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Processing data that originates from uneven, multi-phase batches is a challenge in data-
driven modeling. Training predictive and monitoring models requires the data to be in the
right shape to be informative. Only then can a model learn meaningful features that
describe the deterministic variability of the process. The presence of multiple phases in the
data, which display different correlation patterns and have an uneven duration from batch
to batch, reduces the performance of the data-driven modeling methods significantly.
Therefore, phase identification and alignment is a critical step and can lead to an
unsuccessful modeling exercise if not applied correctly. In this paper, a novel
approach is proposed to perform unsupervised phase identification and alignment
based on the correlation patterns found in the data. Phase identification is performed
via manifold learning using t-Distributed Stochastic Neighbor Embedding (t-SNE), which is
a state-of-the-art machine learning algorithm for non-linear dimensionality reduction. The
application of t-SNE to a reduced cross-correlation matrix of every batch with respect to a
reference batch results in data clustering in the embedded space. Models based on
support vector machines (SVMs) are trained to, 1) reproduce the manifold learning
obtained via t-SNE, and 2) determine the membership of the data points to a process
phase. Compared to previously proposed clustering approaches for phase identification,
this is an unsupervised, non-linear method. The perplexity parameter of the t-SNE
algorithm can be interpreted as the estimated duration of the shortest phase in the
process. The advantages of the proposed method are demonstrated through its
application on an in-silico benchmark case study, and on real industrial data from two
unit-operations in the large scale production of an active pharmaceutical ingredients (API).
The efficacy and robustness of the method are evidenced in the successful phase
identification and alignment obtained for these three distinct processes, displaying
smooth, sudden and repetitive phase changes. Additionally, the low complexity of the
method makes feasible its online implementation.

Keywords: manifold learning, clustering, t-distributed stochastic neighbor embedding, support vector machines,
phase identification and alignment, batch processes, active pharmaceutical ingredients

Edited by:
René Schenkendorf,

Technische Universitat Braunschweig,
Germany

Reviewed by:
Rajagopalan Srinivasan,

Indian Institute of Technology Madras,
India

Rudibert King,
Prozesswissenschaften, Technische

Universität Berlin, Germany

*Correspondence:
Jan F. M. Van Impe

jan.vanimpe@kuleuven.be

Specialty section:
This article was submitted to

Computational Methods in
Chemical Engineering,
a section of the journal

Frontiers in Chemical Engineering

Received: 10 July 2020
Accepted: 19 October 2020

Published: 27 November 2020

Citation:
Muñoz López CA, Bhonsale S, Peeters
K and Van Impe JFM (2020) Manifold
Learning and Clustering for Automated
Phase Identification and Alignment in

Data Driven Modeling of
Batch Processes.

Front. Chem. Eng. 2:582126.
doi: 10.3389/fceng.2020.582126

Frontiers in Chemical Engineering | www.frontiersin.org November 2020 | Volume 2 | Article 5821261

ORIGINAL RESEARCH
published: 27 November 2020

doi: 10.3389/fceng.2020.582126

http://crossmark.crossref.org/dialog/?doi=10.3389/fceng.2020.582126&domain=pdf&date_stamp=2020-11-27
https://www.frontiersin.org/articles/10.3389/fceng.2020.582126/full
https://www.frontiersin.org/articles/10.3389/fceng.2020.582126/full
https://www.frontiersin.org/articles/10.3389/fceng.2020.582126/full
https://www.frontiersin.org/articles/10.3389/fceng.2020.582126/full
http://creativecommons.org/licenses/by/4.0/
mailto:jan.vanimpe@kuleuven.be
https://doi.org/10.3389/fceng.2020.582126
https://doi.org/10.3389/fceng.2020.582126
www.frontiersin.org
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
www.frontiersin.org
https://doi.org/10.3389/fceng.2020.582126


INTRODUCTION

Most commercial APIs are produced by consecutive batch
operations that follow a pre-established recipe. Likewise,
these operations are run as the sequence of multiple process
phases in single units. The flexibility provided on the duration of
most of these phases results in batches that follow similar
trajectories but with uneven duration. Fed-batch
fermentation, complex reaction sequences followed by
crystallization, centrifugation, and drying are some examples
of the type of processes found in the pharmaceutical industry. In
recent years, the increasing interest in having better control of
these processes together with the increasing availability of
process analytical technologies (PAT) has driven the
application of data driven modeling for process monitoring,
quality prediction, and control (García-Muñoz and Mercado,
2013; Yu et al., 2014; Debevec et al., 2018). However, irrespective
of the modeling approach, building models that capture
meaningful variability of the processes and which are not
limited to describe individual process phases requires the
identification and alignment of the various phases. In
general, methods that do not consider the steps for phase
identification and batch alignment, are less robust in dealing
with data coming from multi-phase, uneven processes.
González-Martínez et al. (2014) demonstrate that the
methods which do not synchronize key events of the batch
process diminish the performance of the data driven models. In
most cases, these methods rely on unfolding the data in the
variable-wise direction. This eliminates the practical need for
aligning batches of uneven duration and can deal with non-
aligned data to a certain extent (Facco et al., 2009; Wold et al.,
2009; Mingxing et al., 2010). The observation-wise unfolding-T
scores batch-wise unfolding (OWU-TBWU) (Wold et al., 2009)
is an example of these types of methods. It is widely considered
as the default pre-treatment step for batch data of uneven
duration. In OWU-TBWU, variable-wise unfolding is applied
to train a Partial Least Squares (PLS) model that links the
unfolded data with a dummy time-batch progression
variable. The data is then interpolated based on the PLS
T-scores and finally, batch-wise unfolding is applied to the
interpolated data. The interpolation procedure applied as
part of OWU-TBWU is known as TLEC (González-Martínez
et al., 2014). In most cases, these methods have been
demonstrated in simple benchmark processes that normally
would not require phase identification however its applicability
to real industrial scenarios is limited to individual process
phases that must be manually isolated from the rest of the
process.

One of the most intuitive ways to identify different phases in a
process is determining the time when the events that mark the
phase change occur. In principle, this information can be
extracted from the data in the form of distinctive events on
the trajectories of certain process variables. Doan and Srinivasan
(2008) propose the automated identification of Singular Points
(SP) in the data as a method to denote when the phase change
takes place. Different methods have been proposed to identify SP
directly from data trajectories. Srinivasan and Qian (2005) use

numerical strategies based on the definition of three different
types of SP that can occur in a given process, i.e., 1) extremes, 2)
sharp changes or discontinuities, and 3) trend changes. Thus,
according to this method, the identification of SP in the signal is
based on ad-hoc thresholds defined for 1) signal changes over
time, 2) numerically approximated first and second derivatives,
and 3) the regression analysis of linear models. Alternatively,
Kaistha and Moore (2001) proposed the use of signal filters to
extract the event times from the trajectories, however this
requires the a priori definition of the features to be used as
signal filters. Maurya et al. (2007) use an approach equivalent to
dynamic trend analysis were the data trajectories are halved
sequentially to identify trends based on the fitness of
polynomials of up to second degree. Once the trends are
identified, the SP are defined as the changing time between
trends, and a fuzzy-matching-based method is used to
estimate similarity of new trajectories with the identified
trends. Although these approaches are very intuitive, it is
difficult to generalize and to automate their application to
different processes, because they require the definition and
tuning of ad-hoc strategies. Additionally, only univariate
changes are used as source of information on the process
phases and some of the strategies can be highly sensitive to
noise in the signals.

More advanced methods which consider automated phase
identification are divided into two groups: either based on
clustering analysis or model identification (Wang et al., 2018).
Approaches based on clustering analysis can perform supervised
or unsupervised learning (i.e., imposing the knowledge on the
number or the type of expected process phases, or using methods
which aim to learn the existence of different phases directly from
the data). In the adjoined multi-model approach for monitoring,
proposed by Ng and Srinivasan (2009), a fuzzy C-means
algorithm for clustering is used to determine the membership
grade of every data point in the space of the process variables.
Overlapping PCA models are trained to deal with points that
share membership between consecutive process phases. Wang
et al. (2018) implement a sequential clustering approach with an
ad-hoc index defined to evaluate the goodness of the phase
partition. A support vector data description method is then
proposed to classify new data. Zhang et al. (2018) use a
standard implementation of K-nearest neighbor for clustering
on the space produced by a moving window Principal
Component Analysis (PCA). Luo et al. (2016) propose the
warped k-means method to identify clusters directly on the
time series trajectories of the selected variables. The main
limitation of these methods is the space on which the
clustering analysis is performed. The use of PCA based latent
space or the space of the process variables, significantly reduces
the ability to identify clusters for the different phases of the
process.

Methods based on model identification explore formulations
based on the fitness of a given model to a period of the time series
and the transition to a different model when a change in phase
occurs. PCA or extensions of this method are commonly used as
modeling strategy. The goal is to identify a model from the data
and to establish a method to determine when the data deviates
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from the model. The deviation is then an indication of change on
the process phase. Qiao et al. (2012) and Sun et al. (2011) propose
PCA based model identification strategies and define statistical
parameters as the cumulative contributions between different
PCA models to identify the phase change. Liu et al. (2016)
implement a similar approach based on kernel-PCA. This
method can deal with non-linear relations in the data. More
recently Wang et al. (2019) propose a combined approach
between model identification and cluster analysis. A linear
dynamic model is first identified and then distances are
computed between the trajectories of different batches to apply
cluster analysis. K-means was used to identify clusters in the
distance data. Beaver et al. (2007) use non-hierarchical k-PCA as
way to find an optimal separation of phases by finding the best set
of PCA models to fit a given set of process windows in the time
series. Thus, the final optimal solution will provide the partition
points as well as the number of process phases. Zhu et al. (2011)
present a more robust method based also on process windows in
the time series, but in this case, a coupled Independent
component analysis (ICA) and PCA model are fitted to the
lagged data of each window. The lagged data is selected based
on the number of phases in the process, multiple alternatives of
phase separation are implemented and a final assembled model is
constructed by aggregating solutions from different alternatives
on the number and location of the clusters. Finally, other methods
that do not require model identification or cluster analysis have
been also proposed, e.g., Guo and Jin (2019) propose amethod for
phase identification based on the changes in the correlation
matrix of a moving window of operation.

Most methods for batch alignment are based on time
interpolation for compression/expansion of the time trends.
This transformation is applied following different approaches:
1) the direct interpolation from start to end, 2) the use of an
indicator variable, and 3) the dynamic time warping DTW
(Kassidas et al., 1998). Although DTW can be very effective to
synchronize two or more time series, it suffers of some drawbacks
that limit its applicability significantly. DTW can not be applied
for online monitoring, it is computational expensive and the
shrinking/expansion effect on the time trend might result in
distorting the information contained in the data (Guo and Jin,
2019). Solutions to the distortion problem have been proposed
based on the combination of global and local constraints to the
distance optimization that is solved in DTW (Spooner et al., 2017;
Zhang et al., 2017). However, the complexity of the problem that
needs to be solved increases and a single generic strategy that will
guarantee non-aggressive and non-pathological warping in every
case does not exist.

This paper presents a novel method based on machine
learning algorithms for phase identification and alignment.
The proposed approach combines unsupervised and
supervised learning strategies and exploits the principles of
manifold learning to reduce the dimensionality of the space
that contains information about the phase changes in the
process. First, t-SNE is used to embed the data on a reduced
space where the process phases can be identified more easily.
Then, SVMs are used to model the manifold learning performed
by t-SNE. A similar approach, known as inductive manifold

learning, has been proposed in applications of partner
recognition Kim and Lee (2014). In the second stage of the
method, supervised learning based on SVMs is applied to
classify the process condition at every time point and
determine its membership to the corresponding phase. Batch
alignment is achieved through the sequential alignment of the
individual process phases. The time progression of every phase is
sub-sampled at a constant frequency using linear interpolation to
guarantee that every phase has the same duration in all batches.
Some of the advantages of this method compared to other
approaches are: 1) it performs unsupervised phase
identification, therefore it does not require pre-defining the
number of phases or the events that indicate phase changes. 2)
It works for processes with uneven phase duration. 3) It accounts
and exploits the sequential nature of the phases in the process. 4)
It results in a very intuitive visualization of the phases of the
process and allows for an early identification of deviations in the
process. 5) It is a low complexity method with very low
computational requirements for online implementation. 6) As
opposed to other approaches based on PCA, it does not make
assumptions on linearity and normality of the data. 7) Only two
elements must be defined for the algorithm to work, i.e., the
variables used for phase identification and the perplexity
parameter of the t-SNE algorithm. 8) Distortion in the time
progression is not induced because the data is interpolated from
the start to end of every phase at constant frequency. The
effectiveness of this method is demonstrated not only on a in-
silico benchmark case (i.e., the Pensim process), but also on two
real industrially relevant cases based on data obtained from the
large scale production of APIs.

The first part of this paper provides a background on the
methods used in the proposed algorithm, i.e., t-SNE and SVMs
for regression and classification. Then the proposed method is
explained, supported by the results obtained from its application
to the Pensim benchmark case study. The results section discusses
the application of the proposed method to the industrial cases.
Data from a hydrogenation reaction and the operation of a
centrifuge-dryer is evaluated to determine the performance of
the method in real process data. Finally, the conclusions
summarize the main findings of this work.

METHODS

This section provides background on the machine learning
algorithms used as part of the proposed method for automated
batch identification and alignment. The main aspects of the t-SNE
method and SVMs are discussed. For further insight into these
methods, the reader is directed to the cited references.

t-Distributed Stochastic Neighbour
Embedding
t-Distributed Stochastic Neighbour Embedding developed by Van
der Maaten and Hinton (2008) is a non-linear dimensionality
reduction algorithm that has proven to be very effective for
visualization of high dimensional data (Van der Maaten, 2014;
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Kobak and Berens, 2018). Three main aspects of t-SNE can be
highlighted when it is compared with PCA. PCA is used as reference
because it is a widely appliedmethod for dimensionality reduction in
applications of phase identification and in general in data driven
modeling. First, PCA aims to keep in the low dimensional
space the directions of largest variability while t-SNE goal is
to keep the local similarities and as result magnifies
differences between data points. Secondly, PCA’s reduced
space results from the linear combinations of the input space
while t-SNE is a non-parametric manifold learning method
for which does not exist an explicit mathematical form of the
reduced space and for which does not exist an inverse form.
Finally, PCA can be obtained via singular value
decomposition and the dimensionality reduction is limited
by the linear correlations found in the input space, t-SNE
dimensionality reduction results from minimizing the
Kullback-Leibler (KL) divergence over all data points, an
normally a bi-dimensional or tri-dimensional space is
selected as output to allow visualization of embedded data.
The use of t-SNE for applications in data driven modeling has
being investigated in very recent years, however the focus has
been limited to visualization and fault identification (Zhu
et al., 2019; Zheng and Zhao, 2020). In this work, t-SNE was
chosen because the mentioned characteristics of the method
fit well with the requirements of the application for process
phase identification. The goal is to identify similarities
between data points belonging to the same process phase.
There is not a priori knowledge on the distribution of the
data, nor on the type of correlations present. The
dimensionality of the reduced space is kept low and it is
non-dependent of the case.

Conceptually t-SNE aims to find the distribution of data
points in the reduced space that retains most of the original
local similarities between data points in the high dimensional
input space. t-SNE was proposed as a modification to the
original Stochastic Neighbor Embedding (SNE) by Hinton
and Roweis (2002). In SNE the conditional probability, pj|i,
for the similarity of point xj respect to point xi, based on the
Euclidean distance in the original high dimensional space, is
given by Eq. 1.

pj|i �
exp( − ����xi − xj

����2/2σ2
i )∑k≠iexp( − ‖xi − xk‖2/2σ2

i ) (1)

This conditional probability is high for neighboring points,
very low for distant points, and follows a Gaussian
distribution centered at xi with variance σi. The value
assigned for σi in the SNE method is determined based on
the perplexity parameter Perp(Pi) which is the main tuning
parameter of the method and needs to be defined by the user
depending on the application. The perplexity can be
interpreted as a measure for the expected number of
neighbors and it is related with the probability distribution
Pi ∼ N (xi, σi) through the Shannon entropy of Pi according to
Eq. 2 (Van der Maaten and Hinton, 2008). Binary search

methods or root-finding methods can be used to determine
the values of σi. These solutions should make the perplexity of
the obtained probability distributions match the value
specified by the user (Van der Maaten, 2014).

Perp(Pi) � 2−∑j
pj|i log2pj|i (2)

For t-SNE a symmetric function is used to describe the
similarities in the high dimensional space. This is achieved by
using the joint probability pij given by Eq. 3whereN is the number
of data points. In t-SNE the similarities between points in the low
dimensional space are described using a normalized t-distribution
with one degree of freedom instead of the Gaussian distribution
used in the original SNE. This reduces the crowding of the
embedded points in the low dimensional space because the
heavier tails of the t-distribution make that dissimilar points in
the input space to be embedded farther apart in the low
dimensional map. This results in creating more space to
distribute the locally similar points (Van der Maaten, 2014).
The joint probability qij for the two points, yi and yj, embedded
in the low dimensional space is given by Eq. 4.

pij �
pi|j + pj|i

2N
(3)

qij �
(1 + ∣∣∣∣∣∣∣∣∣∣yi − yj

∣∣∣∣∣∣∣∣∣∣2)− 1
∑k≠l(1 + ����yk − yl

����2)−1 (4)

The manifold learning in t-SNE is achieved via the
minimization of the loss function. This loss function is the KL
divergence between the joint probabilities of the points in the
low-dimensional space (qij) and the input high dimensional
space (pij) according to Eq. 5.

L � ∑
i,j

pijlog2
pij
qij

(5)

Minimizing the KL divergence results in finding the location
for the N data points in the low dimensional space that keeps the
similarities between points as close as possible to the originals.
The exact solution of this optimization problem can be obtained
applying descent methods using the analytical gradient of the KL
divergence shown in Eq. 6. Since the solution of this problem is
O(N2) the memory requirements can become too large when the
number of data points in the data set is large. To solve this issue
the t-SNE method can be applied based on the Barnes-Hut
approximation. The reader is referred to Van der Maaten
(2014) for further details on the derivation of this approximation.

zL
zyi

� 4∑
i,j

(pij − qij)qij (yi − yj)
∑k≠l(1 + ����yk − yl

����2) (6)

Finally, the manifold learning obtained via t-SNE is non-
parametric, this means that it can not be inverted and can not be
applied to embed new data points in an already existing low
dimensional space. This limits significantly the application of this
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method. A solution already proposed is to parameterize the t-SNE
manifold learning with the parallel application of a machine
learning method for regression. Van der Maaten (2009) propose
the use of artificial neural networks (ANN) for this purpose. This
approach has been already tested in different applications,
however tuning the ANN to reproduce the manifold learning
is rather complex task with many degrees of freedom. Zhu et al.
(2019) propose an algorithm to implement this approach in the
visualization of process data through parametric t-SNE. In this
paper an alternative approach is implemented based on SVM for
regression. Thus, the manifold learning obtained via t-SNE is
approximated via SVMs. A similar approach has been already
proposed to perform pattern recognition (Kim and Lee, 2014).
This approach is preferred because the degrees of freedom on the
SVMs are lower than those of an ANN, making the
implementation more robust and reproducible. The accuracy
achieved via SVM on the manifold learning proved to be
sufficient for the intended application in the three cases
evaluated in this work.

Support Vector Machines
The proposed algorithm for phase identification of batch
processes exploits SVMs for two different purposes. First, a
non-linear regression model is trained to reproduce the
manifold learning obtained via t-SNE. Secondly, binary
classification models are trained to assign the membership of
the new data points to each of the identified process phases. In
this section some concepts on the use of SVMs for regression and
classification are introduced.

The working principle of an SVM is to define an
hyperplane in a high dimensional feature space (F4Rnf )
which, 1) for the classification problem discriminates the
data or 2) for the regression problem best describes the
response in terms of the predictors. This hyperplane is
defined in terms of the support vectors which are a subset
of data points on every side of the hyperplane in the feature
space. If φ : Rni →F is the mapping function between the
input space where the data points are initially located
(x ∈ Rni ) and the feature space, a linear hyperplane is
defined as shown in Eq. 7.

f (x) � wTφ(x) + b : (w,φ) ∈ Rnf , b ∈ R (7)

However, determining the location of the hyperplane in
terms of w and b does not require φ(x) to be evaluated
explicitly. Instead, the inner product in the feature space
φ(xi)Tφ(xj) can be replaced by the kernel function K(xi, xj)
(Aizerman et al., 1964). This results from the application of the
Mercer’s condition (James and Russell, 1909). The training
method for SVMs is derived from the primal and dual
formulation of the optimization problem, which is different
for classification and regression. The binary classification
problem considers the output to be a class variable
yi ∈ {−1, 1} and the equation of the hyperplane to be f (x) � 0
for all points lying in the hyperplane. Thus, the problem of
finding the best discriminating hyperplane is to determine the
values of w and b that maximize the margin, i.e., the distance

from the hyperplane to the support vectors. This problem is
equivalent to minimizing the L2-norm ‖w‖ subject to the
condition that for all the training data points yif (xi)≥ 1 with
the support vectors being located in the boundary where
ykf (xk) � 1. The Lagrangian for the primal formulation of
the optimization problem for classification is given in Eq. 8,
where αi are the multipliers.

J P � 1
2
(wTw) −∑

i

αi(yif (xi) − 1) (8)

The dual formulation in Eq. 9 results from introducing
the optimality conditions and replacing the inner product in
the feature space by the kernel function. The solution to this
optimization problem results in the formulation of the
classification hyperplane as f (x) � ∑iαi*yiK(x, xi) + b *

(Burges, 1998), where α* and b* are the optimal solutions
for the Lagrangian multipliers and the intercept,
respectively.

max
α

∑
i
αi − 1

2
∑
i

∑
j

αiαjyiyjK(xi, xj)
s.t. ∑

i
αiyi � 0

(9)

Equation 10 shows the regularized optimization problem for a
regression problem. The loss function in this case is defined based
on an e-intensive loss function according to the original
formulation of the SVM problem by Vapnik et al. (1996). In
this case the output yi is a continuous response variable and the
intensive loss function equals zero if

∣∣∣∣yi − f (xi)
∣∣∣∣≤ ε, otherwise it

takes the value of
∣∣∣∣yi − f (xi)

∣∣∣∣ − ε.

min
w,b

1
N
∑
i

| yi − f (xi)|ε + λ

2
||w||2 (10)

The primal formulation for this regression problem is given
in Eq. 11. Ei, E′

i are the slack variables which allow violation of
the error margin around the regression hyperplane and the
constant c> 0 establishes an overall tolerance for these
violations.

min
w,b,E,E*

1
2
(wTw) + c∑

i

(E i + E′
i)

s.t. yi − f (xi)≤ ε + Ei

f (xi) − yi ≤ ε + E′
i

E i, E′
i ≥ 0

(11)

As in the case of the classification problem, the dual
formulation allows to find the solution without the need for
computing the inner product explicitly in the feature space.
Equation 12 presents the dual formulation obtained from the
Lagrangian, the optimality conditions and the kernel function.
The solution of this problem results in the dual representation of
the regression model f (x) � ∑i(α*i − α′*i )K(x, xi) + b* (Suykens
et al., 2002).
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max
α,α′

−1
2
∑
i,j

(αi − αi′)(αj − αj′)K(xi, xj)
−ε∑

i

(αi − αi′) + ∑
i

yi(αi − αi′)
s.t. ∑

i

(αi − αi′) � 0

αi, αi′ ∈ [0, c]

(12)

Zhang and Song (2015) discuss several different kernel
functions. The method proposed in this paper uses the kernel
of a Gaussian Radial Basis Function (RBF) for classification and
regression. The RBF kernel K(xi, xj) � exp(−c����xi − xj

����2) has
proven to be successful in many applications, the model
fitness can be tuned via c to guarantee accuracy and prevent
overfitting.

AUTOMATED PHASE IDENTIFICATION
AND ALIGNMENT FOR BATCH
PROCESSES

Overview
The proposed algorithm for automated identification and
alignment of phases in batch processes consists of three
stages. The main input required for the algorithm is a set of
training data, i.e., a given set of historical batches that display
the normal operation of the process. The user must define one
batch to be the reference batch and the set of variables to be used
by the method to learn information on the phases of the process.
Ideally these variables should display the changes that are
associated with the different phases of the process. Once
these inputs have been defined the first stage of the
algorithm will result in the unsupervised identification of the
process phases. The information obtained from this stage
consists of the reference time points in time series of the
reference batch used for phase identification and the
embedded map where clusters are formed by data points of
every identified phase. In the following stage these elements are
used to train the machine learning method which is the core for
the phase identification and alignment of the future batches.
This method consists of two consecutive SVMs. First, a
regression model which is trained to reproduce the manifold
learning obtained by t-SNE and then a set of SVM models for
binary classification that are trained to assign the membership
of every new data point to the corresponding phase of the
process. Thus, the second stage results in the models that will be
used for the implementation of the algorithm to new batches.
The final stage is the online application of the method for batch
alignment. This stage consists of the application of the already
trained SVMmodels following a simple programmed sequential
logic to assign the phase membership to the new data points.
Figure 1 shows the information flow through the different
stages of the algorithm. Every stage of the proposed method
is now explained in detail.

In-silico data generated from the Pensim benchmark case is
used in this section to demonstrate the results obtained through
the application of the proposed method. Pensim is a model for the
industrial scale production of penicillin (Birol et al., 2002). The
process data was obtained from simulations of the Pensim model
implemented in RAYMOND (Gins et al., 2014).

Phase Identification
Batch process data obtained from online sensors which is
sequentially concatenated every time that a new batch is
produced is depicted as a 3-way data array or tensor.
represents a training set that consists of the data stored from
n historical batches, for which m variables were continuously
measured for a given l number of time instances. Since every
batch can have a different duration, l is a vector with the number
of time instances per batch as individual elements. This means
that the tensor X consist of n horizontal slices of data with
different lengths as shown in Figure 2. This figure also shows the
batch-wise unfolded version of X to illustrate how the batch data
normally consists of several uneven sets of equivalent data. Every
set represents a phase in the process.

As shown in Figure 1 the method takes X as input. Out of this
data, the user must define first the reference batch and the subset
of m′ ≤m variables which are informative with respect to phase
changes in the process. The reference batch is a single batch from
the training data that serves as a guide to identifying the process
phases. Selecting this batch is non-critical and any batch in the
training data that displays normal variability of the process
(i.e., normal operation conditions NOC) can serve as a
reference. Selecting a batch under NOC eases the learning
process and favors the correct phase identification. Contrary,
the subset of phase informative variables is critical for the phase
identification and the chosen variables might affect the outcome.
Generally, variables with a high information content on the
process phase must be favored to be part of this subset.
However, the inclusion of too many variables can result in the
identification of many changes in the process which are not
necessarily related with changes in the process phase. The
training data is then split into two tensors, i.e., X′

ref ,[1×m′×lref ]
and X′

[n×m′×l].
Variable scaling is applied to this data using the minimum and

maximum values of the time series for each variable in all batches
of the training data. Scaling the data in this way guarantees that
every variable takes values in the same range, i.e., [0, 1], but most
importantly it guarantees that the time trajectories for each
variable display the same dynamics of the original data. The
scaled data is used to construct the matrix Σ[ζ×m′ lref ] according with
Eq. 13, where ζ � n∑ili is the total number of time instances along
all batches in the data set. This matrix results from concatenating
the matrices of outer product (⊗) between corresponding vectors
in the third mode of X′

ref and X′. These can be interpreted as the
cross- and auto-correlation matrices for each variable of each
batch with respect to the reference batch. Given the scale applied
to the data, the individual elements of Σ take also values in the
range [0, 1].
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Σ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(1,1,:) ⊗Xref (1,1,:) , / X(1,i,:) ⊗Xref (1,i,:), / X(1,m′,:) ⊗Xref (1,m′,:)
: : :

X(j,1,:) ⊗Xref (1,1,:), / X(j,i,:) ⊗Xref (1,i,:) , / X(j,m′,:) ⊗Xref (1,m′,:)
: : :

X(n,1,:) ⊗Xref (1,1,:), / X(n,i,:) ⊗Xref (1,i,:), / X(n,m′,:) ⊗Xref (1,m′,:)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

Σ can be visualized using heat maps. Figure 3 depicts a
fraction of Σ for the Pensim data, i.e., the auto-correlation
of the reference batch and the cross-correlation with another
batch. The heap maps show the highly deterministic character
of Σ which contains information on the time points at which

equivalent changes occur in every batch with respect to the
reference batch. This can be seen clearly in a simplified case
involving a dummy process that consist of a single variable
undergoing a step change. Figure 4 shows how the heat map
for the cross-correlation matrix Σ of two uneven batches of
this dummy process. This shows how the information about
the time when the phase change occurs in both batches is
captured in Σ. Additionally, this shows how the column
vectors of Σ are highly correlated. From Eq. 13 it is clear
that this correlation is by construction the result of the outer
product and the concatenation. Thus, the next step is to
determine a reduced version of Σ with a significantly lower
number of columns but which contain as much as possible the
original information on the change of phases in the process.

FIGURE 2 | Data structure in multi-phase batch processes.

FIGURE 1 | Architecture of the method for automated phase identification and alignment.
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For the case described in Figure 4, it is clear that this matrix
could be reduced to a single column matrix with no loss on the
information. In the proposed algorithm, this factorization is
performed via QR decomposition of Σ. QR factorization is used
to estimate the rank deficiency of Σ (Chan, 1987). This also
allows to identify the R columns of Σ which are sufficient to
express most of the variance in Σ. The column permutation
matrix Π is identified such as ΣΠ � QR, and the absolute
diagonal elements of R are in descending order. Thus, the
first R elements of Π correspond with the columns that are kept
from Σ. In the simple step change case described before, the
rank of Σ is one (R � 1) and therefore a single column selected
after tref is sufficient to capture the same information regarding
the phase change for the Batchi.

Once the informative columns from Σ are identified all
other columns turn redundant and can be discarded. t-SNE
method is then applied to Σ′[ζ×(R+1)], which is the reduced
version of Σ. In Σ′ one additional column has been added to
account for the time progression of each batch. This input
accounts for the sequential nature of the process, and it is
scaled to the range of the other variables, i.e., [0, 1]. The time
progression is computed as the time of every data point
divided by the total duration of each batch. The conditions
for the application of t-SNE are the standard Euclidean
distance and the approximation based on the Barnes-Hut
method. The exact t-SNE optimization method was not
considered due to the high number of elements in the data
set, which is the same number of rows in Σ′, i.e., ζ. The
perplexity parameter, which as explained before is a
measure for the overall expected number of neighbors, can
be interpreted as the minimum number of time instances that
are expected to be part of a single phase, multiplied by the
number of batches in the training data set, i.e., lphase × n. The
reason is that all time instances for all batches belonging to the
same process phase are expected to be neighbors in the
embedded low dimensional space. The application of t-SNE
to the data in the R-dimensional space results on embedding
the data into a two dimensional space. Figure 5 shows the
t-SNE reduced space on which the data from Σ′ has been
embedded. This visualization already demonstrates the
reason for using t-SNE as technique for manifold learning
and dimensionality reduction with the aim of phase identification.
Since t-SNE finds the location for every data point in the reduced
space as the result of an equilibrium of repulsion and attraction
forces between points, the embedded space will favor the formation
of clusters where similar points come together. In this application it
means that points that belong to the same process phase will be
separated from those that belong to other phases.

FIGURE 3 | Cross-auto-correlation matrix for two batches of the Pensim process.

FIGURE 4 | Cross-correlation matrix for a step change.
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The final step of this stage is to assign a class to the clusters
formed in the reduced space obtained via t-SNE. Due to the
ability of t-SNE to form separate clusters for groups of
neighboring data points, this task is highly successful and
can be performed with standard methods as k-means with a
test criteria such as the Davies-Bouldin index (Thakare and
Bagal, 2015) to automatically determine the number of
clusters present in the t-SNE space. Density based spatial
clustering methods such as DBSCAN (Ester et al., 1996) are
preferred when clusters with arbitrary forms are present in
the embedded space. The labeling of the classes is performed
based on the identified clusters but following two logic rules.
First, a cluster takes a label for a process phase if this contains
data points from every batch in the training data set. This
means that only common process conditions observed in all
batches are identified as valid process phases. In case other
clusters are formed in the embedded space which do not have
data points from every batch in the data set, they are
associated with out of trend conditions. Secondly, the
labels are assigned as a numerical discrete sequence based
on the know progression of the process. It must be clarified
that due to the nature of the manifold learning applied via
t-SNE, the location of the clusters in the reduced space do not
reflects the sequential order of the process phases. The colors
of the embedded points in Figure 5 are assigned based on the
clusters identified using DBSCAN.

As shown in Figure 3 the completion of this stage results on
three elements that are relevant for the next stage of the
algorithm, i.e., 1) the time points on the variables of the
reference batch which were found to be sufficient to construct
the cross-correlation matrix Σ′, 2) the embedded map obtained
from the application of t-SNE and 3) the number of sequential
phases identified as clusters in the embedded map and the
corresponding labeled data.

Offline Training
As shown in Figure 1, the model training stage consists of two
supervised learning steps based on SVMs. First, the regression

model is trained to reproduce the manifold learning obtained from
t-SNE. This step is required because t-SNE is a non-parametric
method that do not to allow mapping new data to an already
learned embedded space. Thus, one needs to rely in other methods
to apply this transformation to the new data. Secondly,
classification is performed based on independent one-vs-all
SVM models trained for the binary classification of every
identified process phase. This means that every model evaluates
the membership of the data to the phase for which the model was
trained. Figure 6 depicts the structure of the machine learning
method described in this paper. This figure represents the
transformations applied by the described methods and their use
to move from the original cross-correlation space to the phase
classification in the 2-dimensional embedded space.

The training and cross-validation of the SVM for regression is
performed using Σ′ as input and the corresponding coordinates in
the t-SNE embedded space as responses. As opposed to the version
of Σ′ used for the original phase identification, the extra column
used to impose the sequential character of the process is in this case
the count of completed phases at every data point. This means that
the SVM models take the knowledge of the number of phases that
have already been completed at a given time in the process as an
input. For the online implementation, this variable is updated every
time a new process phase starts. 5 fold cross-validation is used to
train the regression model preventing overfitting. Figure 7 shows
the results obtained on the manifold learning using the SVM
regression models. The comparison of these results with
Figure 5 shows that the trained SVM models for regression
approximate the embedding and clustering obtained from t-SNE.
The results on the three cases evaluated show that this
approximation is enough for the current application.

The output from the SVM regression model is used to train the
sequential SVM classification models. Additional dummy data is
generated to improve the classification performance of every
individual SVM. This dummy data is generated using the
same data points from Σ′ but with a wrong assignment of the
completed phase count. This dummy data allows to train the
SVM model to distinguish wrongly labeled data from data with

FIGURE 5 | t-SNE embedded space for Pensim process.
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the correct membership assignment. The SVM regression
mapping model is used to embed the dummy data on the 2-
dimensional space. The resulting embedding for the dummy
data does not follow the transformation obtained from the
application of t-SNE because this data was not present on
the initial dimensionality reduction. Nevertheless, this serves
the purpose of discriminating correctly labeled data from that
with a wrong phase label. Additionally, this allows a better
definition of the boundaries for classification around the cluster
in the embedded space. Figure 8 shows the boundaries obtained for
the clusters representing each of the identified phases in the Pensim
process. These borders are drawn by evaluating a grid of discrete
points of the 2-dimensional embedded space. These results
demonstrate how this method can also be used for online
visualization of the progress of the process through its different

phases. Finally, it can also support the early identification of
deviations in the process, which can be seen as data points that
are embedded into out of phase regions.

The final part of this stage is to determine a fixed time duration
for each phase in the process. This duration will be used to align
every phase in every batch. The algorithm proposed in this paper is
based on the time interpolation to sub-sample the data so the final
duration per phase is the same for every batch. The algorithm
selects the shortest duration of every phase found in the training
data as the fixed duration to which all other batches will be aligned.
This means that for every phase in every batch a time compression
factor τ ≥ 1 is determined. Thus, the time series for each variable is
sub-sampled based on τ, resulting in a new data set X[n×m×lmin] for
which all batches have the same time duration and the process
phases are perfectly aligned. The parameter τ turns into an

FIGURE 6 | Manifold learning and clustering for phase classification.

FIGURE 7 | Manifold learning via SVM-regression for the Pensim process.
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additional variable of the process which is included as an input for
the data driven modeling of the process.

Online Phase Alignment
The goal of this stage is to label every new data point measured in
the current batch as member of one of the already identified
process phases, and then apply the time alignment factor to
synchronize the progress of the current batch with respect to
historical batches. Assigning the phase label to every new data
point first requires computing its cross-correlation with the
reference batch. This is done based only on the R identified
reference time points. This results in a single row vector with R
elements. This row vector is extended with the count of the already
completed phases in the current batch. This serves as the input for
the SVM regressionmodels. Once the current data point ismapped
to the embedded space the programmed decision logic shown in
Figure 9 is applied to determine the membership of the current
data point. First, the SVM model for classification of the current
phase is applied, if the output label still corresponds with the
current phase then the algorithm finishes and the membership is
preserved. In case the output of the SVM model indicates that the
current data point does not belong to the current phase then this
triggers an extra verification step. The current data point is
evaluated on the SVM model for the next phase. The count of
already completed phases is temporary updated by one and then
the input is embedded again and evaluated by the SVM model. If
this results in the current data point being member of the next
phase then the label is assigned and the count of completed phases
is kept. Otherwise, the current data point will be treated as out-of-
phase with the label of the current phase. Several successive points
found to be out-of-phase could be an early indication for an
unexpected deviation in the process.

The online application of this algorithm has a low
computational cost making feasible its online implementation.
The complete evaluation of membership for the new data point
requires in the worse case, i.e., at time points where a phase

change occurs, 1) computing R product operationsO(R), 2) up to
two applications of the SVM-regression models and 3) up to two
applications of the SVM classification models, the complexity of
the SVMmodels is linear on the number of support vectors times
the number of inputs O(nSVR).

Since the actual sampling factor for every phase of the current
batch is only known when the phase is completed, the proposed
algorithm for time alignment considers applying the mean time

FIGURE 8 | Classification boundaries for every identified phase of the Pensim process.

FIGURE 9 | Classification decision logic for online phase alignment.
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compression factor of the phase (~τ) while the phase is still not
completed. ~τ is computed from the results obtained with the
training data set. This leads to two possible extreme results: the
time progression is accelerated or decelerated. The first case
implies that the current phase finishes before the expected
aligned time for the end of the phase. In the second case, the
expected aligned time is reached and the phase is not yet
completed. To solve those deviations the algorithm
dynamically adapts the value of τ. In the first case τ is reduced
at once to the value that guarantees the phase alignment, while in
the second case τ is increased with every extra time point till the
time when the phase change occurs.

RESULTS

In this section, the final results on the application of the proposed
method to the Pensim in-silico process are presented and
discussed. Then the application of the method to the two
industrial data sets is addressed. The industrial cases
correspond to multi-phase processes which are part of the
production lines of different API at commercial scale. The
cases presented in this paper are a batch hydrogenation
reaction and a batch centrifuge-drying process. In every case
the data set available from the process consisted of several batches
for which several variables were measured continuously. In every
case the data was divided into training and validation sets. The
computational complexity of the method proposed in this paper
was evaluated based on the time required to process single data
points for every case. The computational times were measured
working on a laptop computer, Core i7-9750H @ 2.6 GHz and
16 MB of RAM.

Pensim Process
Figure 8 demonstrates that the implementation of the proposed
algorithm on the Pensim process resulted in the identification of 4
phases for the process. Figure 10 shows the overlay plot for two of
the simulated batches of the Pensim process: one from the training
data set and one from the independent validation data set. Four
process variables were selected to perform the phase identification
and alignment following the proposed method. The trajectories of
these variables display the changes occurring throughout the
process. The dissolved oxygen and the pH follow smooth
trajectories with information about the changes occurring during
the batch stage of the Pensim process. The feed rate marks clearly
the start of the fed-batch phase, and the Penicillin concentration
displays the dynamic behavior during this phase. The vertical red
lines in Figure 10 mark the times identified for the phase change
based these variables and the proposed method. The first phase
identified corresponds to the lag phase of the bacteria. During this
time the bacteria adapts to the medium and not much changes are
observed. The second phase corresponds with the exponential
growth of the bacteria, this results in the rapid reduction of
dissolved oxygen and the increase of temperature, no significant
production of penicillin is observed yet. The final phase of the batch
stage of this process is the extreme condition with low dissolved
oxygen and low substrate concentration, increase on temperature

and pH are observed and these conditions precede the start of the
fed-batch operation. The final phase of the process is the fed-batch
phase. In this phase the concentration of penicillin starts increasing.
Figure 10 demonstrates how the proposed method is able to
identify the phase changes even when they occur at very
distinctive times, and with differences in the absolute values of
the variables. Additionally, this case demonstrates that the method
does not rely solely on variables displaying abrupt changes to
identify the change on the process phase. On the contrary in
this particular case the variables used for alignment, display
smooth curvatures, and the manifold learning and clustering
method is still able to find the partition times.

The performance of the method presented in this paper was
evaluated based on the results obtained for this benchmark case.
Results in terms of phase identification and alignment, as well as,
the impact on applications of process monitoring, i.e., fault
identification and quality prediction were considered. Two
reference methods reported in literature for phase
identification and alignment were implemented as well to
compare the performance. A set of simulated normal batches
from the Pensim process were used to train the algorithms
implemented for phase identification and batch alignment.
The resulting pre-processed data was used to train standard
PCA and PLS models. The PCA model was used for fault
identification while PLS was used for regression of the output
variables. It is important to mention that the focus of this paper is
on the performance of the proposed algorithm for its purpose of
automated phase identification and alignment, the performance
for applications of process monitoring, fault identification and
regression depend on the interplay with the selected modeling
method.

The reference methods implemented for phase identification
and alignment were the indicator variable (IV) with manual
phase identification and the method proposed by Srinivasan
and Qian (2007) which uses singular points for phase
identification and dynamic time warping for alignment (SP-
DTW). The IV method was set up to split the process in the
two well known phases, i.e., batch and fed-batch, and to use the
volume as indicator variable for the linear interpolation and
alignment. The SP-STW method was briefly described in
Section 1. The singular points were identified according with
their definition over the trajectory of the dissolved oxygen. This
variable was selected because it displays most of the process
changes occurring during the operation, and it does not have
abrupt changes due to control actions, which can be mistaken as
SP. The DTW was implemented using the values [50,1,1] for the
Sakoe-Chiba band constraint, and the global and local slope
constraints, respectively.

The A set of four different faulty conditions were simulated for
this case study. The faults are, 1) a ramp change on the feed rate,
2) a ramp change in the feed temperature, 3) the temporary
reduction on the aeration flow rate, and 4) the change on the pH
of the solution used to control the pH in the reactor. To evaluate
the performance for fault identification, two thirds of the
simulated data were used for model training, and the
remaining was split into normal and faulty batches. The
results obtained in terms of fault identification for the
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different methods and faults evaluated are reported in Table 1.
These results are given in terms of the accuracy, which is the
number of correctly labeled batches (normal/faulty) over the
total number of tested batches, and the time delay between the
know start of the fault and the detection time from the PCA
monitoring strategy. The time delay was computed as the mean
over the total of faulty batches. The overall results demonstrate
the better performance obtained by the proposed method
(tsne-SVMs) compared to the reference methods. An
equally good performance is observed for the three methods
with respect to the first two faults. This shows that the
proposed method does not hinder the fault identification
performance in cases where the deviation is unbounded and
occurs directly on one of the monitored variables. In these
cases, the fault can be easily picked by the monitoring strategy,
and the performance seems to be independent of the phase
identification and alignment method. In contrast, the fault
identification performance depends more strongly on the pre-
processing strategy in face of more complex faults. The third
and fourth faults are examples of this. In both cases, the fault is
bounded and occurs in a non-monitored variable, with an
impact on the monitored trajectories. Since the implemented

monitoring strategy is the same in all cases, we can conclude
that the better performance for fault detection is thanks to the
pre-processing method. Figure 11 shows the trajectories for
two faulty batches in the case of the temporary reduction in the
aeration rate. The original data for the dissolved oxygen is
shown together with the data trends after alignment using SP-
DTW and the proposed algorithm. Additionally, the online
monitoring plot for the overall mean squared error is
presented. The last plot includes the threshold for
normality, based on the 95% confidence interval. Figure 11
clearly shows that the effect on the trajectory due to the DTW
hinders the presence of the deviation in the faulty batches. In
contrast, the proposed method does not distort the variable
trajectory and therefore the deviation from the normal
behavior prevails in the data after alignment. As result, the
monitoring method is able of identifying on time this type of
deviation. Regarding the last fault, it can be seen that the effect
of the alignment technique is not as decisive as in the previous
fault. However, in this case, it is still the case that a better
performance is obtained when using the proposed approach.
The observed improvement respect to the reference method is
on both the detection time and accuracy.

TABLE 1 | Process monitoring applications on the Pensim process using different methods for phase identification and alignment.

Fault / Regression Method

IV SP-DTW tsne-SVM

Ramp feed rate Accuracy [%] 84.6 80.8 92.3
Delay [time points] 54 72 57

Ramp feed temp. Accuracy [%] 84.6 80.8 92.3
Delay [time points] 0 0 0

Step aeration rate Accuracy [%] 53.8 46.2 88.5
Delay [time points] 29 NA 28

Step pH basic solution Accuracy [%] 84.6 76.9 92.3
Delay [time points] 0 56 0

Prediction biomass and penicillin concentration MSE trajectories 19.86 145.4 63.1
MSE final biomass 0.0018 0.0082 0.0077
MSE final penicillin 7.4 × 10−6 1.5 × 10−4 4.5 × 10−5

Accuracy and time delay in fault detection and MSE for prediction.

FIGURE 10 | Overlay plot for two batches of Pensim with the identified phases.
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Finally, an offline PLS model was trained to predict the
biomass and the penicillin concentration throughout the
process. The results in terms of the mean squared error (MSE)
over the predicted trajectories for the two outputs, as well as the
MSE on the estimation of the final concentrations, are reported in
Table 1. These results show that the accuracy is higher when the
proposed algorithm is used, compared to the SP-DTW method.
However, the best performance is obtained using the simple IV.
Figure 12 shows the trajectories for the biomass and the penicillin

concentration throughout the process. The aligned data
trajectories, based on the application of the two compared
methods, are overlaid with the resulting prediction from the
PLS model in every case. The obtained trajectories in the case of
SP-DTW display variability which is not original from the
process but that results from the compression/expansion
applied during DTW. The added variability affects the
performance of the PLS model and results on the largest error
not only along the trajectory but also in the end point. In contrast,

FIGURE 11 | Results on the fault detection for the Pensim process. Temporary drop in the aeration rate.

FIGURE 12 | Predicted trajectories for biomass and penicillin concentration based on PLS.
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the proposed algorithm for alignment reproduces correctly the
smooth trajectory of the two outputs along the different phases of
the process without undesired variability being introduced into
the regression model.

Batch Hydrogenation Reaction
This case consists of a highly exothermic hydrogenation reaction
that is completed as a sequence of four consecutive reaction
cycles. In every cycle hydrogen is fed in the reactor to induce the
reaction, then the flow is stopped to prevent the pressure to rise
about safety limits in the reactor. The reactor partially cools down
and a new cycle is started. Hydrogen flow, pressure in the reactor,
reactor temperature and bottom temperature are the variables
selected to perform phase identification. As in the Pensim case,
the main driver for the selection of these variables is the
information contained in their trajectories. The hydrogen flow
and reactor pressure clearly display the four reaction cycles while
the temperatures contribute to identifying the overall progression
of the process because they increase with each new cycle. 15
batches are used for training while the obtained models for phase
identification and alignment are validated on 10 independent
batches.

Figure 13 shows the results obtained regarding the clusters on
the embedded map (Figure 13A), the regions learned from the
SVMs models for phase classification (Figure 13B), and the
overlay plot of the variables used for phase identification,
indicating the partition obtained by the proposed algorithm
(Figure 13C). This case illustrates the application of the
proposed method to a multi-phase processes that consists of
repetitive cycles of similar operations. The results show that the
method is not always able to discriminate the same operation
being repeated several times in the process as different phases. In
Figure 13A it can be seen that the embedded data points for the

second and third hydrogenation cycle come very close together
and the clustering method does not discriminate them as two
separate clusters. However, this does not affect the online phase
alignment because the partition time at the start of the third
hydrogenation cycle, i.e. red dashed line in Figure 13C, is
identified when the classification algorithm identifies that the
second intermediate phase has ended. However, the SVM
classification model for the second hydrogenation cycle should
be evaluated. An alternative solution to this condition is to
perform a more detailed work on clustering or tuning the
perplexity of the original t-SNE so the two phases can be
discriminated in separate clusters.

Finally, an interesting observation of the distribution of
clusters in the embedded space is the fact that the clusters for
similar phases appear close to each other. In Figures 13A, B it can
be seen that the clusters for the start and end of the reaction are
located at the right of the embedded space, while the clusters
corresponding to the hydrogenation cycles are together at the left
of the space, and the intermediate phases are located in the center
of the space.

Batch Centrifuge Drying
A centrifuge dryer is a unit operation that combines in a single
equipment the centrifugation and drying processes for
crystallized materials. The centrifugation step separates the
mother liquid from the solid material and wash-out possible
residual impurities. After this process phase is completed, the
flow of gas starts and then the gas stream is heated to drive the
evaporation of the residual solvents. The variables considered in
this case for the phase identification and alignment are the
temperature of the gas at the inlet, the flow of gas and the
temperature inside the main chamber of the unit. From the
process description, it is clear that the trajectories of the gas

FIGURE 13 | Results on the phase identification for an hydrogenation reaction.
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flow and temperature describe well the phase changes occurring
in this process, in particular during the drying stage. The
temperature inside the equipment contributes also to identify
the changes during centrifugation because some evaporation of
the solvent occurs once the centrifuge starts spinning and
therefore the temperature reflects this phenomenon. 20
batches are used to train the algorithm and the results are
validated in the same number of batches. Figure 14 depicts
the results of the application of the proposed method to this
process. Similar to the previous case, this figure shows the results
obtained for the clusters in the embedded space (Figure 14A), the
boundaries for phase classification based on the trained SVM
models (Figure 14B), and finally an overlay of the variables to
demonstrate where the phase partition times were located
(Figure 14C). Compared to the previous cases, this process
has the higher number of non-repetitive phases on the
process. A total of six phases were identified using the
proposed algorithm. These phases correspond to the known
stages of the process demonstrating the validity of the results.
For both cases, the hydrogenation reaction and this case, despite
the large number of process phases and therefore the high
number of clusters in the embedded space, the ability of
t-SNE to form well defined clusters of similar points allows a
robust classification of the data points. Additionally, in this case
due to the larger differences between the process conditions of
every phase, the regions identified for classification of every
cluster are more compact, with a larger presence of the
embedded space that is not associated to a particular phase
allowing for a more informative classification for cases with
deviations in the process.

Themean time to compute themembership per data point was
of around 30 μs for the Pensim and the hydrogenation reaction
cases, while for the centrifuge-drying case, it was of around 200 μs.

This shows that the computational time changes from case to
case, because it depends on the number of reference points R to
compute the cross-correlation and the SVM regression models,
but also on the number of support vectors for each SVM model.
However, these results already provide a good indication of the
feasibility of implementing the method proposed in this paper for
online monitoring applications in industrial systems.

CONCLUSIONS

In this paper a novel machine learning method is presented to
perform phase identification and alignment of data from batch
processes based on manifold learning and clustering. This
method exploits t-SNE to generate an embedded low
dimensional map of the cross-correlation data between the
training batches and a reference batch. The embedding results
in a clear visualization of the phases occurring in the process
because points that belong to the same phase appear as neighbors
in the high dimensional cross-correlation space and therefore
appear together as clusters in the low dimensional space. Since the
information on the sequential character of the process is kept,
different clusters are formed even for process phases that occur
recursively. SVMs for regression are trained to model the
embedding obtained with t-SNE and are used to apply the
transformation to new batches. Based on the information
learned, a set of SVM models are trained for supervised
classification. These models identify the membership of the
new data points to the previously identified process phases.
The method presented in this paper for online phase
identification and alignment can be used for the better
implementation of data-driven modeling applications for batch
processes. The proposed method was demonstrated on a

FIGURE 14 | Results on the phase identification for the centrifuge drying process.
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benchmark case and two different real industrial cases. The
benchmark case helps to demonstrate the method step by step
and also to validate the results when compared to other existing
methods. The industrial cases illustrate the method’s
performance when applied to real data. Future work will focus
on improving the methods to reproduce the manifold learning
obtained via t-SNE.
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