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Homeodomain-interacting protein kinases (HIPKs) represent a relatively
underexplored sub-family of serine/threonine protein kinases. However, the
recently published studies point to the role of HIPKs in the developmental
biology and etiology of pathological states, in particular cancer, and potential
therapeutic applications of targeting this kinase family. This review summarizes
the biology of HIPKs and their heretofore published small-molecule inhibitors.
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Introduction

Homeodomain-interacting protein kinases (HIPKs) are evolutionary conserved serine/
threonine kinases (Kim et al., 1998; Manning et al., 2002). The four isoforms HIPK1-4
belong to the CMGC branch of the kinome, and form one of the three subunits of the DYRK
kinase family (Figure 1). The isoforms HIPK1-3 were first described in 1998 (Kim et al.,
1998), and HIPK4 in 2007 (Arai et al., 2007). HIPKs interact (acting as co-repressors) with
homeobox proteins, which are prominent transcription factors. Unlike prototypical kinases,
HIPKs act directly on transcription factors and other nuclear proteins. They play a role in
terminal regulation rather than in activation of downstream signaling cascades (e.g., MAPK
or PI3K/AKT) that consist of multiple sequential phosphorylation events (Pearson et al.,
2001; Hemmings and Restuccia, 2012). In addition to their function as transcriptional
repressors, HIPKs can also act as transcriptional activators influencing the expression of
genes, depending on the status and requirements of the cell (Calzado et al., 2007). The
highest concentrations of HIPK1-3 have been found in the nucleus, especially in
interchromatin granules (nuclear speckles) (Kim et al., 1998; Rinaldo et al., 2008; Van
Der Laden et al., 2015), while HIPK4 has been identifiedmainly in the cytoplasm (Arai et al.,
2007). In contrast to HIPK1-3, which are present in all vertebrates, HIPK4 has been found
only in mammalian cells (Schmitz et al., 2014).

Structure of HIPKs

HIPK1-3 have a high degree of structural homology (Figure 2). The salient feature of
HIPK4 is the absence of the homeobox-interacting domain, in contrast to the other three
isoforms (Rinaldo et al., 2008; Agnew et al., 2019).
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The HIPK structure features a standard arrangement consisting
of smaller N-terminal lobe and larger C-lobe, connected by the hinge
region (Figure 3) (Schmitz et al., 2014; Van Der Laden et al., 2015).

Of the HIPK isoforms, HIPK2 is the one most studied by X-ray
crystallography; the published data include co-crystal structures of
HIPK2 and several small-molecule inhibitors described below
(Agnew et al., 2019; Němec et al., 2021).

As other kinases, HIPKs undergo various post-translational
modifications (e.g., sumoylation, ubiquitinylation, and
autophosphorylation) that regulate their activity, function and
localization or mediate their degradation (Gresko et al., 2005;
Hofmann et al., 2005; Winter et al., 2008; de la Vega et al., 2011;
Saul et al., 2013).

Phosphorylation represents one of the most important post-
translational modifications. Along this line, HIPK2 can be
phosphorylated at multiple sites by Src kinase, and the resulting
phosphorylated forms can be differentially re-distributed (Polonio-
Vallon et al., 2014). HIPK autophosphorylation at tyrosine and
serine residues also affects their activity (Van Der Laden et al., 2015),
substrate specificity and the subcellular localization, and plays an
important role in the regulation of various cellular processes,
including apoptosis, DNA repair and responses to stressors (e.g.,

radiation or chemotherapeutics) (Saul et al., 2013; Siepi et al., 2013).
In this regard, HIPKs are similar to their relatives in the CMGC
kinase family, namely, the closely related DYRKs (Becker and Sippl,
2011; Van Der Laden et al., 2015).

SUMOylation affects the nuclear localization of HIPK2 and may
be involved in both repression and activation of the kinase
depending on the context of post-translational modifications.
Reversible modification of HIPK2 at the Lys25 residue by
SUMO-1 regulates the activation of c-Jun-NH2-terminal kinase
(JNK), while deconjugation of SUMO-1 from HIPK2 mediated
by the protease SuPr-1 increases the JNK activity (Hofmann
et al., 2005). Binding of HIPKs to SUMO is mediated by the
SUMO-interacting motif (SIM, Figure 4) - this interaction
regulates the activity of HIPKs and their localization in nuclear
speckles (de la Vega et al., 2011). Abnormal SUMOylation has been
linked to the development of diverse pathological processes,
including cancer (Han et al., 2018), and specifically, disrupted
SUMOylation of mutated HIPK2 to acute myeloid leukemia
(AML) and myelodysplastic syndrome (MDS) (Sung et al., 2019).

Another mechanism of positive regulation of HIPK2 is mediated
by caspase 6, which in response to stress and DNA damage cleaves
the auto-inhibitory domain of HIPK2 (Sombroek and Hofmann,

FIGURE 1
Graphical representation of the human kinome and the CMGC family. HIPKs are marked by red circles (Kinome Tree | Assayquant (29.10.2024)).
https://www.assayquant.com/kinome-tree/#).
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2009). This modification, occurring in HIPK2 at the residues
D916 and D977 (Figure 4), results in increased kinase activity
(Sombroek and Hofmann, 2009) and enhances apoptotic
signaling via phosphorylation of p53 at Ser46. This process,
crucial for promoting the transcription of pro-apoptotic genes, is
discussed in greater detail below.

Negative regulation of HIPK2 proceeds via the ubiquitination
pathway: ubiquitin ligase Siah-1 binds to HIPK2, which leads to
polyubiquitination at the lysine residue K1182 (Figure 4), transfer to
the proteasome and subsequent degradation (Winter et al., 2008).

Role of HIPKs in developmental biology

Studies in Drosophila have demonstrated the importance of
HIPK in the development of the eye as well as in neural and
muscular development (Lee et al., 2009b; Blaquiere et al., 2014;
Tettweiler et al., 2019; Wang et al., 2020).

Along this line, developmental defects were observed in mice
with different degrees of HIPKs dysfunction; specifically, eye
stunting was observed in 40% of Hipk1+/− Hipk2−/− mice (Inoue
et al., 2010).

FIGURE 2
The amino acid sequences of human HIPK1-4 (obtained from UniProt database). The ATP-binding sites of HIPK1-3 sharing common amino acid
sequences are highlighted in red.
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A degree of redundancy in HIPK1/2 functions has been
observed in several in vivo studies. Absence of both HIPK1 and
HIPK2 has been shown to cause early embryonic death due to
insufficient development of the vascular and nervous systems
(Aikawa et al., 2006; Isono et al., 2006). In this process, HIPK1/
2-mediated phosphorylation of the p300 acetyltransferase appears to
be essential (Aikawa et al., 2006). Another report revealed the role of
HIPK1/2 downstream of the TGF-β-TAK1 signaling pathway
regulating numerous angiogenic genes during early embryonic
development (Shang et al., 2013).

HIPK1 was found to be important for proper spleen B cell
function and homeostasis (Guerra et al., 2012). However, due to the
dynamic cellular and tissue expression and high heterogeneity of the
interacting molecules, the effects of HIPKs can be rather specific in a

particular cellular context. In addition, HIPKs are involved in the
regulation of several important cell signaling pathways in
Drosophila–e.g., the Hippo pathway (SWH) responsible for the
organ shape and size (Poon et al., 2012; Heidary Arash and
Attisano, 2013). HIPK2 is involved in the regulation of the
transcription factor IPF1/PDX1, which is critical for pancreatic
development and proper β-cell function (Boucher et al., 2009).
HIPKs are also involved in the regulation of the Wnt signaling
pathway (through stabilization of the β-catenin arm) that is crucial
in embryonic development and plays an important role in the
etiology of cancer or type 2 diabetes (Lee et al., 2009a).

Biochemical studies demonstrated that HIPK3 participates in
the regulation of the runt-related transcription factor 2 (Runx2) by
the transcriptional regulators MINT+FGF2 that are critical for
mammalian development (Sierra and Towler, 2010).

The role of the most recently discovered isoform HIPK4 in
developmental biology is still poorly understood. High-
throughput RNAi screening analysis revealed its function as a
suppressor of skin epithelial cell differentiation (Larribère et al.,
2017). Recent study revealed HIPK4 to be essential for
spermiogenesis and fertility–mice lacking HIPK4 showed
sperm head defects, deformation and shortening of the sperm
flagella, and overall impaired sperm function associated with the
inability to bind to the oocyte (Crapster et al., 2020). Subsequent
report demonstrated an essential role of HIPK4 in the process of
sperm head shaping, which is essential for male fertility (Liu
et al., 2022).

HIPKs in pathological states

Numerous studies link HIPKs to the mechanism of
tumorigenesis (Conte et al., 2023). One of the key HIPK-
interacting biomacromolecules is the protein p53 - one of the key
DNA repair factors and tumor suppressor genes. Proper function of
p53 is critical in cell aging and controlled cell death, and its mutation
or deregulation is very common in a variety of malignancies (Kondo
et al., 2003; Lavra et al., 2011). Mutations of p53 are associated with
the genetic disorder Li-Fraumeni syndrome, characterized by the
frequent occurrence of various malignancies early in life (Li and
Fraumeni, 1969; Varley, 2003). HIPK2 has been reported to

FIGURE 3
X-ray crystal structure of HIPK2 with highlighted major structural
subunits (pdb code: 7NCF).

FIGURE 4
The schematic representation of the HIPK2 structure with the regions involved in the post-translational regulations and discussed in the text
highlighted in yellow. (Homeobox-interacting domain: HID; speckle retention signal region: SRS; SUMO-interacting motive: SIM; auto-inhibitory
domain: AID; serine, glutamine and alanine repeat region: SQA).
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phosphorylate p53 at Ser46 (D’Orazi et al., 2002), and HIPK4 at Ser9
(Arai et al., 2007).

Phosphorylation of p53 is a crucial response of the cell to
genotoxic stress (induced by, e.g., heat, ionizing radiation,
xenobiotics or toxic metabolites) and the resulting DNA damage
(Kuwano et al., 2016). Under normal conditions, the level of p53 is
relatively low and the protein is gradually degraded through
interaction with its negative regulator MDM2 (Ashcroft et al.,
2000; Wade et al., 2010). Phosphorylation of p53 can lead to the
protein stabilization and suppression of the MDM2-mediated
degradation, and consequently increase the concentration of p53.
This can halt the cell progression in the G1 phase, providing the cell
sufficient time to repair DNA (Ashcroft et al., 2000; Oren, 2003). In
case of severe DNA damage, apoptosis is induced via activated p53-
mediated expression of pro-apoptotic genes such as Noxa, p53API1,
Bax or PUMA (Oda et al., 2000a; Oda et al., 2000b; Fritsche et al.,
2015). HIPK2 can control the mechanism of p53 degradation either
directly through its phosphorylation, or indirectly by inactivating
phosphorylation of MDM2 that promotes its export and
degradation (Stefano et al., 2004; Di Stefano et al., 2005; Kuwano
et al., 2016). This defines HIPK2 as an important regulatory factor,
and further investigations will likely lead to better understanding of
oncogenesis.

On the macroscopic level, HIPK1-deficient mice were found to
be more susceptible to chemically induced skin cancer using DMBA
initiator (Kondo et al., 2003).

However, HIPKs’ role in carcinogenesis can vary, depending on
the tumor type–in particular the role of HIPK 2 (Torrente et al.,
2017; Blaquiere et al., 2018). Faster skin tumor growth and disease
progression were observed in HIPK2 −/− mice (Wei et al., 2007). In
acute myeloid leukemia (AML), the level of HIPK1/3 mRNA was
found to be significantly increased, while the level of HIPK2 mRNA
was comparatively low (Gu et al., 2004). Recently, HIPK1 has been
identified as one of 3 MSI-1-associated genes in group
3 medulloblastoma, and defined as an attractive therapeutic
target (Kameda-Smith et al., 2022). Low levels of the
HIPK2 protein expression have been associated with poor
prognosis in pancreatic (Qin et al., 2019), colorectal, and thyroid
cancers (Lavra et al., 2011; Soubeyran et al., 2011). However, rather
opposite trends have been found in the cases of HPV-positive throat
and cervical cancers (Al-Beiti and Lu, 2008; Kwon et al., 2017), and
brain malignancies (Deshmukh et al., 2008; Schulten et al., 2016)
where poor prognosis was associated with HIPK2 protein and
mRNA overexpression. In addition, HIPK2 overexpression in
squamous cell carcinoma has been linked to higher resistance of
the tumors to radio- and chemotherapy (Kwon et al., 2017).

Low levels of HIPK3 mRNA has been found in renal tumors and
in that context it may be considered as a negative prognostic factor
(Xiao et al., 2021). In contrast, significantly elevated levels of
HIPK3 non-coding RNA circHIPK3 were observed in esophageal
squamous cell carcinoma, correlating with tumor progression and
extent of metastasis (Ba et al., 2020). However, the cancer cell lines
HCT116 and SW480 stably overexpressing HIPK3 were found to
exhibit retarded cell growth, migration, and increased sensitivity to
fluorouracil (Tao et al., 2022).

Of other diseases, chronic kidney diseases associated with
fibrosis have been associated with HIPK2 over-activity (Jin et al.,
2012; Xiao et al., 2020; Overstreet et al., 2022; Zhong et al., 2022).

Mechanistically, HIPK2 regulates the TGF-β/Smad3 signaling
pathway that is often associated with the development of fibrosis,
which suggests that this kinase could be an attractive candidate for
targeted therapy (Hu et al., 2024; Lee et al., 2024).

In the area of neurology, it has been experimentally shown that
HIPK2 expression within the central nervous system (CNS)
decreases with age, except in the cerebellum (Anzilotti et al.,
2015). Genetic ablation of HIPK2 in mice led to the
neurodegenerative process characterized by significant loss of
Purkinje cells in the cerebellum, neuromotor impairment and
ataxia (Anzilotti et al., 2015). Absence of HIPK2 negatively
affected neural development, specifically the number and survival
rate of dopaminergic neurons during early postnatal programmed
cell death phases, where HIPK2−/− mutant mice developed
numerous severe psychomotor abnormalities (Zhang et al., 2007).
These observations define HIPK2 as a neuroprotective factor (Zhang
et al., 2007). Conversely, overexpression of HIPK2 was found to be
beneficial in a rat model of spinal cord injury where it reduced the
inflammatory response, oxidative stress, and apoptosis (Li et al.,
2018). HIPK2 may contribute to the pathogenesis of Alzheimer’s
disease: soluble beta-amyloid peptides have been reported to be
involved in HIPK2 degradation, thereby regulating the
conformational state of p53 and the vulnerability to noxious
stimuli, and triggering the amyloidogenic cascade (Lanni et al.,
2010; Stanga et al., 2010). Finally, HIPK2 has been recently
defined as a promising therapeutic target for the treatment of
amyotrophic lateral sclerosis (ALS) – in the SOD1G93A mouse
model, loss of HIPK2 was found to be associated with later
disease onset, lesser extent of cell death of spinal motor neurons,
and improved overall survival (Lee et al., 2016).

The recent report by Zhang et al. points to another role of
HIPK2 in neurodegenerative processes, namely, through
modulation of mitochondrial function and affecting the Parkin-
mediated pathway (Zhang et al., 2020). Loss of HIPK2 has been
found to provide increased resistance towards mitochondrial toxins
such as MPP+, rotenone or paraquat. Mechanistically, depletion of
HIPK2 disrupts HIPK2-promoted Parkin degradation via
proteasome-mediated mechanism, which leads to elevation of the
Parkin protein level and higher mitochondrial durability (Zhang
et al., 2020). These observations suggest that HIPK2 may influence
the progression of neurodegenerative processes via regulation of
mitochondrial resistance, and make HIPK2 a potential target for the
treatment of Parkinson´s disease (Zhang et al., 2020).

Recent studies have demonstrated that in Caenorhabditis elegans
the HIPK2 homolog HPK-1 plays a role in the response to stress
(Berber et al., 2016), and is involved in two different molecular
mechanism of proteostasis maintenance (Das et al., 2017). In one of
them, HPK-1 prevents SUMOylation of the heat shock transcription
factor HSF-1, which induces molecular chaperones upon thermal
stress and enhances longevity (Das et al., 2017). In the other
mechanism, HPK-1 induces autophagosome formation and
autophagy gene expression upon dietary restriction or
inactivation of TORC1 (Das et al., 2017). Along a similar line,
HPK-1 was recently discovered to be the most broadly upregulated
kinase in C. elegans during normal aging, and essential for
preservation of integrity of the nervous system (Lazaro-Pena
et al., 2023). In the aging nervous system, HPK-1 induction
overlaps with key longevity transcription factors, and restoration
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of the HPK-1 neuronal expression rescues the premature age-
associated decline and reduces thermotolerance of hkp-1 null C.
elegans (Lazaro-Pena et al., 2023). Specifically, the HPK-1 activity
was found to be important for the heat shock response of
serotonergic neurons, proper activity of GABAergic neurons, and
proteome stability (Lazaro-Pena et al., 2023).

At the macroscopic level, HPK-1 overexpression in C. elegans
increased the lifespan by up to 16% (Das et al., 2017). The recent
study by Doering et al. identified HPK-1 as a central positive
regulator of the nhr-49 dependent hypoxia response pathway,
and revealed that null mutation of hpk-1 caused a significant
reduction of the survival rate under hypoxia (Doering
et al., 2022).

Additional HIPK2 targets are summarized in Table 1.
HIPK3 has been found to play a role in the metabolism of

glucose and possibly in the pathogenesis of type 2 diabetes (Shojima
et al., 2012). Specifically, mice lacking HIPK3 showed reduced beta
cell proliferation and glucose-induced insulin secretion, associated
with decreased phosphorylation of the kinase GSK3β and the
transcription factor PDX1 (Shojima et al., 2012).

Collectively, the studies described above suggest that
modulation of HIPK2 for therapeutic purposes may require

finely balanced concentrations of HIPK inhibitors that would
positively affect the maintenance of proteostasis and prevent age-
induced neuronal cell death, but would not induce chronic stress
response. Similarly delicately balanced scenario may be necessary
for the development of potential anti-cancer drugs, where in
some contexts inhibition of overexpressed HIPK2 (Al-Beiti and
Lu, 2008; Kwon et al., 2017; Cao et al., 2021) could provide the
desired anti-cancer effect, while in others it could negatively
affect the p53 apoptotic function and promote tumorigenesis
(D’Orazi et al., 2012). Similarly balanced regimes may be
necessary for therapeutic targeting of the isoforms HIPK1,
HIPK3 and HIPK4, whose biology (including post-
translational modifications) is however comparatively less
explored. In addition, modulation of the HIPK isoforms in
specific compartments of the cell (Ritter and Schmitz, 2019)
may require isoform-selective inhibitors.

Introduction to kinase inhibitors

The family of protein kinases contains >500 proteins that
regulate numerous cellular signaling pathways in the cell.
Targeting this class of enzymes represents one of the most
dynamic areas of pharmaceutical research and >80 small-
molecule kinase inhibitors approved for clinical use (Roskoski,
2024). Vast majority of them is represented by ATP-competitive
inhibitors that are tightly anchored to the kinase hinge backbone.
The ATP-binding site across the kinome is typically highly
conserved, which makes identification of highly selective kinase
inhibitors a non-trivial task (Breen and Soellner, 2015; Umezawa
and Kii, 2021).

While sufficiently selective inhibitors have been identified for
some kinases (and frequently served as the starting points for
development of novel drugs), for many others that are only
emerging as potential targets for pharmacological inhibition they
are still to be discovered (Attwood et al., 2021).

TABLE 1 List of biological targets modified by HIPK2.

Target Modification Biological role of the target References

p63 Phosphorylation Tumor suppression/apoptosis (p53 homologue) Lazzari et al. (2011)

β-catenin Phosphorylation Wnt/β-catenin pathway Kim et al. (2010)

Axin Ternary axin/p53/HIPK2 complex-p53 phosphorylation
supported

Wnt/β-catenin pathway (cell proliferation, differentiation) Rui et al. (2004)

Notch1 Phosphorylation Malignant progression Ann et al. (2016)

CtBP Phosphorylation Transcription Zhang et al. (2005)

Smad3 Protein/protein association (PPI) TGF-β/Smad3 pathway (angiogenesis, fibrosis) Liu et al. (2017)

c-Myb Phosphorylation Haematopoiesis Kanei-Ishii et al. (2004)

Daxx Phosphorylation TGF-β/JNK activation (apoptosis) Hofmann et al. (2003)

p300, AML1 Phosphorylation Transcription activation Aikawa et al. (2006)

HMGA1 Phosphorylation DNA repair/transcriptional regulation Zhang and Wang (2007)

HDAC3 Phosphorylation Transcription modulation Zhang et al. (2021)

FIGURE 5
Structure of the compound A64.
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To our best knowledge, there are no clinically profiled
inhibitors having HIPKs as primary targets. However, several
classes of recently discovered HIPK inhibitors summarized below
can serve as starting points for the pre-clinical identification of
suitable candidates for pharmacological inhibition of
these kinases.

Kinase inhibitors are classified according to their mode of
interaction with the target kinase. Most common ones are ATP-
competitive inhibitors, i.e., compounds that occupy the binding site
of the natural substrate ATP (Roskoski, 2021; Roskoski, 2024). Type
I ATP-competitive inhibitors bind to active conformation of the
kinase (Wu et al., 2015), whereas type II inhibitors bind to inactive
conformation and can also affect regions adjacent to the ATP
binding site (Wu et al., 2015).

Allosteric inhibitors, on the other hand, inactivate the kinase
indirectly, most frequently by changing its conformation or
disrupting an association to a partner that is essential for the
kinase function (Thomson et al., 2024). Most inhibitors interact
with active or inactive forms of kinases through non-covalent
interactions - hydrogen bonds, pi-stacking, dipole or lipophilic
interaction (Łukasik et al., 2021). Historically less common (but
currently growing) group includes covalent kinase inhibitors, e.g.,

ibrutinib and afatinib (Abdeldayem et al., 2020; Cheke and
Kharkar, 2024).

Small-molecule inhibitors of HIPKs

High-throughput profiling of a library consisting of
118 compounds yielded the compound A64 (Figure 5) (Miduturu
et al., 2011). This commercially available compound (sold as the
hydrochloride salt under the name Protein Kinase Inhibitor 1)
inhibits HIPK1 and HIPK2 with the IC50 values of 136 nM and
74 nM, respectively (Miduturu et al., 2011). Recently, the compound
A64 has been applied as a research tool to inhibit HIPK2 in cells
(using 74 nM concentration of its dihydrochloride PKI1H) and in
vivo (with the 100 mg/kg dose, Liang et al., 2020; Zhou et al., 2021).

A recently reported class of HIPK inhibitors is based on the non-
routine furo[3,2-b]pyridine scaffold, which was previously used as the
basis of potent and highly selective inhibitors of cdc-like kinases (CLKs)
(Němec et al., 2019). Expansion of the SAR in the sub-series of 3,5-
disubstituted furo[3,2-b]pyridines with the focus on HIPK inhibition
yielded the compoundsMU135 (HIPK1 IC50 = 248 nM; HIPK2 IC50 =
119 nM; HIPK3 IC50 = 476 nM) andMU1787 (HIPK1 IC50 = 285 nM;
HIPK2 IC50 = 123 nM; HIPK3 IC50 = 283 nM) (Figure 6) with
remarkable kinome-wide selectivity (Němec et al., 2021).

Crystallographic studies revealed that MU135 in HIPK2 adopts
a rather unusual type-I binding mode: in contrast to standard type-I
inhibitors, it features only a weak interaction of the furo[3,2-b]
pyridine core to the hinge, combined with the hydrogen bond of the
pyrazole with the salt bridge, and likely hydrophobic stacking with
Phe 277 and Ile 345 in the back pocket (Figure 7).

In contrast to the ATP-competitive inhibitors described above,
the compound BT173 (Figure 8) binds to HIPK2 allosterically and

FIGURE 6
Structures of the compounds MU135 (A) and MU1787 (B).

FIGURE 7
Crystal structure of MU135 in HIPK2; adopted from (Němec
et al., 2021).

FIGURE 8
Structure of the compound BT173.
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does not directly inhibit its kinase activity. However, at 10 μM
concentration, it blocks the ability of HIPK2 to associate with the
protein Smad3 in 293T cells (Liu et al., 2017), thereby regulating the
TGF-β1/Smad3 pathway, and attenuating renal fibrosis (Sato et al.,
2003; Zhang et al., 2010; Chen et al., 2014; Liu et al., 2017; Lee et al.,
2024). The compound has been found to be effective also in vivo–in
the Tg26 mouse model, it ameliorated proteinuria and kidney
fibrosis at the dose of 20 mg/kg (Liu et al., 2017).

Kinase inhibitors with HIPK off-
target activity

First reported class of inhibitors with attractive off-target
HIPK activity consists of polyhalogenated (benz)imidazoles,
exemplified by the compounds TBI, TBiD and TMCB
(Figure 9). The compound TBI (also referred to as TBBz) was

firstly reported as a CK2 inhibitor (Zień et al., 2003). Subsequent
studies identified this compound as an antiprotozoal agent
effective against Acanthamoeba castellanii, and also as a HIPK
inhibitor with HIPK2 IC50 = 0.7 μM (Kopańska et al., 2004;
Pagano et al., 2008; Cozza et al., 2014). The compound TBID is
more potent (HIPK2 IC50 = 0.33 μM), capable of inhibiting
phosphorylation of p53 at serine 46 in the cell at 50 μM
concentration (Cozza et al., 2014). Both compounds exhibit
moderate activity towards the kinase CK2: TBI CK2 IC50 =
0.6 μM and TBID CK2 IC50 = 5.5 μM (Cozza et al., 2014).
The commercially available compound TMCB is comparatively
less potent (HIPK2 IC50 = 15.25 μM) and targets several other
kinases (namely, CK2, ERK8, PIM1) with higher potency
(Pagano et al., 2008; Cozza et al., 2010; Janeczko et al.,
2012) – it has been used as a research tool in that context
(Schneider et al., 2012; Bollacke et al., 2016; Wadey et al.,
2017; Kim et al., 2023). TBI iodinated analogues were also
prepared and studied (Gianoncelli et al., 2009).

Abemaciclib (Figure 10) is a small-molecule inhibitor developed
by Eli Lilly, sold under the name Verzenio. The compound was
approved by the FDA in 2015 for the treatment of metastatic breast
cancer and later for other types of breast cancers (Finn et al., 2009;
Coates et al., 2010; Lu, 2015; Palumbo et al., 2019; Johnston et al.,
2021; Rugo et al., 2022; Wekking et al., 2023). The primary targets of
abemaciclib are CDK4/6; however, the compound was found to
possess notable activity towards HIPK2 and HIPK3 with the IC50

values of 668 nM and 467 nM, respectively (Poratti and Marzaro,
2019; Kaltheuner et al., 2021). The compound is significantly less

FIGURE 9
Structures of the compounds TBID (A), TBI (TBBz) (B), and TMCB (C).

FIGURE 10
Structure of abemaciclib.

FIGURE 11
Structure of the compound STO-609.

FIGURE 12
Structure of silmitasertib (CX-4945).
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active against HIPK1 and HIPK4 (HIPK1 IC50 = 4.53 μM;
HIPK4 IC50 = 10.36 μM; Kaltheuner et al., 2021).

The compound STO-609 (Figure 11) is currently commercially
available as a research tool for inhibition of calmodulin-dependent
protein kinase kinase (CaM-KK) (Tokumitsu et al., 2002; Kukimoto-
Niino et al., 2011; Hou et al., 2021;Wang et al., 2021; 2022). Profiling
of STO-609 in a panel of 72 kinases revealed off-target inhibition of
HIPK2 (65% inhibition at 1 μM) and HIPK3 (32% inhibition at
1 μM) (Bain et al., 2007).

Silmitasertib also known as CX-4945 (Figure 12) is a small-
molecule inhibitor of casein kinase 2 (CK2), currently undergoing
clinical trials focused on the treatment for bile duct cancer and
medulloblastoma (Pierre et al., 2011; Purzner et al., 2018; Borad
et al., 2021; 2023). It sparked interest during the COVID-19
pandemic due to its antiviral effect (Bouhaddou et al., 2020;
Gordon et al., 2020; Naik et al., 2022), possibly caused by
modulation of CK2-mediated extracellular matrix remodeling
(Bouhaddou et al., 2020). The compound was found to be
significantly active against HIPK3 isoform with the IC50 value of
45 nM (Pierre et al., 2011).

Off-target activity against HIPK2 was observed in case of the
c-Jun NH2-terminal protein kinase (JNK) inhibitors SP600125 and
AS601245 (Figure 13) (Slouka et al., 1982; Bain et al., 2003; Gaillard
et al., 2005). The compound SP600125 is a broad-spectrum
inhibitor of serine/threonine kinases and inhibits 65% of
HIPK2 at 1 μM, while the more selective compound AS601245
71% at the same concentration (Bain et al., 2007).

Conclusion

HIPKs represent a relatively underexplored kinase family
(Attwood et al., 2021). However, the biological studies published
in the past decade (and summarized in this review) suggest that
targeting HIPKs could bring therapeutic benefit. Development of
sufficiently potent and selective small-molecule HIPK inhibitors
therefore represents an attractive research area as it will likely afford
quality chemical biology probes that would serve as valuable tools
for further exploration of potential therapeutic relevance of targeting
HIPKs. Those compounds will be likely useful also as the starting
points for the development of clinical candidates. However,
modulation of HIPKs for optimal therapeutic outcome may
require finely balanced concentrations of HIPK inhibitors (in
some cases those possessing sufficient isoform selectivity),
especially in the areas of neurology and oncology. In addition,

exploration and linking of the HIPK biology to new therapeutic
applications could expand the medicinal use of the already approved
drugs that inhibit HIPKs as off-targets.
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