the solutions
of the (t − 1)-th iteration are located in the PIT-regions of the
solutions of the t-th generation, the algorithm will be stopped
because no new t-non-dominated solutions have been created.
The black solutions of the t-th generation represent thus the final
solution population.

The two concepts presented above are incorporated in the
tDOM-algorithm in the form of a trade-off function, which is
introduced in the next section.

3.3.3 Trade-Off Function
The presented trade-off function has a dual function. Mainly it is
used to enable the tDOM-algorithm to sort and select solutions
based on their trade-off. Just like solutions with a low crowding

distance are disfavoured and downgraded during the selection
procedure, solutions with a crowded PIT-region are disfavoured
as well. The main functionality of the trade-off function is to
quantify the amount of solutions in the PIT-region of a concerned
solution. The introduced trade-off counter of a solution amounts
to the number of solutions that are located in the PIT-region of
the concerned solution. The more crowded the PIT-region of a
solution is, the higher its trade-off counter will be. As a result of
the cross-like shape of the PIT-region, solutions that are located
in high trade-off areas of the Pareto front, i.e., steep segments and
knees, will have a sparsely crowded PIT-region and their trade-off
counter will therefore amount to a low value. Solutions located in
the flat, low trade-off areas of the Pareto front on the other hand,
will have a densely crowded PIT-region and their trade-off
counter will amount to a high value.

Additionally the trade-off function is used to generate a
termination parameter. It is opted to make this parameter an
inherent solutions property, in the form of a logical value. If the
termination parameters of all the solutions of a certain population
are set to true, the algorithm can be stopped. In order to
determine the logical value of this termination parameter, the
solutions of two subsequent population must be compared with
one another. Because this is a computational expensive step, this
is only done when F 1 ≥N or fraction of Pareto-optimal solutions
(FPOS) ≥ 1. Because the trade-off function is executed before the
N fittest solutions are selected, it is possible that the first non-
dominated front contains more thanN non-dominated solutions.
The pseudo code of the trade-off function is presented in
Algorithm 1.
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The trade-off function requires the current solution
population popt , which is sorted in its non-dominated fronts
F , the solution population generated during the previous
iteration popt−1, the desired trade-off Δt and distribution Δr,
pre-defined by the decision maker, and the FPOS value of the
current solution population. For the sake of clarity it is assumed
that Δt and Δr have the same value for all the M objective
functions. In a first instance the trade-off counters of all the
solutions in popt are reset to zero and their termination
parameters are set to false.

If FPOS ≥ 1, the current solution population popt and the
solution population of the previous iteration are merged into
the total solution population poptot . poptot is subsequently
sorted into its non-dominated fronts F tot . This step is only
done if FPOS ≥ 1, because the non-dominated sorting step of
the obtained poptot solution population will be
computationally expensive, while it contains 3N solutions. If
FPOS < 1, popt and F are redefined as poptot and F tot

respectively for the sake of conformity. While Δt and Δr are
disclosed as percentages, the objective costs of all the solutions
in poptot are normalised, rendering the normalised solution
population poptot,n.

The trade-off counter of the solutions is determined at a rate
of one non-dominated front at a time. A new solution
population popi is constructed for the ith non-dominated
front, which contains all the solutions that are allocated to
this front. The objective costs of the solutions in popi are
clustered in the M × ∣∣∣∣popi∣∣∣∣ objective costs matrix, Costs. One
column of Costs contains all the objective costs of one solution
and can be considered as the column vector in the objective
space between the objective space origin and the solution. The
trade-off function continues by sorting the column vectors of
Costs in ascending order according to the concerned objective of
the optimisation problem. Subsequently, for each k-th column
vector of the sorted objective cost matrix Costs, which is part of
the current solution population popt , it is determined if the
neighbouring objective costs, both in ascending en descending
order according to the concerned objective, are located in its
PIT-region. If this is the case, and the concerned neighbouring
solutions is also part of the current solution population popt , the
trade-off counter of the solution corresponding with the
objective costs in the k-th column vector, is incremented by
1. If however the concerned neighbouring solution is part of
popt−1 (which can only occur if FPOS ≥ 1), the termination
parameter of the solution corresponding with the objective costs
in the kth column vector is set to true.

Subsequently in the tDOM-algorithm, the trade-off counter is
used as an additional sorting parameter. Ahead of sorting the
solutions of the combined solution set Rt according to their
crowding distance and non-dominated rank, they are sorted
according to their trade-off counter in ascending order (see
3.3.5). This result in emphasising solutions with a sparsely
crowded PIT-region. Because the dimension of the PIT-region of
a solution is not only dependent on a desired objective trade-off but
also on a minimal solution diversity requirement, solution diversity
will be more emphasised in the tDOM-algorithm.

3.3.4 Applicability of the t-domination Concept
In this paper, the concept of t-domination is only applied to
the NSGA-II algorithm. This is done because the NSGA-II
algorithm is one of the most widely used population-based
optimisation methods. Note that this is also applicable to the
NSGA-III algorithm which is derived from the NSGA-II
algorithm. Other population-based optimisation methods,
like Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler
and Thiele, 1999), Interactive Adaptive-Weight Genetic
Algorithm (IAWGA) (Lin and Gen, 2009), and Pareto-
Archived Evolutionary Strategy (PAES) (Knowles and
Corne, 1999), can be equipped with the presented
t-domination concept as a stopping criterion and/or
selection parameter.

3.3.5 Algorithm Outline
The tDOM-algorithm requires, just like the constrained
NSGA-II algorithm, the objective functions (Obj), the
constraints (Constr), the desired population size N, the
maximum number of iterations tmax and the genetic
operation parameters pm, μ, σ, and pc. Additionally the
tDOM-algorithm requires the trade-off parameter Δt and
the distribution parameter Δr. The pseudo code of the
tDOM-algorithm is presented in Algorithm 2.

The initialisation step consists of the generation of the random
initial solution population. In order to guarantee that the initial
population already displays an adequate solution diversity, the
anchor points are included in the initial population. These are the
individual minimisers of the concerned objective functions,
which are determined upfront. The N −M remaining
solutions are randomly generated within the feasible space
which is defined by the constraint functions.

The main loop starts with the generation of new offspring
solutions via a mutation and crossover step of the solution
population of the previous iteration. Just like in NSGA-II, the
elitist step of the tDOM-NSGA-II algorithm is accomplished by
merging the set of offspring solutions with the solution
population of the previous iteration. The obtained combined
solution set Rit is sorted into its non-dominated fronts F it , after
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which the crowding distance of all the solutions of Rit is
determined. Up until this point, the tDOM-NSGA-II
algorithm is the complete analogue of the NSGA-II algorithm
(the anchor points not taken into account).

The NSGA-II algorithm would at this point continue by
sorting the solutions of Rit according to their crowding
distance and non-dominated front. The tDOM-NSGA-II
algorithm however utilises three fitness parameters: the non-
dominated rank, the crowding distance, and the solution trade-
off. The trade-off of a solution, or more specifically its trade-off
counter, is determined with the trade-off function (see 3.3.3).
This algorithm step is preceded with the calculation of the FPOS
value of the Rit solution population. If FPOS < 1, then the trade-
off function is only used to determine the trade-off counter of the
solutions of Rit . All the termination parameters of the solutions of
Rit are set to false. If however FPOS ≥ 1, the trade-off function
is additionally used to determine the termination parameters of
the solutions in Rit (see 3.3.3).

In order to sort the solutions of Rit according their fitness,
tDOM-NSGA-II uses a tDOM-sort function. Rit can be
considered as an array containing solutions in a certain
sequence. In a first instance, the solutions are sorted in
ascending order according to their trade-off counter. Thus
solutions with a high trade-off (i.e., solutions with a sparsely
crowded PIT-region) are sorted in the highest positions of the
population array. Subsequently the obtained array is sorted in
descending order according to the crowding distance and finally
in ascending order according to the non-dominated rank.
Solutions with a low non-dominated rank and a high trade-off
and crowding distance are sorted in the top positions of the
population array. Selecting the N fittest solutions is now
simplified to selecting the first N solutions of the obtained
population array.

The last step of the tDOM-NSGA-II main loop consists of
updating the non-dominated fronts of the generated population
pop. If FPOS � 1 and all the termination parameters of the
solutions in pop are set to true, the main loop is terminated.

4 BENCHMARK CASE STUDIES AND
METHODS

To test the performance of the developed algorithm, both NSGA-
II and tDOM-NSGA-II have been applied to five benchmark case
studies have been: four scalar bi-objective case studies and one
scalar three-objective case study. The Williams-Otto reactor case
study has been implemented to illustrate the use of the algorithm
for the optimisation of dynamic chemical processes. These case
studies are presented below. MATLAB R2018b is used as the
optimisation platform and is run on a 64-bit Windows 10 system
with an Intel Core i5-8500 CPU@ 3.00 GHz processor and 16 GB
of RAM installed.

4.1 Bi-objective Case Studies
The bi-objective case studies are represented in this section with
their corresponding mathematical definitions.

4.1.1 Numerical Bi-objective Problem
The numerical bi-objective problem (BIOBJ) is based on a
problem defined by Mattson et al., (2004). The problem is
mathematically formulated as follows:

min
z
(F1, F2) (3)

with

Fi � zi, i � 1, 2 (4)

and

(z1 − 10
10

)8

+ (z2 − 5
5

)8

− 1≤ 0 (5)

z1 ∈ [ − 10, 10] (6)

z2 ∈ [ − 10, 10] (7)

The Pareto front has a sharp curve in the origin area of the
objective space and a long and flat regions for higher objective
values. The sharp curve represents a high trade-off region while
the flat areas represent low trade-off regions.

4.1.2 DO2DK-Problem
The DO2DK-problem is based on a problem described by
Branke et al., (2004). It is developed to test (genetic)
algorithms on their ability to generate a Pareto front that has
a certain skewness and a number of high trade-off knees. The
skewness of the DO2DK-problem can be altered via the variable
s. The amount of knees can be altered via the variable k. The
variable n represents the number of decision variables. The
variables s, n, and k are the so-called additional DO2DK
variables. The DO2DK-problem is mathematically formulated
as follows:

min
z
(F1, F2) (8)

with

F1(z) � g(z)r(z1)sin(π z1
2s+1

+ (1 + 2s − 1
2s+2

π) + 1) (9)

F2(z) � g(z)r(z1)(cos(π z12 + π) + 1) (10)

and

g(z) � 1 + 9
n − 1

∑
i�2

n

zi (12)

r(z1) � 5 + 10(z1 − 0.5)2 + 1
k
cos(2kπz1)2s/2 (13)

zi ∈ [0, 1], i � 1, 2, . . . , n (14)

The DO2DK variables of the benchmark Pareto front, are set
as follows: s � 1.00, n � 300, k � 4. The Pareto front indeed shows
four knees or high trade-off areas.

4.1.3 CONSTR-Problem
The CONSTR-problem is provided by Deb et al., (2002). It is
mathematically formulated as follows:

min
z
(F1, F2) (14)
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with

F1(z) � z1 (15)

F2(z) � (1 + z2)/z1 (16)

subjected to

g1(z) � z2 + 9z1 ≥ 6 (17)

g2(z) � −z2 + 9z1 ≥ 1 (18)

and

z1 ∈ [0.1, 1.0] (19)

z2 ∈ [0, 5] (20)

The Pareto front of the CONSTR-problem is characterised by
a steep section, preceded by a sharp knee and a flat region.
Although this problem is comparable to the numerical bi-
objective problem, the CONSTR-problem is also included in
the case studies because it was observed that the constrained
NSGA-II algorithm delivers a better representations of the Pareto
front of this problem than that of the numerical bi-objective
problem. To be able to compare the functionalities of the
constrained NSGA-II algorithm with the novel tDOM-NSGA-
II algorithm, it is important to dispose of case studies for which
the initial algorithms also already show good convergence and
solution diversity.

4.1.4 TNK-Problem
The TNK-problem is provided by Deb et al., (2002) and is based
on a problem formulated by Tanaka et al., (1995). It is
mathematically formulated as follows:

min
z
(F1, F2) (21)

with

Fj � zj, j � 1, 2 (22)

subjected to

g1(z) � −z21 − z22 + 1 + 0.1 cos(16 arctan(z1/z2)) ≤ 0 (23)

g2(z) � (z2 − 0.5)2 + (z1 − 0.5)2 ≤ 0.5 (24)

and

zj ∈ [0, π], j � 1, 2 (25)

The Pareto front contains several discontinuities, which
represent additional difficulties for the genetic algorithms.

4.2 Three-Objective Case Study
The selected numerical three-objective case study is the three-
objective variant of the DTLZ2-problem, described by Deb et al.,
(2005). This is a scalable case study and can be adjusted to contain
a desired amount of objective functions. In the context of a three-
objective case study, the case study is scaled to the DTLZ2.3-
problem, containing three objective functions. The DTLZ2.3-
problem is mathematically formulated as follows (Deb et al.,
2005):

min
z
(F1, F2, F3) (26)

with

F1 � (1 + g(z))cos(z1π2)cos(z2π2) (27)

F2 � (1 + g(z))cos(z1π2)sin(z2π2) (28)

F3 � (1 + g(z))sin(z1π2) (29)

and

g(z) � ∑12
i�3

(zi − 0.5)2 (30)

zi ∈ [0, 1], ∀i ∈ {1, 2, . . . , 12} (31)

The DTLZ2.3-problem consists out of 3 objectives Fi and 12
decision variables zj. Pareto-optimal solutions are located on the
sphere segment with a radius of 1 and as centre the origin of the
objective space.

4.3 Bi-Objective Williams-Otto Reactor
Case Study
As a relevant chemical case study for the developed algorithm, the
Williams-Otto fed-batch reactor (Williams and Otto, 1960;
Hannemann and Marquardt, 2010; Logist et al., 2012) has
been implemented. In this reactor, two reactants A and B are
converted into two products P and E, and a side-product G, via
the following reaction scheme:

A + B→C (32)

B + C→ P + E (33)

P + C→G (34)

with C an intermediate. The reactant A is the only reactant
initially present in the reactor, whereas B is continuously fed
to the reactor. The heat generated by the exothermic reactions is
removed using a cooling jacket. The reaction dynamics are
described as follows:

dxA
dt

� − xAu1

1000V
− k1η1xAxB (35)

dxB
dt

� (1 − xB)u1

1000V
− k1η1xAxB − k2η2xBxC (36)

dxC
dt

� − xCu1
1000V

+ k7η1xAxB − k3η2xBxC − k6η3xPxC (37)

dxP
dt

� − xPu1

1000V
+ k2η2xBxC − k4η3xPxC (38)

dxE
dt

� − xEu1
1000V

+ k3η2xBxC (39)

dxG
dt

� − xGu1

1000V
+ k5η3xPxC (40)

dT
dt

� (TF − T)u1

1000V
+ k8η1xAxB + k9η2xBxC + k10η3xPxC

− h(T − 1000u2) (41)

dV
dt

� u1
1000

(42)
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with xi the dimensionless reactant and product concentrations, T
the reactor temperature, and V the reactor volume. The initial
conditions are: x0 � {1, 0, 0, 0, 0, 0, 65, 2}. kj, with
j ∈ {1, 2, . . . , 10}, are the pre-exponential reaction constants
(for their numerical values, the reader is referred to
Hannemann and Marquardt (2010)). The heat transfer
coefficient h � 2.43 × 10− 4 and TF is the temperature of the
cooling fluid (i.e., TF � 35 +C). The temperature dependencies
of the three reactions are given by the Arrhenius terms ηm:

η1 � exp( −6666.7
T + 273.15

) (43)

η2 � exp( −8333.3
T + 273.15

) (44)

η3 � exp( −11111.0
T + 273.15

) (45)

The two process variables that can be manipulated for the
process optimisation are the feeding rate u1 of the reactant B in
the reactor, and the scaled temperature u2 of the coolant in the
cooling jacket. Due to safety precautions and structural
constraints, the entire system is constrained as follows:

60≤T(t)≤ 90 (46)

0≤ u1(t)≤ 5.784 (47)

0.02≤ u2(t)≤ 0.1 (48)

V(tf )≤ 5 (49)

The derivatives are calculated using ode15s, aMATLAB integrator.
The goal of the optimisation is to maximise the yield of P and E

at the final process time tf , by manipulating the values of u1 and
u2 whilst observing the system’s constraints:

min
u
(J1, J2) (50)

with

J1 � −xP(tf )V(tf ) (51)

J2 � −xE(tf )V(tf ) (52)

4.4 Performance Parameters
To objectively evaluate and compare the convergence, the
solution diversity and the overall performance of the different

algorithms, the following three performance parameters are used
(Rabiee et al., 2012; Asefi et al., 2014):

Fraction of Pareto-optimal solutions (FPOS): the ratio of the
number of generated non-dominated solutions Nnd to the total
number of generated solutions N (Asefi et al., 2014):

FPOS � Nnd

N
(53)

FPOS is a number between 0 and 1 and the closer to 1, the
higher the overall performance of the algorithm Asefi et al.,
(2014).

Mean ideal distance MID: the mean Euclidean distance
between the generated solutions and the ideal, or Utopia point
c, i.e., the point containing all minima of the individual objective
functions (Rabiee et al., 2012; Asefi et al., 2014):

MID �
∑Nnd

i�1

���������������∑M
j�1

(Fj(i) − Fj(c))2√ 

Nnd
(54)

The smaller theMID value of a certain problem and algorithm,
the higher the convergence of the corresponding generated
Pareto-optimal solutions. In this work a normalized version of
MID with the utopia point at the origin of the objective space is
used (Rabiee et al., 2012).

Spread of non-dominated solutions (SNDS): the standard
deviation of the average Euclidean distance (MID) between the
ideal point c and the generated solutions (Asefi et al., 2014; Rabiee
et al., 2012):

SNDS �

�������������������������∑Nnd

i�1
(MID − ∑M

j�1
(Fj(i) − Fj(c)))2

Nnd − 1

√√√
(55)

with Nnd the number of non-dominated solutions and Fj the
jth objective with j � 1, ..,M.

5 RESULTS AND DISCUSSION

Both the constrained NSGA-II algorithm as well as the newly
developed tDOM-NSGA-II algorithm are applied to the scalar
benchmark case studies and the dynamic optimisation problem.
The obtained Pareto fronts, as well as the evolution and final
values of the performance parameters, will be presented and
discussed in this section. To be able to handle non-linearly
constrained optimisation problems, the used source codes of
the NSGA-II algorithm, provided by Kalami Heris (2015),
have been modified accordingly (hereafter referred to as
constr. NSGA-II). The settings of both algorithms are
summarised in Table 1.

5.1 Bi-objective Case Studies
The obtained Pareto fronts of the bi-objective numerical case
studies are represented in Figure 5. For the BIOBJ-problem (see
Figure 5A), the solutions obtained by the constr. NSGA-II
algorithm are all clustered in the knee of the Pareto front.

TABLE 1 | Algorithm parameter settings used for the case studies with a and b the
lower and upper boundary respectively of the optimisation variables.

Parameter Value

Constr. NSGA-II and tDOM-NSGA-II
Iterations 75
Population size 100
Crossover probability pc 90.0%
Mutation probability pm 10.0%
Mutation rate µ 5.0
Mutation step size s 0.05 × (b − a)

tDOM-NSGA-II
Trade-off Δt 5.00
Distribution Δr 10.00
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Note that although these solutions are located in a high trade-off
region, this interest was not specified by the decision maker. Instead,
a uniform spread of solutions on the Pareto front would have been
the preferred outcome of the optimisation process. The solutions
obtained using the tDOM-NSGA-II algorithm display, on the other
hand, a better distribution over the entire length of the Pareto front.
The density of solutions in the high trade-off region, i.e., the knee, is a
lot higher than the solution density on the low trade-off Pareto front
plateaus, indicating that the trade-off-based selection process
performs satisfactorily. Contrastingly, for all the other bi-objective
case studies, both algorithms display a satisfactorily solution
diversity. The CONSTR-problem (see Figure 5C) displays, just
like the BIOBJ-problem, distinct high and low trade-off areas.
Nevertheless, at first glance, the performance of both algorithms
is better for the CONSTR-problem than for the BIOBJ-problem,

indicating that the algorithms’ performance could be problem-
dependent. Additionally, it can be seen that for all four case
studies, the resolution of solutions generated by the tDOM-
NSGA-II is highly depend on the trade-off of the considered
Pareto front area, whereas the constr. NSGA-II algorithm does
not make this distinction.

Another observation that can be made based on the visual
representation of the generated Pareto fronts, is that the solutions
generated by the tDOM-NSGA-II algorithm for the DO2DK-
problem would appear to have not fully converged to the
benchmark Pareto front. This apparent loss in convergence is
a consequence of the introduction of the trade-off of solutions as a
stopping parameter. When the PIT-regions of the solutions
making up the benchmark Pareto front are constructed, a so-
called zone of insignificance is formed in the close proximity of

FIGURE 5 | Pareto front of the biobjective problems generated via tDOM-NSGA-II.
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the Pareto front (see Figure 6). Solutions located within this zone
of insignificance are not considered to be significantly different to
the benchmark solutions by the decisionmaker. Thus if the loss of
convergence is limited to this to zone of insignificance, the
solutions have sufficiently converged according to the decision
maker. In Figure 7, the zone of insignificance for the DO2DK-
problem is graphically displayed as well as the solutions generated
with the tDOM-NSGA-II algorithm. From a visual analysis, it can
be clearly seen that all solutions generated with the tDOM-

NSGA-II algorithm have converged within the zone of
insignificance.

If, however, the decision maker requires a closer
approximation of the Pareto front, this can be obtained by
decreasing the Δt and Δr values, defining the PIT-region. By
doing so, the width of the zone of insignificance will also decrease,
allowing solutions to converge more closely to the Pareto front,
whilst reducing the trade-off-based resolution of the Pareto front
(i.e., more insignificant solutions will be displayed).

Finally, considering the discontinuous Pareto front of the
TNK-problem (see Figure 5D), it can be seen that both
algorithms have no difficulties with generating a discontinuous
Pareto front. No solutions were generated in the discontinuous
areas and the extremities of the continuous parts of the Pareto
front are not problematic points. Additionally, all the generated
solutions have converged to the benchmark TNK Pareto front.

To obtain a quantitative indication on the algorithm’s
performance, the performance parameters FPOS, MID, and
SNDS are calculated during every iteration of the algorithm.
The optimisation process for each case study is repeated 10 times,
to be able to statistically analyse both algorithms’ performances.
The evolution of the performance parameters in function of the
amount of iterations for the bi-objective numerical case studies is
represented in Figure 8. Note that the iteration-axis was cropped
for the sake of clarity. The final values of all the performance
parameters are summarised in Table 2. The final FPOS-value is
not reported in Table 2 as it always reached it’s maximum value
of 1.00 for the constr. NSGA-II. On the other hand, the trade-off-
based stopping criterion of the tDOM-NSGA-II algorithm

FIGURE6 | Zone of insignificance of a bi-objective optimisation problem.

FIGURE 7 | Graphical representation of the zone of insignificance of the DO2DK-problem.
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requires that the FPOS of the solution population was equal to
1.00, otherwise the stopping criterion was not activated.

The fact that, in the case of the constr. NSGA-II algorithm, the
FPOS performance parameter is always equal to 1.00, means that the
final solution population always consisted out of non-dominated
solutions. Moreover it was observed that the maximum number of
iterations, i.e., 75, was set too high. The solution population already
consisted entirely out of non-dominated solutions after only a fraction
of the iterations. Continuing the constr. NSGA-II optimisation-
process after the FPOS reached 1.00 meant that a lot of
computation time was spent on unnecessary further iterations.
Two valid arguments to continue the optimisation-process
nonetheless, are on one side the anticipation that the solutions will

further converge to the Pareto front, and on the other side the
anticipation that solution diversity will increase.

The first argument however implies that eventually, whilst the
iteration process continues, new non-dominated solutions are
generated. Because these solutions are more closely located to the
Pareto front, it can be expected that they will dominate one or more
solutions of the non-dominated solutions of the previous iteration.
Thus, if it were the case that the solutions would further converge to
Pareto front, it is likely that the number of non-dominated solutions
would fluctuate. This is however not the case. Once the solution
population consists entirely out of non-dominated solutions, it stays
this way until the maximum number of iterations is reached. On the
performance plots in Figure 8 it can be seen that once the FPOS-value

FIGURE 8 | Comparing performance plots of the tDOM-NSGA-II algorithm and the constrained NSGA-II algorithm (average taken over 10 runs) for the BIOBJ-
problem (A), the DO2DK-problem (B), the CONSTR-problem (C), and the TNK-problem (D). The iteration axis is cropped.
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reaches its maximum value of 1.00, the standard deviation also
decreases to 0.00, indicating that over the ten repetitions, the
FPOS-value of the solution population did not fluctuate once it
reached its maximum value.

Concerning theMID- and SNDS-values presented in Figure 8,
the average MID-values of the BIOBJ- and CONSTR-problem
increase after the FPOS has reached its maximum value and the
iteration process continues. The average MID-values of the
DO2DK- and TNK-problem on the other hand reach a
constant value after FPOS has reached its maximum value
and the algorithm is not stopped. An increase in MID means
that the average Euclidean distance between the solutions and
the Utopia point increases, i.e., the solutions move away from
the Utopia point. This is obviously an unwanted scenario
because this means that convergence of the solutions to the
Pareto front diminishes if the algorithm is not stopped.
Although an increase in MID can also indicate an increase
in solution diversity, it is not considered to be the case in this
scenario while the increased MID is accompanied with an
SNDS that stabilises when the iteration process is continued.
The observed stabilisation or decrease in convergence further
renders the first argument to continue the iteration process
after FPOS equals 1, i.e., the anticipated increased
convergence, invalid.

The second argument to continue the iteration process after
the FPOS has reached its maximum value, i.e., the anticipation
that the solution diversity will increase, is also proven invalid
based on Figure 8. An increase in solution diversity is
indicated by an increase in the SNDS-value. However, it can
be seen for all the bi-objective case studies that the SNDS-value

stabilises. The continuation of the iteration process thus has no
major influence on the solution diversity. This observations
proves that the anticipated increase in solution diversity is no
valid argument to continue the iteration process after FPOS
equals 1.

Table 2 indicates a significant decrease in runtime for all the
bi-objective case studies, ranging from 56.44% up to 84.76% faster
on average. In terms of convergence, Table 2 signifies a decrease
in MID for all the bi-objective case studies when the Pareto front
is generated with the tDOM-NSGA-II algorithm. Based on the
visual representation of the Pareto fronts in Figure 5 however,
this is contradictory. As already mentioned, the Pareto front of
the DO2DK-problem displays an apparent decreased
convergence in comparison with the Pareto front generated
with the constr. NSGA-II algorithm due to the presence of the
zone of insignificance. The decrease inMID is in this scenario thus
most likely not the result of an increased convergence. It is found
that the normalisation step of the objective functions is the cause
of the decreased MID. Because the anchor points are included in
the solution population, the objective range at which solutions are
generated becomes larger. The majority of solutions however is
generated within the same range as it were the case with the
constrained NSGA-II algorithm. Yet, these solutions are in case of
the tDOM-NSGA-II algorithm relatively closer to the Pareto
front than the constrained solutions because the anchor points
now determine the objective range.

5.2 Three-Objective Case Study
The Pareto fronts and corresponding benchmark of the
DTLZ2.3-problem are represented in Figure 9A. The
corresponding performance plots are represented in
Figure 9B. The values of the performance parameters after the
iteration process is terminated are included in Table 2.

Figure 9B displays that the FPOS of the solution populations
generated by the constr. NSGA-II algorithm quickly reaches its
maximum value. The MID of the constr. NSGA-II algorithm
keeps increasing, but this is accompanied with an increase in
SNDS while FPOS <1. In case of the constr. NSGA-II algorithm,
the early increase in MID is therefore most likely the result of the
diversification of the solution population. However, once the
FPOS reached its maximum value of 1.00 and the optimisation
process was continued, the MID of the constr. NSGA-II
algorithm continued to increase but the SNDS tended to
stabilise. This increase in MID is no longer the result of the
diversification of the solution population but a result of the
diminishing convergence of the solutions. Based on these
observations, it can again be concluded that the continuation
of the optimisation process after FPOS � 1 is futile.

When considering the solutions generated with tDOM-
NSGA-II, on first glance it would again seem that the solution
convergence is less in comparison with the solutions generated
with the constr. NSGA-II algorithm. Anew, this can be the
consequence due the introduction of the trade-off as an
additional selection parameter. Nonetheless, the convergence
of the solutions for this case study, is unsatisfactory especially
for low F3 objective costs. The performance parameters are
represented in Table 2. The most significant gain of the

TABLE 2 | Performance parameters and runtime of the bi- and three-objective
case studies, generated with the constrained NSGA-II algorithm (Constr.
NSGA-II) and the developed t-DOM-NSGA-II algorithm. Relative differences
marked in bold indicate that the tDOM-NSGA-II algorithm outperformed the
NSGA-II algorithm.

NSGA-II tDOM-NSGA-II Relative
difference [%]Perf. parameter Mean St. dev Mean St. dev.

BIOBJ
MID [–] 0.4904 0.0770 0.2835 0.0417 −42.19
SNDS [–] 0.1771 0.0220 0.1847 0.0301 +3.79
Runtime [s] 34.8731 0.5712 15.1900 1.1216 −56.44

DO2DK
MID [–] 0.6326 0.0093 0.5366 0.0114 −15.17
SNDS [–] 0.1616 0.0027 0.1544 0.0069 −4.46
Runtime [s] 33.1727 0.9316 5.0554 3.5170 −72.82

CONSTR
MID [–] 0.6290 0.0102 0.5619 0.0269 −10.67
SNDS [–] 0.1693 0.0036 0.1732 0.0042 +2.25
Runtime [s] 34.2115 0.6048 9.3001 3.5170 −72.82

TNK
MID [–] 0.9456 0.0067 0.9450 0.0026 −0.00
SNDS [–] 0.3019 0.0080 0.3225 0.0178 −6.39
Runtime [s] 34.6012 0.6410 8.7742 0.6221 −74.64

DTLZ2.3
MID [–] 0.8456 0.1674 0.9539 0.0348 +11.35
SNDS [–] 0.4370 0.0754 0.5003 0.0209 +12.65
Runtime [s] 33.2459 0.9816 2.9962 0.7860 −90.99

Frontiers in Chemical Engineering | www.frontiersin.org March 2021 | Volume 3 | Article 58212316

De Buck et al. Trade-Off Criteria to Improve GA

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


tDOM-NSGA-II over the constr. NSGA-II is the decrease in
runtime of 90.99% on average.

5.3 Bi-objectiveWilliams-Otto Reactor Case
Study
The Pareto fronts generated by NSGA-II and tDOM-NSGA-II are
displayed in Figure 10A. A first observation that can be made, is
that the convergence of the tDOM-NSGA-II algorithm is not as
good as that of the NSGA-II algorithm. As alreadymentioned, this
apparent loss in convergence is due to the introduction of the
trade-off-based solution selection (i.e., the zone of insignificance).
Nonetheless, the tDOM-NSGA-II algorithm is capable of
producing a qualitatively decent representation of the Pareto
front. Note as well that the solution density in the low trade-
off areas on the extremities of the Pareto front, is lower whereas
the NSGA-II algorithm does not make this distinction. tDOM-
NSGA-II needed, on average over 10 runs, 28 iterations, or a
runtime of 413.1 s ± 110.3, while the NSGA-II algorithm
completed all 75 iterations, requiring, on average, 1,086.0 s ±
27.6, resulting in a runtime reduction of 61.96% on average.
The performance plots of the NSGA-II and tDOM-NSGA-II
algorithms are represented in Figures 10B,Crespectively.
Although the convergence of the tDOM-solutions is seemingly
lower, based on Figure 10A, the average MID-value of the tDOM-
NSGA-II algorithm is slightly lower than that of the NSGA-II
algorithm, indicating a better convergence. This could be the result
of the higher solution density in the knee, or central, area of the
Pareto front. Solutions located in this area are nearer to the Utopia
point than solutions located on the extremities of the Pareto front.
The larger share of high trade-off solutions in the case of the
tDOM-NSGA-II algorithm could have caused this lower MID-
value, despite the lower overall convergence of tDOM-solutions.

Based on the bi-objective, three-objective, and Williams-Otto
reactor case studies it can be concluded that the t-domination
based stopping criterion results in an extensive reduction in
runtime. Additionally the high trade-off solutions are
emphasised by the tDOM-algorithm. The two major targets
during the development of the tDOM-algorithm are thus fulfilled.

5.4 Overall Discussion
The two most significant and noticeable improvements of the
tDOM-NSGA-II algorithm over the NSGA-II algorithm, are 1)
the decreased number of iteration needed and the corresponding
decrease in runtime, and 2) the trade-off-based solution
resolution of the Pareto front.

The trade-off-based stopping criterion results in terminating
the algorithm once all solutions in the current solution
population are insignificantly different from those that made
up the previous solution population from a trade-off point of
view. Although introducing the trade-off function resulted in
additional solution comparison and, thus, a more complex
algorithm, it still performed better runtime-wise than its
simpler counterpart, NSGA-II. This is due to the fact that the
number of iterations that are ultimately needed during the
optimisation process have a far greater influence than the
number of comparison that are required during one single
iteration. Note as well that the case studies presented in this
contribution are computational inexpensive problems. While
these optimisation algorithms will ultimately be employed for
the optimisation of, i.a., complex (bio-)chemical processes,
(logistic) network problems, etc., the generation of the
solutions will become the most expensive step of the entire
optimisation process. Generating solutions in these scenarios
often involves computational expensive simulations, so it is
essential in those scenarios that the overall amount of

FIGURE 9 | Pareto front (A) and performance plot (B) of the DTLZ2.3-problem, generated via tDOM-NSGA-II.

Frontiers in Chemical Engineering | www.frontiersin.org March 2021 | Volume 3 | Article 58212317

De Buck et al. Trade-Off Criteria to Improve GA

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


solutions that has to be generated in order to obtain a satisfactory
Pareto front is kept to an absolute minimum. Reducing the
amount of iterations required in order to obtain this Pareto
front, will have the biggest influence on this. Even for the
inexpensive numerical and dynamic case studies presented in
this contribution, iteration reductions between 57.33 and 90.67%.
The three-objective case study even displayed a 96.00% reduction
in iterations required.

The introduction of this trade-off-based stopping criterion,
however, resulted in an apparent loss in solution convergence due
to the introduction of the so-called zone of insignificance. The
reasoning behind the functionality of the trade-off-based
stopping criterion also relies on an elitist approach built into
the algorithm. This implies that the best solutions of the previous

iteration are kept unchanged in the current one. This assures the
user that, with progressing iterations, the solutions in the solution
population are at least equally well converged and diverse as those
of the previous iterations. If all solutions have converged
sufficiently enough to the Pareto front, the difference between
two subsequent solution generations will become smaller. The
trade-off-based stopping criterion’s functionality is based on this
principle and, in essence, is used to quantify how small this
difference between two subsequent solution generations has to
become in order to call it negligible and, as a result, stop the
algorithm. It states that once all solutions of two subsequent
solution generations are located within each others’ PIT-region,
the difference between those two solution generations has become
negligibly small for the decision maker. Improvement-based

FIGURE 10 | Pareto fronts of the Williams-Otto reactor case study generated by NSGA-II and tDOM-NSGA-II (A), and their respective performance plots (B) and (C).

Frontiers in Chemical Engineering | www.frontiersin.org March 2021 | Volume 3 | Article 58212318

De Buck et al. Trade-Off Criteria to Improve GA

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


stopping criteria are already implemented in the context of single-
objective evolutionary algorithms (Zielinski and Laur, 2008). The
concept of t-domination allows for assessing the improvement
evolution of solutions in a multi-dimensional objective space. The
trade-off parameters can be seen as threshold values for
improvement, just like the gradient based optimisation
algorithms offer a termination criterion based on the threshold
established for the first-order optimality. The comparison of
solution generations is made as they evolve towards the Pareto
front, as the benchmark Pareto front is unknown in real-life
optimisation scenarios. Nonetheless, for the presented case
studies, the benchmark Pareto front is known and the
convergence of the generated solutions can be compared to it.
The benchmark Pareto front inevitably consists of solutions itself,
all of which possess a PIT-region. If the same reasoning is
followed, the solutions on the Pareto front can be regarded as
the utopian final solution generation. The algorithm will stop if
the solution population that was obtained in the antecedent
iteration was located entirely in the PIT-regions of the
solutions located on the Pareto front. In other words, this
antecedent solution population would have converged into the
zone of insignificance which consists out of the PIT-regions of the
solutions on the Pareto front. From the decision maker’s point of
view, however, this antecedent solution population is equally
good as the one that is fully located on the Pareto front as the
decision maker does not consider the difference between the two
to be significant. Therefore, as in real-life optimisation processes
the Pareto front is unknown upfront, the goal is to converge until
all solutions are located in the zone of insignificance.

The design of the tDOM-NSGA-II algorithm allows decision
makers to quickly explore where the high trade-off regions are
located for their proposed problem because of the trade-off-based
stopping criterion and solution selection process, which was the
second objective when developing the tDOM-NSGA-II
algorithm. The trade-off-based solution selection step results
in a less cluttered Pareto front, only displaying solutions of
interest to the decision maker. The generated Pareto fronts of
the presented cases studies with the tDOM-NSGA-II algorithm
indeed display a trade-off-based resolution, with a high solution
density in high trade-off Pareto front areas. If desired, these high
trade-off areas can be further explored, potentially also with a
view to increase the solution convergence to the Pareto front.

Regarding these observations, a next step could be to make the
optimisation process more interactive. Bortz et al., (2014) already
introduced the concept of interactive Pareto front navigation and
exploration with the use of deterministic algorithms. The presented
tDOM-NSGA-II algorithm is, as it is a swift but, potentially, cruder
optimisation algorithm, perfectly suited to quickly generate highly
informative Pareto fronts. Especially in the context of black-box
optimisation problems, it would be a well-suited go-to algorithm for
generating a cruder, but yet highly informative, Pareto front as the
algorithm is additionally capable of including the decision makers’
preferences into the optimisation process. Based on the presented
Pareto front, the decision makers could then be able to indicate
which (high trade-off) Pareto front areas they want to explore in
more detail by interacting accordingly with the algorithm. This
process could additionally be coupled with a decision making

support approach, guiding the decision makers’ through the
decision making process. This would eventually result in highly
customised Pareto fronts and optimal working points (i.e., the
eventually selected solution(s)).

6 CONCLUSION

A sustainable process operation requires optimality with respect
to multiple, often conflicting, objectives. A typical example of
such conflicting objectives are economic, societal and
environmental objectives. Such problems consisting of
different conflicting objectives are called multi-objective
optimisation problems (MOOPs). In such a case, not a single
optimal solution exists, but multiple trade-off solutions exist. The
set of these equally optimal trade-off solutions is called the Pareto
set, from which a decision maker can select an operating point for
implementation.

Different algorithms exist to solve MOOPs. The focus of this
article has been on the evolutionary multi-objective optimisation
algorithm NSGA-II. The basic philosophy of these algorithms is
based on biological reproduction and evolution. Based on
evolutionary principles, new solutions are created from parent
solutions and by only selecting the best solutions for further
reproduction, the generated solutions eventually converge to the
most optimal solutions of the MOOP, or the Pareto front.

NSGA-II is widely acclaimed by researchers and users alike.
Based on the results of five numerical benchmark case studies,
two shortcomings were pointed out: 1) the algorithm lacks the
ability to distinguish high trade-off solutions from low trade-off
solutions and 2) the default stopping criterion proposed by Deb
et al., (2002) based on reaching a user-defined maximum number
of iterations, had no relevance to the concerned problem.

The tDOM-NSGA-II algorithm has been developed to
overcome these shortcomings. This algorithm can distinguish
between solutions based on their trade-off via the construction of
regions of practically insignificant trade-off (PIT-regions). The
more crowded the PIT-region of a solution is, the less favourable
the trade-off of the solution is. The tDOM-algorithms stops if all
the solutions of two subsequently generated solution populations
are located within each other PIT-region. The tDOM-NSGA-II
algorithm has been applied to five scalar benchmark case studies
and one dynamic benchmark case study. The novel algorithm is
capable of generating a Pareto front with a trade-off based
solution resolution and displays a significant decrease in
computation time required. This reduction in runtime ranges
from 56.44% faster on average, up to 84.76% faster on average for
the bi-objective case studies. For the three-objective case study, a
runtime reduction of 90.99% on average was even obtained. The
average runtime of the dynamic case study was reduced by
61.96%. The solutions generated by the tDOM-NSGA-II
algorithm do display an apparent loss in convergence, due to
the introduction of the zone of insignificance, which is made up
out of the overlapping PIT-regions of solutions located on the
Pareto front itself. Once solutions have converged into this zone
of insignificance, defined by the Δt and Δr values provided by the
decision maker, the decision maker does not consider the solutions
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of the population to be significantly different from those on the
Pareto front.
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