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The selective transformation of chitin into various renewable N-containing chemicals and
medicines has attracted increasing attention. However, the N-acetyl groups in chitin
construct strong hydrogen bond networks, which restricts its depolymerization and
transformation. The selective conversion of robust chitin commonly requires
considerable base catalysts to remove the N-acetyl group as a byproduct in advance,
which is non-compliance with the principle of atomic economy. Herein, for the first time we
demonstrate a novel approach to achieve the selective utilization of the N-acetyl group in
chitin for transamidation of chitin with amines. A series of amine derivatives, mainly
including aliphatic amine, cyclic amine and functionalized aromatic amine, could be
selectively converted into the corresponding amide products frequently found in
pharmaceuticals. Furthermore, the solid residue after removing the acetyl group
(denoted as De-chitin) with the sufficient exposure of -NH2 groups as a solid base
catalyst shows excellent performance in the aldol condensation reaction of furfural and
acetone to produce fuel precursors. Our process provides a strategy that exploiting every
functional group adequately in substrates to obtain value-added chemicals.
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INTRODUCTION

Chitin, the second most abundant biopolymer on the earth after cellulose, consists of
N-acetylglucosamine units with ß-1,4-glycosidic linkages. (Yabushita et al., 2015; Yan and Chen
et al., 2015). Chitin is considered as the most promising biomass sources for the production of
renewable N-containing chemicals and materials due to its high nitrogen content of around 7% by
weight. (Omari et al., 2012; Chen et al., 2014; Chen et al., 2017; Kobayashi et al., 2017, 2019; Osada
et al., 2019; Pham et al., 2019; Dai et al., 2020). In spite of the enormous economic and environmental
interests, the existence of acetyl groups is the main challenge for the exploitation of chitin biomass,
which seriously hampers its transformation into fuels and fine chemicals (Fang and Fan et al., 2019).
It has been reported that deacetylation is commonly inevitable for the valorization of chitin.
However, deacetylation is notorious due to the use of plenty of concentrated, corrosive basic
solutions (Chen et al., 2017). Moreover, acetyl groups in chitin are removed as a byproduct, which
results in low atomic utilization and is contrary to the theme of Green Chemistry.

Amides are enormously important building blocks in organic synthesis, and they serve as
precursors for many value-added compounds, mainly including agrochemicals, pharmaceuticals,
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organic materials and polymers (Pattabiraman and Bode et al.,
2011; Lundberg et al., 2014; Kniss, 2017). Hitherto, several
synthetic measures have been achieved. Generally, the
preparation of amide involves hydroamination of alkynes
(Uenoyama et al., 2005; Valeur and Bradley et al., 2009),
hydration of nitriles (Goto et al.,2008; Raman et al., 2009;
Williams et al., 2011) and the coupling of carboxylic acids,
aldehydes and alcohols with amines (Srinivas and Das, 2003;
Hosseini-Sarvari and Sharghi et al., 2006; Gunanathan and
Milstein, 2007, Milstein, 2011; Nordstrom et al., 2008; Arnold
et al., 2008; Zweifel et al., 2009; Watson et al., 2009; Soule et al.,
2011; Lundberg et al., 2012; Gosh et al., 2012; Yamaguchi et al.,
2012). Additionally, transamidation is a convenient and
straightforward method for exchanging the constituents of two
different amide groups and some significant progress has been
achieved in recent years (Eldred et al., 2003; Eldred et al., 2008;
Nguyen et al., 2012, Allen et al., 2012; Zhang et al., 2012;
Nageswara et al., 2014; Becerra-Figueroa et al. 2014; Garg
et al. 2017; Yin et al., 2019; Ghosh et al., 2019). Chitin
possesses enormous N-acetyl groups and can be recognized as
a kind of renewable amide compounds. Selective deacetylation of
N-acetyl groups with additional amine source through
transamidation not only generated high-value amide products,
but benefited to its further valorization. To the best of our
knowledge, transamidation reaction regarding renewable chitin
as amide source has never been reported.

Aldol condensation is known as an important C-C bond
forming reaction and a cornerstone of synthetic chemistry
(Yutthalekha et al., 2017; Xu et al., 2017; Ngo et al., 2019).
Generally, aldol reaction proceeds in the presence of acid, base
or acid-base bifunctional catalysts. Among those catalysts, base
catalysts gave remarkable catalytic performance owing to its
strong ability to abstract a-protons and active substrate (Ngo
et al., 2019). Homogeneous base catalysts, such as NaOH and
KOH, were widely employed in the aldol reaction, but showed
some disadvantages, mainly involving equipment corrosion, non-
recyclability and complex separation (West et al., 2008; Fakhfakh
et al., 2008; Xing et al., 2010; Ramirez-Barria et al., 2016; Gu et al.,
2017). To overcome these drawbacks, heterogeneous base
catalysts (MgAl-hydrotalcite and MgO et al.) were considered
as suitable alternatives, while the challenge of catalyst stability
existed in the presence of water generated in the process of aldol
condensation (Yang et al., 2013; Shen et al., 2016; Bing et al., 2017;
Ngo et al., 2018). Therefore, exploring a solid base catalyst with
outstanding water-resistance to enhance aldol reaction is very
urgent. Chitosan is the partially deacetylated form of chitin.
Chitosan with considerable -NH2 groups, as a promising
renewable solid base catalyst, emerged to promote the aldol
condensation reaction, due to its water resistance and
recyclability (Sakthivel and Dhakshinamoorthy et al., 2017;
Rani et al., 2018; Meninno, 2020; Anbu et al., 2020).

We report here a novel catalytic system where the
deacetylation of C2-acetamido groups to C2-amido groups
selectively occurred through a transamidation process with
amines. The amine sources mainly include aliphatic amine,
cyclic amine and functionalized aromatic amine, generating
the corresponding amide as the desired product with excellent

yield. FT-IR spectra and XRD pattern demonstrated that the
transamidation reaction proceeded mainly on the surface of
chitin. Additionally, the solid residue after transamidation
reaction (De-chitin), as a solid base catalyst with exposure of
lots of -NH2 groups, exhibited outstanding catalytic activity on
aldol condensation of furfural with acetone to produce fuel
precursor. Our work offers a strategy to sufficiently use every
functional groups in the substrate for the production of value-
added chemicals from an atomic economy perspective.

EXPERIMENTAL SECTION

Chemicals and Materials
Furfural (98%), acetone (99.9%), N, N-dimethylformamide (98%),
chitin and chitosan were purchased from TCI. Aniline (99%),
propylamine (99%), butylamine (99%), cyclopentamine (99%),
cyclohexylamine (99%), benzylamine (99%), p-toluidine (99%),
p-anisidine (99%), p-chloroaniline (98%), p-bromoaniline (99%)
were purchased from Aladdin. NaOH (99%), Fe(OAc)2 (95%),
Co(OAc)2 (98%), Ni(OAc)2 (97%), Cu(OAc)2 (99%), AlCl3 (99%),
CoCl2 (97%), CuCl2 (98%) were purchased from Alfa Aesar.

Catalytic Reactions
The transamidation reaction was performed in a 50 ml flask at
ambient pressure. Typically, chitin (0.10 g), catalyst (0.03 g),
amine and DMF (3 ml) were placed into the flask. The reactor
was purged with N2 three times. The reaction was then performed
at 140°C under magnetic stirring for 12 h. The liquid solution was
separated from the solid residual by centrifugation and analyzed
qualitatively by GC-MS (Agilent 5977A) and quantitatively by
GC equipped with a flame ionization detector (FID, Agilent
4890D) using dodecane as the internal standard. The
experimental section of transamidation reaction involving
other molecules is the same as the above process. Additionally,
the solid residue (De-chitin) was collected, washed with ethanol
and then dried in an oven for the next step.

The yield of amide product was calculated by using the
equation: amide yield � (the actual moles of amide)/(the
theoretical moles of amide). The theoretical moles of amide
were obtained according to the degree of acetylation (DA) of
chitin which was calculated based on elemental analysis (EA)
(Chen et al., 2014).

DA � [(C/N − 5.14) / 1.72] × 100%

C/N means the ratio of carbon to nitrogen (w/w).
The aldol condensation of furfural with acetone was conducted

in a 10ml Teflon-lined stainless-steel autoclave. Furfural (0.48 g,
5 mmol), acetone (1.16 g, 20 mmol) and De-chitin catalyst (0.10 g)
were transferred into the autoclave. The reactor was charged to
1MPa N2 pressure. The reaction was then performed at 140°C
under magnetic stirring for 12 h. After the aldol condensation
reaction, the autoclave was quenched in an ice-water bath to room
temperature. The liquid solution was separated from the solid
residual by centrifugation and analyzed qualitatively by GC-MS
(Agilent, 5977A) and quantitatively by GC equipped with a flame
ionization detector (FID, Agilent, 4890D) using dodecane as the
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internal standard. Conversion of furfural and yield of products
were calculated by using the equation:

Furfural conversion � (moles of reacted furfural) /

(moles of staring furfural) × 100%.

C8 yield � (moles of C8 product) / (moles of staring furfural)

× 100%

C13 yield � (moles of C13 product) /

(moles of staring furfural / 2) × 100%

Characterization
Powder X-ray diffraction (XRD) patterns were obtained by Rigaku
D/max-2500X-ray diffractometer (excitation source: Cu Kα radiation,
λ � 0.15406 nm; tube voltage: 40 kV; tube current: 200mA).

FT-IR spectra of commercially available chitin, chitosan and
De-chitin were recorded with a TENSOR 27 spectrometer. The
samples were blended with KBr for IR characterization.

RESULTS AND DISCUSSION

Initially, aniline was employed as an amine source to investigate the
transamidation reaction between chitin and aniline, and various
catalysts were screened for the production of acetanilid at 140°C
(Figure 1). The degree of acetylation (DA) in chitin is 95.4% based
on the elemental analysis and the theoretical moles of acetanilid

were calculated to 58.5 mg when the amount of chitin substrate is
100 mg (Supplementary Table S1) (Chen et al., 2014). The
transamidation reaction did not occur without catalyst and
homogeneous base catalyst (NaOH) showed poor performance
with only 3.5% yield of acetanilid as the desired product. Lewis acid
catalysts are known to be effective for this reaction. We evaluated
lots of Lewis acid catalysts, mainly including Ni(OAc)2, AlCl3,
Co(OAc)2, CoCl2, Fe(OAc)2, CuCl2 and Cu(OAc)2, and found that
all those catalysts could produce target molecular. Among them,
Cu(OAc)2 provided the best performance with 87.2% yield of
acetanilid after 12 h at 140°C. Those results obviously indicated that
metal core played a significant role in the transamidation reaction
and the excellent catalytic activity of Cu catalyst may be attributed
to the proper combination between acetyl groups in chitin and it.

With this promising result, the factors of reaction were further
optimized, including solvents, reaction time, reaction temperature
and the amount of Cu catalyst. The use of solvents involving
tetrahydrofuran, acetonitrile, p-xylene, isopropanol and
cyclohexane, did not provide the desired product, which
demonstrates the critical role of DMF in promoting
transamidation reaction (Figure 2A). Figure 2B illustrated the
influence of reaction time on the transamidation reaction and
the yield of acetanilide increased before 12 h. Prolonging the
reaction time, the yield of the target product showed little
change. In addition, the influence of reaction temperature on the
yield of acetanilid was also investigated (Figure 2C) and the results
showed that the reaction temperature played an important role in
the transamidation reaction. The most suitable reaction
temperature is 140°C and decreasing the reaction temperature
proved to be unfavorable for the transamidation reaction.
Moreover, the effect of the amounts of Cu catalyst on the yield
of acetanilid was also studied. The yield of the target product
increased continuously with the increasing amount of
Cu(OAc)2 at the beginning and reached a plateau when the
amount of Cu(OAc)2 was above 30 mg, revealing that Cu(OAc)2
catalyzed the reaction during the reaction process (Figure 2D). A
moderate yield of 55.3% was still achieved when the amount of Cu
catalyst was decreased to 15 mg.

Based on the previous literature report (Ma andGong, 2018) and
our results, a reasonable reaction mechanism has been proposed
(Scheme 1). Initially, the carbonyl group of chitin is activated by
Cu(OAc)2 catalyst through coordination. The activated chitin then
undergoes nucleophilic attack by amine, which results in the
formation of tetrahedral intermediate 1) With a proton transfer,
the sterically congested intermediate 1 breaks down to generate
intermediate 2) Finally, the target molecular, corresponding amide,
is produced to finish the catalytic cycle.

Infrared spectroscopy is an important tool to acquire
information on surface functional groups and all samples were
analyzed by FT-IR (Supplementary Figure S1). The bands
ranging from 2,800 to 3,500 cm−1 are assigned to the
vibrations of -CH, -NH and -OH groups, and the peaks
between 1500 and 1670 cm−1 represent amide bands.
Commercial available chitosan and chitin gave remarkably
different FT-IR spectra from 1,000−4,000 cm−1. Three obvious
peaks at 1,115, 1,550, and 3,250 cm−1 in the chitin spectrum are
absent in that of chitosan. Most importantly, the FT-IR spectrum

FiGURE 1 | Catalysts screening for transamidation reaction. Reaction
conditions: chitin 0.1 g, aniline 0.1 ml, DMF 2.9 ml, catalyst 30 mg,
140 C, 12 h.
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A B

C D

FIGURE 2 | The optimization of reaction factors. (A) solvents screening. (B) reaction time. (C) reaction temperature. (D) the amount of catalyst. Reaction
conditions: chitin 0.1 g, aniline 0.1 ml, DMF 2.9 ml, catalyst 30 mg, 140°C, 12 h.

SCHEME 1 | Possible reaction mechanism.
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of De-chitin highly resembles that of chitosan, indicating effective
deacetylation of N-acetyl groups in the catalytic system.

The XRD patterns of the three samples are depicted in
Supplementary Figure S2 to investigate their bulk phase
structure. Chitin exhibits characteristic diffraction peaks
centered at 9.6 and 19.6 of diffraction angle 2θ, representing
the (020) and (110) planes of crystalline chitin, respectively.
While chitosan has no obvious diffraction peaks, indicating its
amorphous structure. Notably, the XRD pattern of De-chitin is
similar with that of commercially available chitin. Namely, the
original chitin structure is maintained during the Cu(OAc)2-
catalyzed process. FT-IR and XRD characterizations indicated the

deacetylation of C2-acetamido groups to C2-amido groups
selectively occurred on the surface of chitin.

With the optimized conditions in hand, the amine scope of the
Cu(OAc)2-catalyzed transamidation reaction was examined
(Table 1). The results revealed broad applicability of this
reaction to various amines, mainly including aliphatic amines,
cyclic amines and functionalized aromatic amines, generating the
corresponding amide products. Particularly noteworthy is that
aliphatic amine, such as propylamine and butylamine, can
undergo transamidation with chitin even without catalyst and
the yields of corresponding amides are up to 93.5 and 92.1%,
respectively. The promising result is mostly ascribed to the

TABLE 1 | Substrate scope in terms of amines.

Substrate Product Yield/% Substrate Product Yield/%

93.5 88.6

92.1 79.5

85.2 77.8

83.9 83.7

81.4 51.4

89.1

Reaction conditions: chitin 0.1 g, amine 0.1 ml, DMF 2.9 ml, catalyst 30 mg, 140°C, 12 h.
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stronger nucleophilic capability of aliphatic amine than others.
When cyclopentamine and cyclohexylamine were employed as
amine sources, excellent yields of corresponding amide products
were achieved (85.2 and 83.9%, respectively). For functionalized
aromatic amines, different functional groups on the benzene ring
were compatible with the reaction, including methyl, methoxy,
bromide and chlorine groups. The reaction proceeded well with
p-methyl or p-methoxy aniline as substrate. However, the
chlorine and bromine groups were found to have a negative
influence on the transamidation reaction, giving the
corresponding amines 79.5 and 77.8% yield, respectively.
Furthermore, to investigate the effect of steric hindrance on
the reaction, o-toluidine and 2,6-dimethyaniline were
employed to conduct the transamidation reaction. Notably, the
yield of corresponding amide decreased to 83.7 and 51.4% with

o-toluidine and 2,6-dimethyaniline as amine source as compared
to that yield (87.2%) with aniline as amine source. The result
demonstrated that the reaction was influenced by the steric effect
of substrate, apart from nucleophilicity of the amine source.

After reaction, the solid residue (denoted as De-chitin) was
separated by centrifugation, washed with ethanol and dried in an
oven for the next step utilization. The initial Cu content is 9.54%
based on the weight of chitin in catalytic system. We tested the Cu
content in solid residue after reaction and found that only 0.07%
Cu metal exist in the deacetylated chitin after centrifugation
(Supplementary Table S2). The aldol condensation of furfural
with acetone was employed as a model reaction to evaluate the
catalytic performance of De-chitin. Figure 3 illustrated the
influence of reaction time on the aldol reaction. The conversion
of furfural increased continuously with the prolongation of
reaction time in the beginning and reached a plateau at 12 h.
De-chitin catalyst showed remarkable catalytic performance
and furfural was completely converted over De-chitin catalyst
after 12 h at 140°C, with 74.3% C8 yield and 7.9% C13 yield.
Figure 4 revealed that the conversion of furfural was 12.1% even
without catalyst under solvent-free condition. However, the
conversion of furfural and yields of condensed products just
increased slightly over chitin catalyst, mainly due to the
existence of C2-acetamido groups and inadequate exposure
of -NH2 groups. Notably, De-chitin catalyst exhibited
excellent catalytic performance for aldol condensation
reaction, with the furfural conversion up to 58.3%, which is
much higher than that with chitin as catalyst. The deacetylation
of C2-acetamido groups to C2-amido groups, namely the
adequate exposure of surface -NH2 groups in the De-chitin
sample, is responsible for the enhanced reaction activity.

The recyclability of the De-chitin catalyst for aldol
condensation of furfural with acetone was investigated by
reusing the catalyst in consecutive catalytic run. The catalyst
was separated by simple filtration, washed with ethanol and oven
dried for five hours. It can be seen from Figure 5 that no obvious
change was observed in the catalytic activity and product
selectivity even after three runs. The recyclability test reveals

FIGURE 3 | Time conversion plot for the reaction of furfural with acetone
over De-chitin as solid base catalyst. Reaction conditions: furfural 0.48 g,
acetone 1.16 g, catalyst 0.1 g, 140°C.

FIGURE 4 | Aldol reaction catalyzed by various catalysts. Reaction
conditions: furfural 0.48 g, acetone 1.16 g, catalyst 0.1g, 140°C, 4 h.

FIGURE 5 | Recyclability test of De-chitin for aldol condensation.
Reaction conditions: furfural 0.48 g, acetone 1.16 g, De-chitin 0.1 g,
140°C, 4 h.
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the potential application of De-chitin as a heterogeneous catalyst
for aldol condensation.

CONCLUSION

In summary, N-acetyl groups in chitin were removed with
additional amine sources through transamidation to generate
corresponding amide products. The amine sources mainly
involved aliphatic amines, cyclic amines and functionalized
aromatic amines and the yields of corresponding amides
commonly exceed 75%. Notably, aliphatic amines, such as
propylamine and butylamine, can undergo transamidation
with chitin even without catalyst and the yields of
corresponding amides are up to 93.5 and 92.1%, respectively.
The promising result is mostly ascribed to the stronger
nucleophilic capability of aliphatic amine than others.
Additionally, FT-IR and XRD results demonstrated that
deacetylation reaction only occurred on the surface of chitin.
Furthermore, the solid residue after transamidation reaction (De-
chitin) was applied as a heterogeneous base catalyst for aldol
condensation of furfural with acetone under mild reaction
conditions and showed excellent catalytic activity. The catalyst
was recovered and reused for three runs without any drop in its
activity and selectivity. This work provides a measure to
sufficiently use functional groups in the substrate to produce
high-value chemicals from an atomic economy perspective.
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